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Abstract

This work considers the problem of reconstructing a phylogenetic tree
from triplet dissimilarities, which are dissimilarities defined over taxon-
triplets. Triplet dissimilarities are possibly the simplest generalization of
pairwise dissimilarities, and were used for phylogenetic reconstructions in
the past few years. We study the hardness of finding a tree best fitting
a given triplet-dissimilarity table under the `∞ norm. We show that the
corresponding decision problem is NP-hard and that the corresponding
optimization problem cannot be approximated in polynomial time within
a constant multiplicative factor smaller than 1.4. On the positive side, we
present a polynomial time constant-rate approximation algorithm for this
problem. We also address the issue of best-fit under maximal distortion,
which corresponds to the largest ratio between matching entries in two
triplet-dissimilarity tables. We show that it is NP-hard to approximate the
corresponding optimization problem within any constant multiplicative
factor.

1 Introduction

Phylogenetic reconstruction methods attempt to find the evolutionary history
of a given set of extant species (taxa). This history is usually described by
an edge-weighted tree whose internal vertices represent past speciation events
(extinct species) and whose leaves correspond to the given set of taxa. The
amount of evolutionary change between two subsequent speciation events is
indicated by the weight of the edge connecting them. It is usually assumed (for
uniqueness of representation) that internal edges1 have strictly positive weights.
Distance-based phylogenetic reconstruction methods typically try to reconstruct
this evolutionary tree from estimates of distances (sum of weights) along edges
in this tree.

Most common distance-based reconstruction algorithms receive as input a
dissimilarity matrix D, where D(i, j) is an estimate of the distance between

1An edge is external if it is adjacent to a leaf, and is internal otherwise.
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taxa i and j. A dissimilarity matrix is said to be additive if it can be realized by
distances along the edges of a tree whose leaves are the elements of S [3]. There
are numerous algorithms which reconstruct a tree given its additive metric, the
earliest of which appeared in [3, 13, 14]. However, in reality we are unable to
obtain accurate distance estimates, and the input dissimilarity matrix is rarely
additive. In such a case, a natural goal is to reconstruct a tree fitting the input
matrix in some way. One approach is to return a tree whose implied metric
is ‘close’ to the input under a certain distance norm. Unfortunately, finding
a tree closest to a given dissimilarity matrix was shown to be NP-hard under
the `1 and `2 norms in [4], and under the `∞ norm in [1]. [1] also presents a
3-approximation algorithm for the problem of finding the tree closest, under `∞,
to an arbitrary metric; another 3-approximation algorithm for this problem was
presented later in [8]2.

In this paper we study the problem of reconstructing a phylogenetic tree
based on estimates of triplet distances. Given an edge-weighted tree T and
three taxa i, j, k, we denote by C(i, j, k) the inner vertex of degree 3 in the claw
spanned by i, j, k (see Fig.1), and by DT (i; jk) the weight of the path connecting
i and C(i, j, k). Note that for all k ∈ S, DT (i; jk)+DT (j; ik) = DT (i, j), and in
particular DT (i; jj) = DT (i, j). Hence, triplet-distances generalize the classical
notion of pairwise-distances.

j

C(i,j,k)

k

i

Figure 1: C(i, j, k) is the inner vertex of degree 3 in the claw spanned by i, j, k.
DT (i; jk) is the weight of the path connecting i and C(i, j, k)

A triplet-dissimilarity table contains estimates of all triplet distances over a
given taxon-set. A function τ : S × S × S → R+ is a valid triplet-dissimilarity
table iff it satisfies the following properties:

1. τ(i, i, j) = 0

2. τ(i, j, k) = τ(i, k, j)

3. τ(i, j, j) = τ(j, i, i)
For such a function we denote: τ(i; jk)

4
= τ(i, j, k) and τ(i, j)

4
= τ(i, j, j).

