
The HighspectJ Framework

Oren Mishali
Department of Computer Science

Technion – Israel Institute of Technology
omishali@cs.technion.ac.il

Shmuel Katz
Department of Computer Science

Technion – Israel Institute of Technology
katz@cs.technion.ac.il

ABSTRACT
AspectJ pointcuts relate to a specific execution point in the
program and thus AspectJ is not capable of naturally ex-
pressing high-level events that are the culmination of a series
of more basic events. Yet, there is a real need for express-
ing such events when dealing with domains having termi-
nology at a level of abstraction higher than the program’s
code, e.g., software process support, usability evaluation of
user interfaces, or detecting illegal banking practices. Here,
we present a framework called HighspectJ that provides a
structured AspectJ-based solution for defining and utilizing
high-level events. The framework treats an event as a first-
class object, separates between the identification and the
treatment of the event, and facilitates definition of events
in layers, where higher level events are defined in terms of
lower level ones. In addition, definition and reuse of high-
level events using aspects is facilitated by an event reposi-
tory which contains event building blocks. The framework
is described and an example for its utilization for defining
software process support is given.

Categories and Subject Descriptors
D.2.10 [SOFTWARE ENGINEERING]: Design—Method-
ologies; D.2.11 [SOFTWARE ENGINEERING]: Soft-
ware Architectures—Patterns; K.6.3 [MANAGEMENT
OF COMPUTING AND INFORMATION SYSTEMS]:
Software Management—Software development,Software pro-
cess

General Terms
Design, Management

1. INTRODUCTION
In this paper we propose an aspect-oriented event infras-

tructure framework to facilitate application development.
The need for such a framework arose in our research on
using the aspect-oriented paradigm to support the software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACP4IS’09, March 2, 2009, Charlottesville, Virginia, USA.
Copyright 2009 ACM 978-1-60558-453-9/09/03 ...$5.00.

development process [11, 9, 10]. Generally speaking, we de-
fine AspectJ aspects which encapsulate the needed process
support, and then are woven into the Eclipse IDE itself to
achieve the desired effect. Our experience shows that us-
ing AspectJ as-is for this purpose is problematic. The root
of the problem, which is a known limitation of AspectJ [1,
3], is that AspectJ enables one to define events – in terms
of pointcuts – relating to a specific execution point in the
program, e.g., a method call or a field assignment. On the
other hand, there are many cases where we need to express
higher-level events that are the culmination of a series of
more basic events.

For instance, one software process practice which we sup-
port is Test-Driven Development (TDD) [9]. TDD calls for
development in cycles, where in each cycle a test is first writ-
ten and only then the portion of code that makes the test
pass is developed. In user experiments, we found that after
creating a JUnit test class, novice TDD developers spent a
long time on editing the test class before moving to the cor-
responding Java class (hence violating TDD practice, which
advocates small initial cycles). To help in preventing such
cases, we were interested in notifying the developers in real-
time when the violation is about to occur. For that purpose,
we needed to express an event which can be described as fol-
lows:

• The developer creates a JUnit test class and then mod-
ifies the test in the editor for time == T. No modifi-
cation of a Java class occurs in the middle.

AspectJ pointcuts are not capable of directly expressing
such an event, though this sort of high-level event exists nat-
urally when dealing with domains such as the software pro-
cess, where the terminology used is at a level of abstraction
higher than the base-system’s code. Other domains where
such high-level events are common are usability evaluation
of user interfaces [4, 5], the treatment of non-functional re-
quirements [6], and the management of distributed infor-
mation systems [8]. The latter work defines a general non-
aspect architecture for treating such events in a distributed
context known as Complex Event Processing (CEP).

Several proposals have been made to extend AspectJ-like
languages with history-based constructs that enable the def-
inition of high-level events (elaborated in [1]). In this paper,
rather than suggesting new language features, the problem is
tackled using a design approach. Below, a framework called
HighspectJ is presented that provides a structured AspectJ-
based solution for defining and utilizing high-level events.
The framework’s main design concepts, inspired from the
CEP paradigm, treat an event as a first-class object, sep-

Figure 1: Overview of the framework’s architecture

Listing 1: The IEventAspect interface

public interface IEventAspect {
public void event (HJEvent event) ;
public St r ing getEventId () ;
public void i n i t () ;

}

arate between the identification and the treatment of the
event, and facilitate a layered definition of events that is nat-
ural in many domains [8, 7]. Moreover, definition and reuse
of high-level events is facilitated by a key component of the
framework – an event repository containing event building
blocks contributed by different parties.

