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ABSTRACT

We study the caching of query result pages in Web search en-
gines. Popular search engines receive millions of queries per
day, and efficient policies for caching query results may en-
able them to lower their response time and reduce their hard-
ware requirements. We present PDC (probability driven
cache), a novel scheme tailored for caching search results,
that is based on a probabilistic model of search engine users.
We then use a trace of over seven million queries submitted
to the search engine AltaVista to evaluate PDC, as well as
traditional LRU and SLRU based caching schemes. The
trace driven simulations show that PDC outperforms the
other policies. We also examine the prefetching of search
results, and demonstrate that prefetching can increase cache
hit ratios by 50% for large caches, and can double the hit
ratios of small caches. When integrating prefetching into
PDC, we attain hit ratios of over 0.53.

1. INTRODUCTION

Popular search engines receive millions of queries per day
on any and every walk of life. While these queries are sub-
mitted by millions of unrelated users, studies have shown
that a small set of popular queries accounts for a significant
fraction of the query stream. Furthermore, search engines
may also anticipate user requests, since users often ask for
more than one page of results per query. It is therefore com-
monly believed that all major search engines perform some
sort of search result caching and prefetching. An engine
that answers many queries from a cache instead of process-
ing them through its index, can lower its response time and
reduce its hardware requirements.

1.1 Search Engine Users

Jénsson et al. [7], in their work on buffering inverted lists
for query evaluations, noted that knowledge of the access
patterns of the retrieval algorithm to the buffers can be
tapped for devising effective buffer replacement schemes. By
analogy, understanding the access patterns of search engine
users to query results can aid the task of caching search
results.

Users interact with search engines in search sessions. Ses-
sions begin when users submit ¢nitial queries to search en-
gines, by typing some search phrase which describes their
topic of interest. From the users’ point of view, an engine
answers each initial query with a linked set of ranked result
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pages, typically with 10 results per page. All users browse
the first page of results, which contains the results deemed
by the engine’s ranking scheme to be the most relevant to
the query. Some users scan additional result pages, usu-
ally in the natural order in which those pages are presented.
Technically, this involves querying the engine for the desired
additional result pages, one page at a time. We refer to such
requests as follow-up queries. A search session implicitly
terminates when the user decides not to request additional
result pages on the topic which initiated the session.

Three studies have analyzed the manner in which users
query search engines and view result pages: a study by
Jansen et al. [6], based on 51,473 queries submitted to the
search engine Ezcite'; a study by Markatos [11], based on
about a million queries submitted to Excite on a single day
in 1997; and a study by Silverstein et al. [14], based on about
a billion queries submitted to the search engine AltaVista®
over a period of 43 days in 1998. Two findings that are
particularly relevant to this work concern the number of re-
sult pages that users view per query, and the distribution of
query popularities. Regarding the former, the three studies
agree that at least 58% of the users view only the first page
of results (the top-10 results), at least 15% of the users view
more than one page of results, and that no more than 12% of
users browse through more than 3 result pages. Regarding
query popularities, it was found that the number of distinct
information needs of users is very large. Silverstein et. al
report that 63.7% of the search phrases appear only once
in the billion query log. These phrases were submitted just
once in a period of six weeks. However, popular queries are
repeated many times: the 25 most popular queries found in
the AltaVista log account for 1.5% of the submissions. The
findings of Markatos are consistent with the later figure -
the 25 most popular queries in the Excite log account for
1.23% of the submissions. Markatos also found that many
successive submissions of the same query appear in close
proximity (are separated by a small number of other queries
in the query log).

1.2 Cachingand Prefetching of Search Results

Caching of results was noted in Brin and Page’s descrip-
tion of the prototype of the search engine Google® as an im-
portant optimization technique of search engines [2]. In [11],
Markatos used the million-query Excite log to drive simula-
tions of query result caches using four replacement policies -

"http:/ /www.excite.com/
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LRU (Least Recently Used) and three variations. He demon-
strated that warm, large caches of search results can attain
hit ratios of close to 30%.

Saraiva et al. [13] proposed a two-level caching scheme
that combines caching query results and inverted lists. The
replacement strategy they adopted for the query result cache
was LRU. They experimented with logged query streams,
testing their approach against a system with no caches.
Overall, Their combined caching strategy resulted in a three-
fold increase in the throughput of the system, while preserv-
ing the response time per query.

In addition to storing results that were requested by users
in the cache, search engines may also prefetch results that
they predict to be requested shortly. An immediate example
is prefetching the second page of results whenever a new
query is submitted by a user. Since studies of search engines’
query logs [14, 6] indicate that the second page of results
is requested shortly after a new query is submitted in at
least 15% of cases, search engines may prepare and cache
two (or more) result pages per query. The prefetching of
search results was examined in [10], albeit from a different
angle: the objective was to minimize the computational cost
of processing queries rather than to maximize the hit ratio
of the results cache.

The above studies, as well as our work, focus on the
caching of search results inside the search engine. The pre-
fetching discussed above deals with how the engine itself can
prefetch results from its index to its own cache. The caching
or prefetching of search results outside the search engine is
not considered here. In particular, we are not concerned
with how general Web caches and proxy servers should han-
dle search results. Web caching and prefetching is an area
with a wealth of research; see, for example, [16] for a method
that allows proxy servers to predict future user requests by
analyzing frequent request sequences found in the servers’
logs, [15] for a discussion of proxy cache replacement poli-
cies that keep a history record for each cached object, and
[4] for a proposed scheme that supports the caching of dy-
namic content (such as search results) at Web proxy servers.
In both [17] and [9], Web caching and document prefetch-
ing is integrated using (different) prediction models of the
aggregate behavior of users. Section 3.2.2 has more details
on these two works.