There are several previous works which propose algorithms for reconstructing
trees from triplet-dissimilarity tables. In [11], triplet-dissimilarities are used to

2The 3-approximation ratio of the algorithms in [1, 8] is proved under the assumption that
the input dissimilarity matrix is a metric, meaning that it satisfies the triangle inequality
[D(x, y) +D(y, z) ≥ D(x, z)]
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obtain more accurate estimates of pairwise-distances for Saitou&Nei’s Neighbor
Joining algorithm (commonly referred to as NJ) [12]. [10] generalizes NJ to
receive as input m-dissimilarity maps, which contain the total weights of all
subtrees spanned by subsets of m taxa. In [8] we present a family of algorithms
(DLCA) which construct trees from estimates of triplet-distances from a single
root-taxon r, meaning that the input is a symmetric matrix Lr, where Lr(i, j)
is an estimate of DT (r; ij). We show there that a tree whose triplet distances
{DT (r; ij) : i, j ∈ S} are closest to Lr under `∞ can be constructed in O(n2)
time. In this paper we show that it is NP-hard to find an edge-weighted tree T
whose entire triplet-distance table {DT (i; jk) : i, j, k ∈ S} is closest to a given
triplet-dissimilarity table under `∞.

The `∞ norm measures the maximal difference between corresponding en-
tries in two triplet-dissimilarity tables:

||τ1, τ2||∞ 4
= maxi,j,k∈S{|τ1(i; jk)− τ2(i; jk)|}

Another distance measure we refer to is maximal distortion [2], which is related
to the maximal ratio between such entries:

MaxDist(τ1, τ2)
4
= max

i,j,k∈S

{
τ1(i; jk)
τ2(i; jk)

}
· max

i,j,k∈S

{
τ2(i; jk)
τ1(i; jk)

}
(where 0/0

4
= 1)

We note that maximal distortion seems to be the most relevant criterion for the
evolutionary models assumed in [5, 6] and numerous subsequent works.

Consider the decision version of the ‘best-fit to triplet-dissimilarities’ prob-
lem: given a triplet-dissimilarity table τ and a non-negative number K, is there
a tree T such that ||DT , τ ||∞ ≤ K? In Section 2 this decision problem is shown
to be NP-hard by a polynomial reduction from 3-SAT. In Section 3 we refine
the analysis of the reduction to show that it is NP-hard to find a tree whose
distance to the input under `∞ is less than 1.4 times that of the closets tree. In
Section 4 we present few other related hardness results implied by our reduc-
tion, including the NP-hardness of approximating maximal distortion for triplet
dissimilarities by any multiplicative constant. In Section 5 we give an upper
bound on the approximation ratio of this problem by showing that a constant-
rate approximation for the closest tree to a dissimilarity matrix implies also a
constant-rate approximation for the closest tree to a triplet dissimilarity table.
We conclude with a short discussion of some relevant open questions.

2 A Reduction from 3SAT to the ‘Best-Fit to
Triplets Under `∞’ Problem

In this section we present a reduction from 3SAT to the decision version of
the ‘best-fit to triplets under `∞’ problem. This reduction transforms a 3CNF
formula ϕ into a valid triplet-dissimilarity table τϕ satisfying three requirements
(where ∆ is a positive constant independent of ϕ):

POLY τϕ can be computed in polynomial time given ϕ.
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SAT If ϕ is satisfiable, then there is a tree T s.t. ||DT , τϕ||∞ ≤ ∆.

UNSAT If ϕ is unsatisfiable, then for every tree T , ||DT , τϕ||∞ > ∆,

Similar to the reduction presented in [1] for the problem of fitting trees to
dissimilarity matrices, we first transform the formula ϕ into a set of upper and
lower bounds on some triplet distances of a tree T (see A1-B3 and Figure 2
below). UNSAT is proven by showing that a tree satisfying all these bounds
implies a satisfying assignment to ϕ (Lemma 2.5). These bounds are enforced by
the triplet-dissimilarity table τϕ in the following way: A bound DT (i; jk) ≤ ωijk

is enforced by τϕ(i; jk) = ωijk−∆, and a bound DT (i; jk) ≥ ωijk is enforced by
τϕ(i; jk) = ωijk + ∆. Clearly, a tree T satisfying ||DT , τϕ||∞ ≤ ∆ is guaranteed
to obey all bounds3.