Providing this framework in an aspect-oriented context
adds flexibility, variability, and greater modularity to event-
based processing. The framework supports and codifies a
high-level design pattern for aspect systems, and we view
it as an example of how useful patterns for aspects can be
provided with infrastructural support for appropriate appli-
cations.

In the following section an overview of the framework is
presented. Then, in Section 3 an example is given for the
utilization of the framework to define support for the soft-
ware process domain, and finally we briefly describe some
additional examples.

2. OVERVIEW OF THE FRAMEWORK
The HighspectJ framework1 consists of Java/AspectJ types,

components, and coding guidelines, all of which facilitate
defining, testing, and utilizing high-level events on top of
Java-based systems. This version of the framework is not
distributed, since many of the issues of distribution are or-
thogonal to the concepts presented here.

An overview of the framework’s architecture is presented
in Figure 1. To implement the needed high-level function-
ality, two kinds of aspects are defined, event and response
aspects. Event aspects expose high-level events and con-
text and each event aspect adheres to the IEventAspect in-

1The framework and an example are available at
http://www.cs.technion.ac.il/~omishali/HighspectJ

terface shown in Listing 1. A typical event aspect main-
tains an internal state (usually fields that aggregate infor-
mation based on lower-level event aspects), and at a par-
ticular point, based on its state, implicitly notifies others
on the occurrence of the event that it represents by calling
its event(HJEvent) method. The type HJEvent holds event
information such as an id, a time stamp denoting the time
when the activity that it represents took place, and event
context. Response aspects react to those event activations,
and their functionality varies from monitoring of activities to
providing real-time notifications. Other types in the frame-
work are presented in the example in the following section.

The framework supports a hierarchical definition of event
aspects. As shown in the figure, event aspects can be defined
in several layers where the aspects in layer j+1 use aspects
in layer j, and thereby represent system activities at a higher
level of abstraction. The lowest (first) layer is defined over
the base system, and the event aspects in this layer are the
only ones that operate directly on system join-points. This
hierarchical organization of events is emphasized in [8], and,
as explained there, is useful when the operation/usage of the
system is naturally viewed at multiple levels of abstraction.

The task of implementing first-layer event aspects is time
consuming since it requires expert knowledge of the base sys-
tem in order to find the appropriate system join-points and
to know how to expose the desired context. The framework
simplifies the task by providing a central location where such
lower-level knowledge can be shared: the event repository.
The repository provides an interface for the contribution of
first-layer event aspects mainly by those who are familiar
with the base-system’s internals (contribution of higher-level
event aspects is also facilitated). The repository can be
queried for specific events by implementers of higher-level
events, which makes the implementation of event aspects
in the upper layers relatively straightforward. The imple-
menter does the actual coding of the event aspects accord-
ing to a specification given by his/her manager, and loads
them to the repository. Then, the manager also uses the
repository to define the response aspects operating on the
existing event aspects.

3. SOFTWARE PROCESS EXAMPLE
In this section, the HighspectJ framework is utilized to

define event-based support for a particular facet of the soft-
ware development process – the code-integration phase –
which involves the integration of code developed locally to
a shared code database. After analyzing the problem do-
main, we focus on the specification and implementation of
an event aspect which identifies a particular deviation from
the desired integration process.

3.1 Domain Analysis
In a typical software development process, each devel-

oper adds or modifies code in a local workspace and once
in a while integrates (commits) the code into a shared code
database. Usually, the developer cannot just commit the
code but should carry out additional operations. Those op-
erations together with the actual commit are denoted as the
integration phase.