1.3 This work

This work examines the performance of several cache re-
placement policies on a stream of over seven million real-life
queries, submitted to the search engine AltaVista. We inte-
grate result prefetching into the schemes, and find that for
all schemes, prefetching substantially improves the caches’
performance. When comparing each scheme with prefetch-
ing to the naive version that only fetches the requested re-
sult pages, we find that prefetching improves the hit ratios
by more than what is achieved by a fourfold increase in the
size of the cache.

Another contribution of this paper is the introduction of
a novel cache replacement policy that is tailored to the spe-
cial characteristics of the query result cache. The policy,
which is termed PDC (Probability Driven Cache), is based
on a probabilistic model of search engine users’ browsing ses-
sions. Roughly speaking, PDC prioritizes the cached pages
based on the number of users who are currently browsing
higher ranking result pages of the same search query. We

Table 1: Number of queries requesting different
bulks of logical result pages (bulk size equals f—/{+1)

No. result pages 1 2 3 4

No. queries 6998473 | 31477 | 84795 | 939
No. result pages 5 6 7,8,9 10
No. queries 42851 125 0 1530

show that PDC consistently outperforms LRU and SLRU
(Segmented LRU) based replacement policies, and attains
hit ratios exceeding 53% in large caches.

Throughout this paper, a query will refer to an ordered
pair (¢, k) where t is the topic of the query (the search phrase
that was entered by the user), and k¥ > 1 is the number of
result page requested. For example, the query (t,2) will
denote the second page of results (which typically contains
results 11 — 20) for the topic ¢.

The rest of this work is organized as follows. Section 2
describes the query log on which we conducted our experi-
ments. Section 3 presents the different caching schemes that
this work examined, and in particular, defines PDC and the
model on which it is based. Section 4 reports the results
of the trace-driven simulations with which we evaluated the
various caching schemes. Concluding remarks and sugges-
tions for future research are brought in Section 5.

2. THE QUERY LOG

The log contained 7175151 keyword-driven search queries,
submitted to the search engine AltaVista during the summer
of 2001. AltaVista returns search results in batches whose
size is a multiple of 10. For r > 1, the results whose rank
is 10(r —1) +1,...,10r will be referred to as the r’th result
page. A query that asks for a batch of 10k results will be
thought of as asking for k logical result pages (although, in
practice, a single large result page will be returned). Each
query can be seen as a quadruple g = (7,t, f, £) as follows:

e 7 is a time stamp (date and time) of ¢’s submission.

e ¢t is the topic of the query, identified by the search
phrase that was entered by the user.

e f and ¢ define the range of result pages requested (f <
£). In other words, the query requests the 10(f —£+1)
results ranking in places 10(f — 1) +1,...,10¢ for the
topic t. AltaVista allowed users to request up to 100
results (10 logical result pages) in a single query.

In order to ease the implementation of our simulations, we
discarded from the trace all queries that requested result
pages 33 and beyond (results whose rank is 321 or worse).
There were 14961 such queries, leaving us with 7160190
traced queries. These queries contained requests for 4496503
distinct result pages, belonging to 2657410 distinct topics.

The vast majority of queries (97.7%) requested 10 results,
in a standard single page of results (in most cases, f equaled
£). However, some queries requested larger batches of re-
sults, amounting to as many as 10 logical result pages. Ta-
ble 1 summarizes the number of queries requesting different
bulks of logical result pages (i.e., different values of f—£¢+1).
Table 1 implies that the total number of requested logical
pages, also termed as page views, is 7549873.



As discussed in the Introduction, most of the requests
were for the first page of results (the top-10 results). In the
trace considered here, 4797186 of the 7549873 views (63.5%)
were of first pages. The 885601 views of second pages ac-
counted for 11.7% of the views. Figure 1 brings three his-
tograms of the number of views for result pages 2 — 32. The
three ranges are required since the variance in the magni-
tude of the numbers is quite large. Observe that higher
ranking result pages are generally viewed more than lower
ranking pages. This is due to the fact that the users who
view more than one result page, usually browse those pages
in the natural order. This sequential browsing behavior al-
lows for predictive prefetching of result pages, as will be
shown in Section 4.
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Figure 1: Views of result pages 2 — 32

Figure 1 shows a sharp drop between the views of result
pages 20 and 21. This drop is explained by the manner in
which AltaVista answered user queries during the summer of
2001. “Regular” users who submitted queries were allowed
to browse through 200 returned results, in 20 result pages
containing 10 results each. Access to more than 200 results
(for standard search queries) was restricted by the engine.

Having discussed the distribution of views per result page
number, we examine a related statistic - the distribution of
the number of distinct result pages viewed per topic. We
term this as the population of the topic. In almost 78% of
topics (2069691 of 2657410), only a single page was viewed
(usually the first page of results), and so the vast majority of
topics have a population of 1. Figure 2 shows the rest of the
distribution, divided into three ranges due to the variance in
the magnitude of the numbers. Note the unusual strength
of topics with populations of 10, 15 and 20.