Requirement POLY will be obvious from the description of the transforma-
tion. To prove SAT we show that a satisfying assignment to ϕ implies a tree
satisfying all bounds (Lemma 2.6). In this tree, triplet-distances corresponding
to entries restricted by these bounds are set to satisfy the bounds with equality.
Other triplet-dissimilarities (not restricted by any bound) are undetermined,
however each such dissimilarity falls within one of two intervals: [r −∆, r + ∆]
or [s−∆, s + ∆]. Entries of τϕ corresponding to these dissimilarities are set to
the mid-point of the appropriate interval (r or s).

Let us start with some notations: A 3CNF formula ϕ over a set of variables
{x1, x2, . . . , xn} is a conjunction of m clauses ϕ = c1 ∧ c2 ∧ . . . ∧ cm, s.t. ∀j =
1..m : cj = (lj1 ∨ lj2 ∨ lj3), where lj1, l

j
2, l

j
3 are literals (a literal is variable xi or its

negation x̄i). For such a formula, we define a set of taxa:

Sϕ = {T ,F} ∪ {xi, x̄i : i = 1..n} ∪ {yj
1, y

j
2, y

j
3 : j = 1..m}

We define the following set of bounds on triplet-dissimilarities over Sϕ with
parameters α, β > 0 (Figure 2 can be helpful at this point):

A1 DT (T ,F) ≥ 2α + 2β

A2 ∀i = 1..n : DT (F ; xix̄i) ≤ α ; DT (T ;xix̄i) ≤ α

B1 ∀j = 1..m : DT (yj
1; l

j
2l

j
3) ≤ α ; DT (yj

2; l
j
1l

j
3) ≤ α ; DT (yj

3; l
j
1l

j
2) ≤ α

B2 ∀j = 1..m : DT (yj
1; T F) ≥ α ; DT (yj

2; T F) ≥ α ; DT (yj
3; T F) ≥ α

B3 ∀j = 1..m : DT (T ; yj
1y

j
2) ≤ α ; DT (T ; yj

1y
j
3) ≤ α ; DT (T ; yj

2y
j
3) ≤ α

Let T be a tree satisfying A1-B3 above. Denote the mid-point of the path
connecting T and F in this tree by vϕ. Note that restriction A1 implies that
T and F are at distance of at least α + β from vϕ. Denote by vT and vF the
points whose distance from vϕ, on the paths leading to T and F respectively, is
exactly β. For the sake of the analysis below, we treat the three points ϕ, vT , vF

3Note that in order to keep all entries of τϕ nonnegative, we need that ∆ ≤ ωijk whenever
ωijk is an upper bound on the corresponding entry.
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as vertices in the tree (possibly of degree 2), and assume that T is rooted at vϕ

(see Fig. 2).
We now describe and prove the topological restrictions implied by these

bounds. Our proof is based on two simple connections between distances and
topological properties of quartets (subtrees spanned by four taxa), which we
bring next. For vertices x, y in T , denote by path(x, y) the path in T connecting
x and y.

Lemma 2.1. For all taxa u, v, y in T , we have

1. If DT (F ; uv) ≤ α and DT (T ; uv) ≤ α, then either u is a descendant of
vT and v is a descendant of vF or vice versa.

2. If both u and v are descendants of vF , and DT (y; uv) ≤ DT (y, T F) then
y is also a descendant of vF .

Proof.
1. Since DT (F ; uv) + DT (T ; uv) ≤ 2α < 2α + 2β ≤ DT (F , T ) (by the as-

sumption and bound A1), we must have that C(u, T ,F) and C(v, T ,F)
are distinct vertices on path(F , T ). In addition, the assumption also im-
plies that one of them is at distance at most α from T and the other is at
distance at most α from F , which proves the claim.