Following is a typical integration scenario that will serve
as a basis for the definition of our integration support:

Figure 2: Specification of SuiteExecutionProblem event aspect

Listing 2: JUnit test for SuiteExecutionProblem event aspect
1 public class SuiteExecutionProblemTest extends TestCase {
2 . . .
3 public void testDevelopmentCase3 () throws Inter ruptedExcept ion {
4 SuiteExecut ion . Event su i teExecut ionEvent = su i t eExecut i on . new Event () ;
5 su i teExecut ionEvent .RESULT = true ;
6 su i t eExecut i on . event (su i teExecut ionEvent) ; Thread . s l e e p (1000) ;
7
8 codeModi f i ca t ion . event (codeModi f i ca t ion . new Event ()) ; Thread . s l e e p (1000) ;
9

10 commit . event (commit . new Event ()) ;
11
12 SuiteExecutionProblem . Event e = (SuiteExecutionProblem . Event) Logger . getEvent () ;
13 a s s e r tEqua l s (SuiteExecutionProblem . Event .CODE MODIFIED, e .CAUSE) ;
14 }
15 }

• (1) Coding (2) GetToken (3) SynchQuery (4) [Synchro-
nize] (5) MakeTheSuitePass (6) Commit (7) Return-
Token

The scenario is inspired from agile development approaches,
such as Extreme Programming [2], that call for the existence
of a comprehensive test suite containing all the unit tests,
for the execution of the suite prior to the commit, and for
the maintenance of an integration token, a kind of a mutex
mechanism ensuring that only one developer integrates at a
particular time2.

After performing the needed code changes for completing
the task (step 1 in the scenario), the developer requests the
integration token; this step can be done in many ways as
agreed by the team, for instance using a simple mail proto-
col. The developer then submits a synchronization query to
the code database (step 3), to check whether the local code
needs to be updated due to modifications made by other
developers. The fourth step is optional and involves the ac-
tual synchronization in case code updates exist. Finally, a
commit operation is performed (step 6), and the integration
token is returned to the team.

3.2 The Suggested HighspectJ Support
The scenario dictates the desired integration process. How-

ever as with any software process practice, there is an in-
evitable gap between the desired process to be followed and
the actual behavior of the participants. For instance, the
developer may try to commit without first executing the
test suite or getting the integration token, or might forget
to return the token after the commit takes place. These and

2http://www.xprogramming.com/xpmag/unofficial_faq.
htm

other deviations may be identified by event aspects that no-
tify of their occurrence in real-time. Then, corresponding
response aspects, operating on the event aspects, may bring
the deviations to the attention of the developer, or log them
for further analysis and reflection, depending on the man-
agement strategy used.

We focus on the specification and implementation of a
specific event aspect – SuiteExecutionProblem – which iden-
tifies an integration problem related to test suite execution.
The event aspect is based on the underlying events Suit-
eExecution, CodeModification, and Commit. These events
are themselves event aspects representing basic software de-
velopment activities of executing the test suite, modifying
code within the editor, and checking-in code into the code
database, respectively. The events are stored within the
event repository and thus relatively easy definition of the
higher-level event aspect is facilitated.

An event aspect is specified by a set of lower-level event
sequences; each sequence denotes a specific ordering of un-
derlying events on which the event aspect depends. For each
event sequence, the specific state of its context variables
is described, as well as whether the event method should
be activated. The specification of SuiteExecutionProblem is
presented in Figure 2. In our particular software process
context, the event sequences are denoted as development
cases. In the first development case, the developer attempts
to commit without a prior execution of the test suite. When
such a case is identified, the aspect activates its event while
exposing the cause of the problem (via the CAUSE con-
text variable). In the second development case, the suite
is indeed executed before the commit but contains failing
tests; also here, a problem is reported carrying a different
CAUSE. In the third problematic case, the suite is executed

Listing 3: SuiteExecutionProblem event aspect
1 public aspect SuiteExecutionProblem implements IEventAspect {
2 public class Event extends HJEvent {
3 . . .
4 public St r ing CAUSE;
5 public Event (){
6 s e t I d (”org . h i gh sp e c t j . events . SuiteExecutionProblem ”) ;
7 }
8 }
9 private Event event = new Event () ;

10 private SuiteExecut ion . Event su i t eExecut i on ;
11 private CodeModif icat ion . Event codeModi f i ca t ion ;
12
13 public void event (HJEvent event){
14 event . setTime (new Date ()) ;
15 i n i t () ;
16 }
17 . . .
18
19 after () : execution (∗ Commit . event (. .)) {
20 i f (su i t eExecut i on == null){
21 event .CAUSE = Event .NO SUITE EXECUTION;
22 event (event) ;
23 } else i f (su i t eExecut i on .RESULT == fa l se){
24 event .CAUSE = Event .NO GREEN EXECUTION;
25 event (event) ;
26 } else i f (Events . i sOrdered (su i teExecut ion , codeModi f i ca t ion)){
27 event .CAUSE = Event .CODE MODIFIED;
28 event (event) ;
29 }
30 }
31 }

successfully but code modification takes place afterwards,
which may indicate a need for an additional suite execution.
The fourth development case relates to the expected behav-
ior where the developer conducts a successful suite execution
and immediately afterwards commits the code. In that case,
no event is triggered.