From topic populations we turn to topic (and page) pop-
ularities. Obviously, different topics (search phrases) and
result pages are requested at different rates. Some top-
ics are extremely popular, while the majority of topics are
only queried once. As mentioned earlier, the log contained
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Figure 2: Population of Topics (number of pages
requested per topic)

queries for 2657410 distinct topics. 1792104 (over 67%) of
those topics were requested just once, in a single query (the
corresponding figure in [14] was 63.7%). The most popular
topic was queried 31546 times. In general, the popularity
of topics follows a power law distribution, as shown in Fig-
ure 3. The plot conforms to the power-law for all but the
most popular topics, which are over-represented in the log.
A similar phenomenon is observed when counting the num-
ber of requests for individual result pages. 48% of the result
pages are only requested once. However, the 50 most re-
quested pages account for almost 2% of the total number
of page views (150131 of 7549873). Again, the distribution
follows a power law for all but the most oft-requested result
pages (also in Figure 3)*.

The log contained exactly 200 result pages that were re-
quested more than 2° = 512 times. As seen in Figure 3,
these pages do not obey the above power law. However, they
have a distinctive behavior as well: the number of requests
for these pages conforms to a Zipf distribution, as Figure 4
shows ®. This is consistent with the results of Markatos [11],
who plotted the number of requests for the 1000 most pop-
ular queries in the Excite log, and found that the plot con-
forms to a Zipf distribution. Saraiva et. al [13], who exam-
ined 100000 queries submitted to a Brazilian search engine,
report that the popularities of all queries follow a Zipf dis-
tribution.

Studies of Web server logs have revealed that requests for
static Web pages follow a power law distribution [1]. The
above cited works and our findings show that this aggregate
behavior of users carries over to the browsing of dynamic

“The power law for page[topic] popularities implies that the
probability of a page[topic] being requested x times is pro-
portional to ™. In this log, ¢ is approximately 2.8 for page
popularities and about 2.4 for topic popularities.

®The number of requests for the r’th most popular page is
proportional to ¢, for ¢ = 0.67.
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Figure 3: Popularity of Topics/Pages (log-log plot)

content, where the users define the query freely (instead of
selecting a resource from a fixed “menu” provided by the
server). We also note that the complex, distributed so-
cial process of creating hyperlinked Web content gives rise
to power law distributions of inlinks to and outlinks from
pages [3]. See [12] for a general survey of power law, Pareto,
Zipf and lognormal distributions.
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Figure 4: Zipfian behavior of the 200 most popular
result pages

3. CACHING & PREFETCHING SCHEMES
3.1 Fetch units and result prefetching

In many search engine architectures, the computations
required during query execution are not greatly affected by
the number of results that are to be prepared, as long as
that number is relatively small. In particular, it may be
that for typical queries, the work required to fetch several
dozen results is just marginally larger than the work required
for fetching 10 results. Since fetching more results than re-
quested may be relatively cheap, the dilemma is whether
storing the extra results in the cache (at the expense of evict-
ing previously stored results) is worthwhile. Roughly speak-

ing, result prefetching is profitable if, with high enough prob-
ability, those results will be requested shortly - while they
are still cached and before the evicted results are requested
again. One aspect of result prefetching was analyzed in [10],
where the computations required for query executions (and
not cache hit ratios) were optimized.

In our simulations, all caching schemes will fetch results
in bulks whose size is a multiple of k, a basic fetch unit.
Formally, let ¢ be a query requesting result pages f through
£ for some topic. Let «, 3 be the first and last uncached
pages in that range, respectively (f < a < 8 < ¥). A k-
fetch policy will fetch pages a, @+ 1,...,a+mk — 1, where
m is the smallest integer such that o + mk —1 > 8. Recall
that over 97% of the queries request a single result page
(f = €). When such a query causes a cache fault, a k-fetch
policy effectively fetches the requested page and prefetches
the next k — 1 result pages of the same topic. When k = 1,
fetching is performed solely on demand.

For every fetch unit k, we can estimate theoretical upper
bounds on the hit ratio attainable by any cache replace-
ment policy on our specific query log. Consider a cache of
infinite size, where evictions are never necessary. For each
topic ¢, we examine P;, the subset of the 32 potential result
pages that were actually requested in the log. We then cover
P; with the minimal number of fetch units possible. This
number, denoted by f(t), counts how many k-fetch query
executions are required for fetching P;. The sum ), fx(t)
is a close approximation to the minimal number of faults
that any policy whose fetch unit is k£ will have on our query
log. Table 2 brings these theoretical bounds for several fetch
units. Note the dramatic improvement in the theoretic hit

Table 2: Upper bounds on hit ratios for different
values of the fetch unit

Fetch No. Hit Fetch No. Hit
unit Fetches | Ratio unit Fetches | Ratio
1 4496503 | 0.372 5 2861390 | 0.600
2 3473175 | 0.515 10 2723683 | 0.620
3 3099268 | 0.567 20 2658159 | 0.629
4 2964553 | 0.586 32 2657410 | 0.629

ratio as the fetch unit grows from 1 to 3.

3.2 Cache Replacement Policies

We experimented with five cache replacement policies.
The first four are adaptations of the well-known LRU and
SLRU policies [8]. The complexity of treating a query is
O(1) for each of those policies. The fifth policy, which we
call Probability Driven Cache (PDC), is a novel approach
tailored for the task of caching query result pages. It is more
complex, requiring ©(log(size of the cache)) operations per
query. The following describes the data structures that are
used in each scheme, and the manner in which each scheme
handles queries. For this we define, for a query g that re-
quests the set of pages P(q), two disjoint sets of pages C(q)
and F(q):

1. C(q) C P(q) is the subset of the requested pages that
are cached when ¢ is submitted.

2. Let F'(q) denote the set of pages that are fetched as a
consequence of ¢, as explained in Section 3.1. F(q) is



the subset of the uncached pages of F’'(q). °

3.2.1 Flavorsof LRU, SLRU

The Page LRU (PLRU) policy is a straightforward adap-
tation of the Least Recently Used (LRU) policy. We allocate
a page queue that can accommodate a certain number of re-
sult pages. For every query g, the pages of C(q) are moved
back to the tail of the queue. They are joined there by the
pages of F(q) , which are added to the tail of the queue.
Once the queue is full, cached pages are evicted from the
head of the queue. Thus, the tail of the queue holds the
most recently requested (and prefetched) pages, while its
head holds the least recently requested pages. PLRU with a
fetch unit of 1 was evaluated in [11], and attained hit ratios
of around 30% (for warm, large caches).