2. Let z be the father of vF (possibly z = vϕ). Notice that the edge (z, vF )
is in path(T ,F) (see Fig. 3). Since both u and v are descendants of
vF , we have that if y is not a descendant of vF , then the path from
y to path(u, v) must contain the edge (z, vF ), and hence DT (y; uv) ≥
DT (y, T F) + w(z, vF ) > DT (y, T F), a contradiction.

v

v
Fv

T

T
F

i
x i

x

Figure 2: The Topology of a tree satisfying A1-2

As a direct consequence of A2 and Lemma 2.1(1) above, we have the fol-
lowing:

Corollary 2.2. For each i = 1..n, one of the vertices xi, x̄i is a descendant of
vT and the other is a descendant of vF (see Fig. 2).
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Figure 3: Proof of Lemma 2.1(2)

The above corollary leads to a natural transformation between trees satisfy-
ing A1-2 and truth-assignments to the variables x1..xn: σT (xi) = TRUE if xi

is a descendant of vT and σT (xi) = FALSE otherwise. The consistency of this
assignment is guaranteed by Corollary 2.2. Lemma 2.1 (2), and B1-2 lead to
the following corollaries:

Corollary 2.3. Let j ∈ {1, .., m}, and let {a, b, c} = {1, 2, 3}. If lja and ljb are
descendants of vF , then yj

c is also a descendant of vF .

Corollary 2.4. If for some j = 1..m, lj1, l
j
2, l

j
3 are all descendants of vF , then

the bounds in B3 cannot hold.

Proof. By Corollary 2.3, if lj1, l
j
2, l

j
3 are all descendants of vF , then so are

yj
1, y

j
2, y

j
3. This implies, for instance, that C(T , yj

1, y
j
2) is a descendant of vF

as well, so DT (T ; yj
1y

j
2) ≥ DT (T , vF ) ≥ 2β + α > α, contradicting B3 .

Note the slackness (of 2β) we have in the contradiction concluding the proof.
This slackness is used to prove hardness of approximation in Section 3. The
following lemma concludes the discussion of unsatisfiable formulae:

Lemma 2.5. If T is an edge-weighted tree over the set of taxa Sϕ satisfying all
bounds in A1-B3, then the assignment σT satisfies the formula ϕ.

Proof. Assume, to the contrary, that σT does not satisfy some clause cj of ϕ.
Then, by definition of σT , the taxa lj1, l

j
2, l

j
3 are all descendants of vF , and so by

Corollary 2.4 the bounds in B3 cannot hold for T .

Lemma 2.5 is later used to ensure requirement UNSAT. To show that SAT
holds we first prove the following lemma:

Lemma 2.6. If the formula ϕ is satisfiable, then there exists a tree T over the
set of taxa Sϕ, satisfying A1-B3 with equality.

Proof. Let σ be a satisfying assignment of ϕ. We will construct a tree T with
only two internal vertices vT , vF , and one internal edge of weight 2β connecting
vT and vF . All external edges are of weight α, and all taxa are either connected
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to vT or vF . T is connected to vT , F is connected to vF , and a literal taxon
lja is connected to vT if σ(lja) = TRUE, and to vF otherwise. It is easy to see
that the bounds in A1-2 are satisfied by such a tree.

Taxa of the form yj
a are connected according to the following scheme (see

Fig. 4): if lja is the only literal in clause cj satisfied by σ, connect yj
a to vF ;

otherwise connect it to vT . B2 is clearly satisfied by this construction. B3 is
satisfied, since at most one y-taxon is connected to vF for each clause. B1 is
satisfied, since for {a, b, c} = {1, 2, 3} the following holds: If lja, ljb are connected
to vF (vT ) then yj

c is connected to vF (vT resp.) as well.

v
F

v
T

T F

al bl clay
by cy

v
F

v
T

T F

al bl clay
by cy

2β α
α

a)

b)

v
F

v
T

T F

al bl clay
by cy

c)