The HighspectJ framework is designed to facilitate Test-
Driven Development (TDD) of event aspects based on their
specification, where in each TDD step a JUnit method for a
specific development case is first written and then the code
within the event aspect that passes the test is developed.
The JUnit method for the third development case is pre-
sented in Listing 2. The development case is simulated by
activating each of its events; it is done by calling the cor-
responding event aspect’s event(..) method (e.g., line 6).
The event is specified to have a particular context and thus
before calling the event(..) method, the context is set as ap-
propriate (line 5). Note the default time delay of one second
between the events (lines 6,8) which is required in order to
query for timing relations between the events, as shown be-
low. After simulating the event sequence, the post-condition
is checked. The checking is facilitated by a Logger aspect
provided by the framework. At the end of the simulation,
the logged event is retrieved and checked for the expected
context value (lines 12,13). If the event was not activated,
the Logger returns null and the test method fails.

The SuiteExecutionProblem event aspect satisfying the
above-mentioned specification is presented in Listing 3. As
previously noted, like any other event aspect, this one im-
plements the interface IEventAspect. It also contains a pub-
lic inner class called Event representing the event that is

identified by the event aspect, extending the HJEvent class
provided by the framework. Any event context exposed by
the event aspect should be declared within the Event class
as public fields. In our example, a single context field is
defined, representing the CAUSE of the problem and ad-
ditional corresponding constants, not shown in the listing.
Note that this technique allows an event aspect to expose
context data that is not defined in the underlying base sys-
tem or in lower-level events, but which is needed for the task
at hand.

In line 13, we see the event(..) method which is part of
the IEventAspect interface, and is called by the event as-
pect when an occurrence of the event is identified. It calls
the init() method, also part of the interface, that flushes
the event aspect’s state. In that way, the event aspect is
prepared for a new event cycle; this initialization is required
since the event aspect is a singleton and thus the same mem-
ber fields are used in subsequent event cycles.

The core functionality of the event aspect, which is to
monitor underlying events and decide when to call its event(..)
method is implemented by several advices. The first two
advices (not shown in the listing) simply save the lower-
level events reported by SuiteExecution and CodeModifica-
tion. The third advice (line 19) handles the logic; upon a
Commit event, and depending on the state of the saved un-
derlying events, the event(..) method is called while passing
it the event field with the appropriate context. Note the
use of the isOrdered(..) method in line 26; this static util-
ity, defined in the Events class of the framework, gets a set
of events and returns true if the given events are in their
chronological order and false otherwise. Here it is used to

verify whether code modification took place after the test
suite execution. The class Events provides additional static
utilities mostly to determine timing relationships between
events.

Note that both the event aspect and its JUnit test contain
repeatable and systematic code segments, most of them de-
rived from the specification. In the next release of the High-
spectJ framework, it is planned to facilitate automatic code
generation of these segments, which will reduce the coding
effort and increase code reliability.

Above, an event aspect identifying a common deviation
from the described integration process was defined. As shown,
the event aspect has a structured specification which is trans-
formed into concrete test cases. The SuiteExecutionProblem
event aspect may be contributed to the event repository and
thus enable its utilization by others. For instance, a manager
may use it to define a corresponding response aspect that
will monitor activations of the event(..) method and take
appropriate action according to the cause of the problem.
A typical action would be to provide the developer with
a notification in real-time, whenever the deviation occurs.
For that, the response aspect creates an object of type Mes-
sage, initializes it with a proper textual message and man-
agement strategy (e.g., ERROR, WARNING), and uses the
EventViewer to present it. Besides utilization by response
aspects, a contributed event aspect may be used by imple-
menters to define higher-level event aspects. For instance,
assuming that we have several event aspects indicating dif-
ferent problems in the process, an event aspect called Con-
gestedProcessProblems may be defined. This aspect identi-
fies cases where several process problems happen in a short
time interval and helps to recognize sensitive stages in the
development process.