The Page SLRU (PSLRU) policy maintains two LRU seg-
ments, a protected segment and a probationary segment. The
pages of F'(q) are inserted into the (tail of the) probation-
ary segment. The pages of C(q) are transfered to the tail
of the protected segment. Pages that are evicted from the
protected segment remain cached - they are demoted to the
tail of the probationary segment. Pages are removed from
the cache only when they are evicted from the probation-
ary segment. It follows that pages in the protected segment
were requested at least twice since they were last fetched.
PSLRU with a fetch unit of 1 was also evaluated in [11],
where it consistently outperformed PLRU (in large caches,
however, the difference in performance was very small).

The Topic LRU (TLRU) policy is a variation on the PLRU
scheme. Let t(q) denote the topic of the query q. TLRU
performs two actions for every query ¢: (1) the pages of
F(q) are inserted into the page queue, and (2) any cached
result page of t(g) is moved to the tail of the queue. Effec-
tively, each topic’s pages will always reside contiguously in
the queue, with the blocks of different topics ordered by the
LRU policy.

The Topic SLRU (TSLRU) policy is a variation on the
PSLRU scheme. It performs two actions for every query g
(whose topic is t(g)): (1) the pages of F(q) are inserted into
the probationary queue, and (2) any cached result page of
t(q) is moved to the tail of the protected queue.

3.2.2 Probability Driven Cache (PDC)

Cache replacement policies attempt to keep pages that
have a high probability of being requested in the near future,
cached. The PDC scheme is based on a model of search
engine users that concretely defines the two vague notions
of “probability of being requested” and “near future”.

The model behind PDC. We describe the model by pre-
senting the rules which define search sessions (see Section
1.1) in it. For this, let {q}" = (7*,t}, f*,€})}i>1 denote the
sequence of queries that user u issues, where 7;* is the time of
submission of ¢}, ¢t} is the topic (search phrase) of the query,
and f* < £} define the range of result pages requested.
Consider ¢;' and g;*;, two successive queries issued by user
u. In this model, ¢j,; may either be a follow-up on ¢}, or
start a new search session. Furthermore, search sessions in
this model view result pages strictly in their natural order,
and in a prompt manner. Therefore, if ¢}, is a follow-
up on gi (denoted gi — g¢i’1), then g}y, is submitted no

5As a byproduct, the cached entries of the pages of F'(q) \
F(q) are refreshed.

more that W time units after ¢; (that is, 7%, < 7* + W)
and f%i = £/ + 1. Obviously, in this case t,; = t{. On
the other hand, ¢}, starts a new search session whenever
fiv, = 1. 7 Thus, qi'y-..,q; (i < j) constitute a search
session whenever f* =1, g5 — qj4, for all s < k < j, and
q]'u Vad (Iju+1-

This model of search behavior limits the “attention span”
of search engine users to W time units: users do not submit
follow-up queries after being inactive for W time units. Long
inactivity periods indicate that the user has lost interest in
the previous search session, and will start a new session with
the next query. Following are several implications of this
model:

e The result pages viewed in every search session are
pages (t,1),..., (¢, m) for some topic t and m > 1.

e At any given moment 7, every user has at most one
query that will potentially be followed upon. Formally,
let U denote the set of users, and let ¢g¥ denote the most
recent query submitted by user w € U prior to time 7
(¢¢ may be nil if 4 has not submitted queries prior to
7). The set of queries that will potentially be followed
upon is defined by

Q = {¢?,u € U : ¢; was submitted after T—W} (1)

The model assumes that there are topic and user indepen-
dent probabilities s,,,m > 1 such that s,, is the probability
of a search session requesting exactly m result pages. Fur-
thermore, the model assumes that it is familiar with these
probabilities.

For a query q € @, let t(q) denote the query’s topic and
let £(q) denote the last result page requested in q. For ev-
ery result page (¢,m), we can now calculate Pg(t, m), the
probability that (£, m) will be requested as a follow-up to at
least one of the queries in Q:

Pa(t,m) = 1— ][]~ P[(t,m) will follow-up on q])
9€Q

= 1- H

q€Q:t(q)=t,L(q)<m

ZiZm i
2je(e) 89

(1=Pmit@)) ()

where P[m|é(q)] =

P[m|¥] is the probability that a session will request result
page m, given that the last result page requested so far
was page £. Po(t,m) depends on the number of users who
are currently searching for topic ¢, as well as on the last t-
page requested by every such user. Pq(t, m) will be large if
many users have recently (within W time units) requested
t-pages whose number is close to (but smaller than) m. Note
that for all ¢, Pg(t,1) = 0; the model does not predict the
topics that will be the focus of future search sessions. PDC
prioritizes cached (¢, 1) pages by a different mechanism than
the Pg(t, m) probabilities.