Figure 4: Construction of a tree given a satisfying assignment. The
figure illustrates how to connect the y-taxa for each type of satisfied clause:
a) All literals are satisfied (assigned TRUE ).
b) Two literals (la, lb) are satisfied.
c) One literal (la) is satisfied.
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We now describe the reduction of the formula ϕ to a triplet-dissimilarity
table τϕ: Entries of τϕ corresponding to distances bounded in A1-B3 are set
to enforce the corresponding bounds, as discussed in page 4. The rest of the
entries in τϕ, and the constant ∆, are set so that |DT (i; jk) − τϕ(i; jk)| ≤ ∆
will hold for all taxon triplets in the tree T described in the proof of Lemma
2.6, as follows. First, for all distinct i, j, k ∈ Sϕ we have DT (i; jk) ∈ [α, α + 2β]
(since all external edges are of length α, and the single internal edge is of length
2β). So we set the corresponding entries of τϕ (which do not appear in A1-B3)
to α + β, and we set ∆ = β. This guarantees that |DT (i; jk) − τϕ(i; jk)| ≤
∆ for the corresponding entries. Similarly, for all distinct i, j ∈ Sϕ we have
DT (i; jj) = DT (i, j) ∈ [2α, 2α + 2β], so we set corresponding entries of τϕ

to 2α + β. Thus, the entries of the triplet-dissimilarity table τϕ are defined
according to the following rules:

• τϕ(T ;FF) = τϕ(F ; T T ) = 2α + 3β (A1)

• ∀i = 1..n : τϕ(F ;xix̄i) = τϕ(T ; xix̄i) = α− β (A2)

• ∀j = 1..m : τϕ(yj
1; l

j
2l

j
3) = τϕ(yj

2; l
j
1l

j
3) = τϕ(yj

3; l
j
1l

j
2) = α− β (B1)

• ∀j = 1..m : τϕ(T ; yj
1y

j
2) = τϕ(T ; yj

1y
j
3) = τϕ(T ; yj

2y
j
3) = α− β (B3)

• ∀{s, t}(6= {T ,F}) ⊆ Sϕ : τϕ(s; tt) = τϕ(t; ss) = 2α+β (arbitrary pairwise-
distances)

• For all other entries : τϕ(s; tu) = α + β (arbitrary triplet-distances and
B2)

We conclude with the following lemma:

Lemma 2.7. Let ϕ be a satisfiable formula, and let τϕ be the triplet-dissimilarity
table as defined above, using any values for α, β s.t. α ≥ β > 0. Then there
exists a tree T over the set of taxa Sϕ, such that ||DT , τϕ||∞ ≤ β.

Proof. The tree T corresponding to an assignment σ satisfying ϕ (as described
in the proof of Lemma 2.6) fulfills this requirement. The proof follows directly
from the above discussion.

Theorem 2.8. The decision version of the problem of finding a tree best fitting
a given a triplet-dissimilarity table under the `∞ norm is NP-Hard.

Proof. By the polynomial-time reduction from 3SAT described above. The re-
duction ϕ 7→ (τϕ, ∆) is clearly polynomial (requirement POLY). By Lemma
2.7, if ϕ is satisfiable then there exists a tree T , s.t. ||DT , τϕ||∞ ≤ ∆ (SAT).
If, on the other hand, ϕ is unsatisfiable, then by Lemma 2.5 there is no tree
satisfying A1-B3. Due to the construction of τϕ, this means there is no tree
T , s.t. ||DT , τϕ||∞ ≤ ∆ (UNSAT).
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3 Hardness of Approximation of The ‘Best-Fit
to Triplets Under `∞’ Problem

We prove hardness of approximation of this problem by showing that the re-
duction described in Section 2 satisfies stronger requirements:

SAT’ If ϕ is satisfiable, then there is a tree T s.t. ||DT , τϕ||∞ ≤ β.

UNSAT’ If ϕ is unsatisfiable, then for every tree T , ||DT , τϕ||∞ ≥ 1.4β.