4. ADDITIONAL EXAMPLES
As noted, the layered event architecture is appropriate

for situations where the terminology of the concern treated
by the aspect is far from that of the underlying system.
Although we have identified many applications, including
so-called nonfunctional concerns, where such a design is ap-
propriate, below we describe just two, for reasons of space.

As one nonfunctional concern, we have used the frame-
work to treat usability evaluation of user interfaces. Usabil-
ity is defined as the extent to which a product can be used by
specified users to achieve specified goals with effectiveness,
efficiency, and satisfaction. One common method to evalu-
ate the usability of a given system is automatic evaluation
[7], where the usage of the UI by real users is automati-
cally monitored, analyzed, and searched for usability prob-
lems. The potential of AOP for automatic usability evalua-
tion is known [13, 12], but an event-based version provides
a reusable collection of usability events (both positive and
negative), using terminology not relevant to the application
itself. For example, using a complex series of buttons and
GUI elements instead of a simpler direct possibility for the
same task defines a potential visibility problem event (the
simple solution is hard to find).

Another example is the auditing concern of a banking sys-
tem. In particular, a layered approach to treating the money
laundering concern can be imposed over such a system, mo-
tivated by changes in legislation and tax law. Such a concern
has complex terminology and events at several levels of ab-
straction. For example, an intermediate level of a collection

of suspicious red-flag events is natural. Thus, the creation
of multiple on-line bank accounts of a similar type from the
same IP address could be identified as such an event. Red-
flag events can trigger a deeper analysis to identify, e.g.,
events signalling the practices of smurfing or kiting. The
former involves creating numerous small entities (accounts
or enterprizes) to avoid reporting currency exchanges, while
the latter involves moving among multiple domain names in
financial transactions to avoid detection. Identifying such
events involves gathering and exposing information irrele-
vant to a banking system that has no direct treatment of
this concern.

5. REFERENCES
[1] Chris Allan, Pavel Avgustinov, Aske Simon

Christensen, Laurie Hendren, Sascha Kuzins, Ondřej
Lhoták, Oege de Moor, Damien Sereni, Ganesh
Sittampalam, and Julian Tibble. Adding trace
matching with free variables to AspectJ. ACM
SIGPLAN Notices, 40(10):345–364, October 2005.

[2] Kent Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley, Reading, MA, 2000.

[3] Rémi Douence, Pascal Fradet, and Mario Südholt.
Composition, reuse and interaction analysis of stateful
aspects. In AOSD, 2004.

[4] Kurt D. Fenstermacher and Mark Ginsburg. A
lightweight framework for cross-application user
monitoring. Computer, 35(3):51–59, March 2002.

[5] Hilbert and Redmiles. Extracting usability
information from user interface events. CSURV:
Computing Surveys, 32, 2000.

[6] Matti A. Hiltunen, François Täıani, and Richard D.
Schlichting. Reflections on aspects and configurable
protocols. In AOSD. ACM, 2006.

[7] Ivory and Hearst. The state of the art in automating
usability evaluation of user interfaces. CSURV:
Computing Surveys, 33, 2001.

[8] David C. Luckham. The Power of Events: An
Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley
Longman Publishing Co., Boston, USA, 2001.

[9] Oren Mishali, Yael Dubinsky, and Shmuel Katz. The
TDD-guide training and guidance tool for test-driven
development. In XP, volume 9 of Lecture Notes in
Business Information Processing, pages 63–72.
Springer, 2008.

[10] Oren Mishali, Yael Dubinsky, and Itay Maman.
Towards ide support for abstract thinking. In ROA
’08: Proceedings of the 2nd international workshop on
The role of abstraction in software engineering, pages
9–13. ACM, 2008.

[11] Oren Mishali and Shmuel Katz. Using aspects to
support the software process: XP over eclipse. In
AOSD. ACM, 2006.

[12] Yonglei Tao. Capturing user interface events with
aspects. In HCI (4), pages 1170–1179, 2007.

[13] A.M. Tarta and G.S. Moldovan. Automatic usability
evaluation using aop. Intl. Conf. on Automation,
Quality and Testing, Robotics, 2:84–89, 2006.