Kraiss and Weikum also mention setting the priority of a
cached entry by the probability of at least one request for the
entry within a certain time horizon [9]. Their model for pre-
dicting future requests is based on continuous-time Markov

"We assume that the first query of every user u, ¢¥, requests
the top result page of some topic.



chains, and includes the modeling of new session arrivals and
current session terminations. However, the main prioritiza-
tion scheme that they suggest, and which is best supported
by their model, is based on the ezpected number of requests
to each cached entry (within a given time frame). Prior-
itizing according to the probability of at least one visit is
quite complex in their model, prompting them to suggest a
calculation which approximates these probabilities. As the
model behind PDC is simpler than the more general model
of [9], the calculations it involves are also significantly less
expensive.

Implementing PDC. The PDC scheme is based on the
model described above in a manner that allows it to handle
real-life query streams, which do not necessarily conform
to the strict rules of the model. PDC attempts to prior-
itize its cached pages using the probabilities calculated in
Equation 2. However, since these probabilities are zero for
all (¢,1) pages, PDC maintains two separate buffers: (1) an
SLRU buffer for caching (¢,1) pages, and (2) a priority queue
PQ for prioritizing the cached (¢, m > 1) pages according to
the probabilities of Equation 2. The relative sizes of the
SLRU and PQ buffers are subject to optimization, as will
be discussed in Section 4.2. For the time being, let Cpg de-
note the size (capacity) of PQ. In order to implement PQ,
PDC must set the probabilities s;, 7 > 1 and keep track of
the set of queries @, defined in Equation 1:

e Every search engine can set the probabilities s;, i > 1
based on the characteristics of its log. In our imple-
mentation, we approximated s; by the proportion of
views of i’th result pages in the first million queries. &
In light of this, the PDC simulations whose results
are reported in Section 4.2 skip these queries, and are
driven by the remaining 6160190 queries of the log.

e PDC tracks the set Q by maintaining a query window
QW, that holds a subset of the queries submitted dur-
ing the last W time units. The exact subset that is
kept in QW will be discussed shortly. For every kept
query q = (7, t, f,£), its time 7 and last requested page
(t,€) are saved.

Each query q = (7,t, f,£) is processed in PDC by the fol-
lowing four steps:

1. ¢ is inserted into QW, and queries submitted before
T — W are removed from QW. If there is a query ¢’ in
QW such that the last page requested by ¢ is (t, f—1),
the least recent such query is also removed from QW.
This is the heuristic by which we associate follow-up
queries with their predecessors, since the queries in our
log are anonymous.

2. Let T denote the set of topics whose corresponding set
of QW queries has changed (¢ belongs to T', and other
topics may have had queries removed from QW). The
priorities of all T-pages in PQ are updated according
to Equation 2, with the set of queries in QW assuming
the role of the query set Q.

3. If f =1 and page (t,1) is not cached, (¢,1) is inserted
at the tail of the probationary segment of the SLRU.

8The behavior of the number of views per result page num-
ber in the entire log was discussed in Section 2 and Figure 1.

If (¢, 1) is already cached, it is moved to the tail of the
protected segment of the SLRU.

4. Let (t,m),1 < m < £ be a page requested by ¢ that
is not cached. Its priority is calculated in light of the
window QW, and if it merits so, it is kept in PQ (caus-
ing perhaps an eviction of a lower priority page).

In order to implement the above procedure efficiently, PDC
maintains a topic table, where every topic (1) links to its
cached pages in PQ, (2) points to its top result page in
the SLRU, and (3) keeps track of the QW entries associated
with it. When the number of different result pages that may
be cached per topic is bounded by a constant, and when
PQ is implemented by a heap, the amortized complexity
of the above procedure is ©(log Crg) per query °. See [5]
for discussions of the heap data structure and of amortized
analysis.

As noted above, the cache in PDC is comprised of two
separate buffers of fixed size, an SLRU for (¢,1) pages and a
priority queue for all other pages. Two buffers are also main-
tained in [17]; there, the cache buffer is dedicated to holding
pages that were actually requested, while the prefetch buffer
contains entries that the system predicts to be requested
shortly. Pages from the prefetch buffer migrate to the cache
buffer if they are indeed requested as predicted.

4. RESULTS

This section reports the results of our experiments with
the various caching schemes. Each scheme was tested with
respect to a range of cache sizes, fetch units and other ap-
plicable parameters. Subsection 4.1 concretely defines the
terms cache size and hit ratio in the context of this work.
Subsection 4.2 discusses the schemes separately, starting
with the LRU-based schemes, moving to the more complex
SLRU-based schemes, and ending with the PDC scheme. A
cross-scheme comparison is brought in Subsection 4.3.

4.1 Interpretation of Reported Statistics

Cachesizes. Cache sizes in this work are measured by page
entries, which are abstract units of storage that hold the in-
formation associated with a cached result page of 10 search
results. Markatos[11] estimates that such information re-
quires about 4 kilobytes of storage. Since the exact amount
of required memory depends on the nature of the informa-
tion stored and its encoding, this figure may vary from en-
gine to engine. However, we assume that for every specific
engine, the memory required does not vary widely from one
result page to another, and so we can regard the page en-
try as a standard memory unit. Note that we ignore the
memory required for bookkeeping in each of the schemes.
In the four LRU-based policies, this overhead is negligible.
In PDC, the query window QW requires several bytes of
storage per kept query. We ignore this, and only consider
the capacity of the SLRU and PQ buffers of PDC.

® Amortized analysis is required since the number of topics
affected by the QW updates while treating a single query,
may vary. Other implementations may choose to have QW
hold a fixed number of recent queries without considering
the time frame. Such implementations will achieve a non-
amortized complexity of O(log Cpg).



Hits and Faults. As shown in Table 1, the queries in our
trace file may request several (up to 10) result pages per
query. Thus, it is possible for a query to be partially an-
swered by the cache - some of the requested result pages
may be cached, while other pages might not be cached. In
our reported results, a query counts as a cache hit only if it
can be fully answered from the cache. Whenever one or more
of the requested pages is not cached, the query counts as a
cache fault, since satisfying the query requires processing it
through the index of the engine. It follows that each query
causes either a hit or a fault. The hit ratio is defined as the
number of hits divided by the number of queries. It reflects
the fraction of queries that were fully answered from the
cache, and required no processing whatsoever by the index.

Cold and Warmcaches. We begin all our simulations with
empty, cold caches. In the first part of the simulation, the
caches gradually fill up. Naturally, the number of faults dur-
ing this initial period is very high. When a cache reaches full
capacity, it becomes warm (and stays warm for the rest of
the simulation). The hit ratios we report are for full, warm
caches only. The definition of a full cache for the PLRU
and TLRU schemes is straightforward - the caches of those
schemes become warm once the page queue is full. The
PSLRU and TSLRU caches become warm once the proba-
tionary segment of the SLRU becomes full for the first time.
The PDC cache becomes warm once either the probation-
ary segment of the SLRU or the PQ component reach full
capacity.

4.2 Results - Scheme by Scheme
PLRU and TLRU. Both schemes were tested for the eight

cache sizes 4000 * 2°, ¢ = 0,...,7, and for fetch units of
1,2,3,4,5,10 and 20 (56 tests per scheme). The hit ratios
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Figure 5: Results of the Page LRU caching scheme

achieved with both schemes was nearly identical. Figure 5
displays the results of PLRU, and the following discussion
addresses both PLRU and TLRU. We denote the hit ratio of

either policy with fetch unit f and cache size s by LRU (s, f).

e The results clearly demonstrate the impact of the fetch
unit: LRU(s,3) is always higher than LRU(4s,1). In
fact, LRU (16000, 3) is higher than LRU(512000, 1),
despite the latter cache being 32 times larger.

e For s = 4000, the optimal fetch unit for both schemes
is 3, and LRU (4000, 3) is about 2 - LRU (4000, 1). For
large sizes, optimizing the fetch unit can increase the
hit ratio by about 0.17 as compared with LRU (size, 1)
- an increase of over 50% in the hit ratio.

e The optimal fetch unit increases as the size of the cache
increases. For the three smallest sizes, the optimal
fetch unit was 3. As the caches grew, the optimal
fetch unit (of those examined) became 4, 5 and 10.

e The increase in performance that is gained by doubling
the cache size is large for small caches (an increase
of 0.05 and beyond in the hit ratio for caches holding
16000 pages or less). However, for large sizes, doubling
the cache size increases the hit ratio in just about 0.02.

Table 3 summarizes the effect of the fetch unit on the hit
ratios of PLRU and TLRU. For each cache size s, the hit ra-
tio LRU (s, 1) is compared to the hit ratio achieved with the
optimal fetch unit (f,pt). Note that the former ratios, which
are between 0.3 and 0.35 for the large cache sizes, are con-
sistent with the hit ratios reported by Markatos [11]. Also
note that PLRU outperforms TLRU for small caches, while
TLRU is better for large caches (although the difference in
performance is slight).

Table 3: Impact of the fetch unit on the performance
of PLRU and TLRU

Cache size | PLRU | PLRU fopt, | TLRU | TLRU fopt,
(s) (s,1) resulting (s,1) resulting
hit ratio hit ratio
4000 0.113 3, 0.224 0.107 3, 0.228
8000 0.176 3, 0.278 0.168 3, 0.276
16000 0.215 3, 0.350 0.215 3, 0.349
32000 0.239 5, 0.410 0.241 4, 0.411
64000 0.261 5, 0.442 0.265 5, 0.445
128000 0.284 5, 0.465 0.288 10, 0.469
256000 0.308 10, 0.488 0.314 10, 0.491
512000 0.336 10, 0.508 0.343 10, 0.511

PSLRU and TSLRU. These two schemes have an addi-
tional degree of freedom as compared with the LRU based
schemes - namely, the ratio between the size of the protected
segment and that of the probationary segment. Here, we
tested four cache sizes (s = 4000 * 4°, i = 0,...,3) while
varying the size of the probationary segment of the SLRU
from 0.5s to 0.9s, in 0.1s increases. Having seen the behav-
ior of the fetch unit in the LRU-based schemes, we limited
these simulations to fetch units of 2,3,4,5 and 10. Overall,
we ran 100 tests '© per scheme. As with PLRU and TLRU,
here too there was little difference between the behavior of
PSLRU and TSLRU. Therefore, Figure 6 shows results of

104 cache sizes x 5 fetch units x 5 probationary segment
sizes



a single scheme for each cache size. The label of each plot
describes the corresponding relative size of the probationary
SLRU segment.
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Figure 6: Results of the PSLRU, TSLRU schemes

The effect of the fetch unit is again dramatic, and is sim-
ilar to that observed for the PLRU and TLRU schemes. As
before, the optimal fetch unit increases as the cache size
grows. Furthermore, the optimal fetch unit depends only
on the cache size, and is independent of how that size is
partitioned among the two SLRU segments.

The effect of the relative sizes of the two SLRU segments
on the hit ratio is less significant. To see that, we fix the
optimal fetch unit for each cache size s, and examine the
different hit ratios that are achieved with different SLRU
partitions. For s = 4000 and s = 16000, the hit ratio in-
creased as the probationary segment grew. However, the
increase in hit ratio between the best and worst SLRU par-
titions was at most 0.025. For the larger sizes of s = 64000
and s = 256000, the results were even tighter. The optimal
sizes of the probationary segment were 0.7s and 0.6s respec-
tively, but all five examined SLRU partitions achieved hit
ratios that were within 0.01 of each other. We conclude
that once the fetch unit is optimized, the relative sizes of
the two cache segments are marginally important for small
cache sizes, and hardly matter for large caches.

PDC. This scheme has two new degrees of freedom which
were not present in the SLRU-based schemes: the length
of the window QW, and the ratio between the capacity of
the SLRU, which holds the (¢, 1) pages of the various topics,
and the capacity of the priority queue PQ, that holds all
other result pages. We tested three window lengths (2.5, 5
and 7.5 minutes), four cache sizes (s = 4000 * 4°, i =
0,...,3), and 7 fetch units (1,2,3,4,5,10,20). For every
one of the 84 combinations of window length, cache size
and fetch unit, we tested 20 partitionings of the cache: four
PQ sizes (0.3s,0.35s,0.4s and 0.45s), and the same 5 in-

ternal SLRU partitionings as examined for the PSLRU and
TSLRU schemes. To summarize, 560 different simulations
were executed for each window size, giving a total of 1680
simulations. Our findings are described below.

The most significant degree of freedom was, again, the
fetch unit. As with the previous schemes, the optimal fetch
unit grew as the size of the cache grew. Furthermore, the
optimal fetch unit depended only on the overall size of the
cache, and not on the specific boundaries between the three
storage segments. When limiting the discussion to a spe-
cific cache size and the corresponding optimal fetch unit,
the hit ratio is quite insensitive to the boundaries between
the three cache segments. The difference in the hit ratios
that are achieved with the best and worst partitions of the
cache was no more than 0.015. As an example, we bring the
hit ratios for a PDC of 64000 total pages, with a window of
5 minutes. The optimal fetch unit proved to be 5. Table 4
brings the hit ratios of 20 different partitionings of the cache
- four PQ sizes (corresponding to 0.45,0.4,0.35 and 0.3 of
the cache size), and five partitionings of the remaining pages
in the SLRU (the z : 1 —z notation denotes the relative sizes
of the probationary and protected segments, respectively).
The trends are clear - a large PQ and an equal partitioning
of the SLRU outperform smaller PQs or skewed SLRU par-
titionings. However, all 20 hit ratios are between 0.453 and
0.468.

Table 4: Insensitivity of the PDC scheme to inter-
nal partitions of the cache (5-minute window, 64000
pages, fetch unit= 5).

PQ size SLRU SLRU SLRU SLRU SLRU
(pages) | 0.5:0.5 | 0.6:04 | 0.7:0.3 | 0.8:0.2 | 0.9:0.1
28800 0.468 0.467 0.466 0.464 0.462

25600 0.468 0.467 0.466 0.464 0.462

22400 0.466 0.465 0.464 0.462 0.459
19200 0.460 0.460 0.458 0.456 0.453

Table 5: Optimal parameters and hit ratios for the
tested PDC settings

window,cache size fetch | PQ SLRU hit
(minutes,result pages) | unit | size | probationary | ratio
segment size
2.5 4000 3 0.45 0.8 0.2430
2.5 16000 4 0.45 0.6 0.3728
2.5 64000 5 0.45 0.5 0.4668
2.5 256000 10 0.35 0.5 0.5300
5 4000 3 0.45 0.8 0.2290
5 16000 5 0.45 0.6 0.3691
5 64000 5 0.45 0.5 0.4680
5 256000 10 0.35 0.5 0.5309
7.5 4000 3 0.45 0.9 0.2165
7.5 16000 5 0.45 0.6 0.3627
7.5 64000 5 0.45 0.5 0.4627
7.5 256000 10 0.35 0.5 0.5319

Table 5 brings the optimal parameters for the 12 combina-
tions of cache sizes and window lengths that were examined,
along with the achieved hit ratio. The PQ size is relative



to the size of the cache, while the size of the probationary
segment of the SLRU is given as a fraction of the SLRU size
(not of the entire cache size). The results indicate that the
optimal window length grows as the cache size grows. For
the smaller two caches, the 2.5-minute window outperformed
the two larger windows (with the margin of victory shrinking
at 16000 pages). The 5-minute window proved best when
the cache size was 64000 pages, and the 7.5-minute window
achieved the highest hit ratios for the 256000-page cache.
With small cache sizes, it is best to consider only the most
recent requests. As the cache grows, it pays to consider
growing request histories when replacing cached pages.

As for the internal partitioning of the cache, all three win-
dow sizes agree that (1) the optimal PQ size shrinks as the
cache grows, and (2) the probationary segment of the SLRU
should be dominant for small caches, but both SLRU seg-
ments should be roughly of equal size in large caches.

4.3 Cross-Scheme Comparison

Figure 7 shows the optimal hit ratios achieved by 7 cache
replacement policies: PLRU, TLRU, PSLRU, TSLRU and
PDC schemes with windows of 2.5,5 and 7.5 minutes. Re-
sults for cache sizes of 4000, 16000, 64000 and 256000 result
pages are shown. For each cache size and policy, the dis-
played hit ratios are the highest that were achieved in our
experiments (with the optimal choice of the fetch unit and
the partitioning of the cache). The optimal fetch unit was
consistent almost throughout the results - for cache sizes of
4000, 64000 and 256000 pages, the optimal fetch units were
3,5 and 10 respectively, in all schemes. For caches of 16000
pages, the optimal fetch unit varied between 3 and 5, de-
pending on the scheme.
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Figure 7: Comparison of all Policies

As Figure 7 shows, the best hit ratios for all cache sizes
were achieved using PDC. In fact, the 2.5 and 5 minute
PDCs outperformed the four LRU and SLRU based schemes
for all cache sizes, with the 7.5-minute PDC joining them in
the lead for all but the smallest cache. Furthermore, in all

but the smallest cache size, the hit ratios are easily clustered
into the high values achieved using PDC, and the lower (and
almost equal) values achieved with the other four schemes.
For large cache sizes, The comparison of PDC and TLRU
(which is better than PLRU at large sizes) reveals that PDC
is competitive with a twice-larger TLRU: the optimal 64000-
page PDC achieves a hit ratio of 0.468 while the 128000-page
TLRU has a hit ratio of 0.469, and all three 256000-page
PDC schemes outperform the 512000-page TLRU (0.53 to
0.51). Recall, however, that the improved hit ratios with
PDC come at the cost of more computationally expensive
caching operations, as discussed in Section 3.2.

The hit ratios of all three 256000-page PDC schemes were
above 0.53, and were achieved using a fetch unit of 10. Re-
call that Table 2 brought upper bounds on the hit ratio that
is achievable on the query log examined. These bounds cor-
respond to infinite caches with prior knowledge of the entire
query stream. For a fetch unit of 10, the upper bound was
0.62, and the bound for any fetch unit was 0.629. Thus,
PDC achieves hit ratios that are beyond 0.84 of the theo-
retic upper bound.

When limiting the discussion to the LRU and SLRU based
schemes, Page SLRU is the best scheme for all but the
smallest cache size. This is consistent with the results of
Markatos[11], where PSLRU outperformed PLRU (with the
fetch unit fixed at 1).

5. CONCLUSIONS

We have examined five replacement policies for cached
search result pages. Four of the policies are based on the
well-known LRU and SLRU schemes, while the fifth is a new
approach called PDC, which assigns priorities to its cached
result pages based on a probabilistic model of search engine
users. Trace-driven simulations have shown that PDC is
superior to the other tested caching schemes. For large cache
sizes, PDC outperforms LRU-based caches that are twice as
large. It achieves hit ratios of 0.53 on a query log whose
theoretic hit ratio is bounded by 0.629.

We also studied the effect of other parameters, such as
the fetch unit and the relative sizes of the various cache
segments, on the hit ratios. The fetch unit proved to be
the dominant factor in optimizing the caches’ performance.
Optimizing the fetch unit can double the hit ratios of small
caches, and can increase these ratios in large caches by 50%.
With optimal fetch units, small caches outperform much
larger caches whose fetch unit is not optimal. In particular,
a size-s cache with an optimal fetch unit will outperform
caches of size 4s whose fetch unit is 1. The impact of the
fetch unit on the hit ratio is much greater than the impact
achieved by tuning the internal partitioning of the cache.
Furthermore, the optimal fetch unit depends only on the
total size of the cache, and not on the internal organization
of the various segments.

An important benefit that a search engine enjoys when
increasing the hit ratio of its query result cache, is the re-
duction in the number of query executions it must perform.
However, while large fetch units may increase the hit ratio
of the cache, the complexity of each query execution grows
as the fetch unit grows [10]. Although the increase in the
complexity of query executions may be relatively small in
many search engine architectures, it should be noted that
the hit ratio is not the sole metric by which the fetch unit
should be tuned.



An important and intuitive trend seen throughout our ex-
periments is that large caches can take into account longer
request histories, and prepare in advance for the long term
future. Planning for the future is exemplified by the in-
crease of the optimal fetch unit as the cache size grows. In
all schemes, the optimal fetch unit grew from 3 to 10 as the
cache size increased from 4000 to 256000 pages. Since the
fetch unit essentially reflects the amount of prefetching that
is performed, our results indicate that large caches merit
increased prefetching. As for considering longer request his-
tories, this is exemplified by the PDC approach, where the
optimal length of the query window increased as the cache
size grew.

The schemes employing some form of SLRU (PSLRU,
TSLRU and PDC) also exhibit an increased “sense of his-
tory” and “future awareness” as their caches grow. In these
schemes, the relative size of the protected segment increased
with the cache size. A large protected segment is, in a sense,
a manner of planning for the future since it holds and pro-
tects many entries against early removal. Additionally, only
long request histories contain enough repeating requests to
fill large protected segments.

The following directions are left for future research:

e The model of search engine users that gave rise to
the PDC scheme is fairly simple. In particular, our
modeling of the time that is allowed between succes-
sive queries in a search session is simplistic. While
PDC outperformed the other schemes we tested, more
elaborate models may result in further improvement
in performance.

e The query trace available to us held anonymous in-
formation - users (or user-IDs) were not associated
with queries. Search engines, however, can associate
(to some extent) queries with users through the use of
session-IDs, cookies, and other mechanisms. Caching
policies that are aware of the coupling of queries and
users can track the “active search sessions”, and can
tap this knowledge to improve performance.

o Our results demonstrate the high impact of prefetching
on the performance of the cache. Policies in which the
fetch unit depends on the number of the uncached page
that is requested (rather than being constant, as in this
paper) should also be examined.
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