The first requirement is exactly SAT as phrased in the previous section, and
so it follows from Lemma 2.7. UNSAT’ requires proving a stronger version of
Lemma 2.5, for a δ-relaxed version of inequalities A1-B3, for some positive δ
which will be defined soon.

A’1 DT (T ,F) ≥ 2α + 2β − δ

A’2 ∀i = 1..n : DT (F ;xix̄i) ≤ α + δ ; DT (T ; xix̄i) ≤ α + δ

B’1 ∀j = 1..m : DT (yj
1; l

j
2l

j
3) ≤ α+δ ; DT (yj

2; l
j
1l

j
3) ≤ α+δ ; DT (yj

3; l
j
1l

j
2) ≤ α+δ

B’2 ∀j = 1..m : DT (yj
1; T F) ≥ α−δ ; DT (yj

2; T F) ≥ α−δ ; DT (yj
3; T F) ≥ α−δ

B’3 ∀j = 1..m : DT (T ; yj
1y

j
2) ≤ α + δ ; DT (T ; yj

1y
j
3) ≤ α + δ ; DT (T ; yj

2y
j
3) ≤

α + δ

Let T be a tree satisfying A’1-B’3 above for some δ < 2β
5 , and let vϕ be

the mid-point of path(F , T ). Let vT and vF to be the points whose distance
from vϕ is exactly β − 1.5δ on the paths to T and F respectively. Note that
by A’1, DT (F , vF ) ≥ α+ δ and DT (T , vT ) ≥ α+ δ (see Fig. 5). Using this, we
prove a stronger version of Lemma 2.1:

Lemma 3.1. For all taxa u, v, y in T , we have

1. If DT (F ; uv) ≤ α+δ and DT (T ; uv) ≤ α+δ, then either u is a descendant
of vT and v is a descendant of vF or vice versa.

2. If both u and v are descendants of vF , and DT (y;uv) < DT (y, T F) +
DT (vT , vF ) then y is not a descendant of vT .

Proof.
1. As in the proof of Lemma 2.1(1), since DT (F ; uv)+DT (T ;uv) < DT (F , T )

we have that C(u, T ,F) and C(v, T ,F) are distinct vertices on path(F , T ),
one at distance at most α + δ from F and the other at distance at most
α + δ from T .

2. Assume, to the contrary, that y is a descendant of vT . Since both u and v
are descendants of vF , the path from y to path(u, v) must contain both vT
and vF , which are both on path(F , T ) (see Fig. 6). Thus we must have
that DT (y, uv) ≥ DT (y, T F)+DT (vT , vF ), contradicting the assumption.
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Figure 5: The Topology of a tree satisfying A’1-2
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v
F
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v

y
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v
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Figure 6: Proof of Lemma 3.1(2)

The following corollaries follow from Lemma 3.1 and A’1-B’3:

Corollary 3.2. Assume that δ < 2β
3 . Then for each i = 1..n, one of the vertices

xi, x̄i is a descendant of vT and the other is a descendant of vF .

Corollary 3.3. Assume that δ < 2β
5 . Let j be in {1, .., m}, and let {a, b, c} =

{1, 2, 3}. If lja and ljb are descendants of vF , then yj
c is not a descendant of vT .

Notice that the relaxation of the bounds prevents us from proving (as in
Corollary 2.3) that the y-taxa are descendants of vF . However, the weaker
claim in Corollary 3.3 is sufficient to contradict the bounds in B’3, due to the
slackness we had in the proof of Corollary 2.4:

Corollary 3.4. If for some j = 1..m, lj1, l
j
2, l

j
3 are all descendants of vF , then

the bounds in B’3 cannot hold.

Proof. By Corollary 3.3, if lj1, l
j
2, l

j
3 are all descendants of vF , then none of

yj
1, y

j
2, y

j
3 are descendants of vT . This implies, for instance, that C(T , yj

1, y
j
2)

is not a descendant of vT as-well, so DT (T ; yj
1y

j
2) > DT (T , vT ) ≥ α + δ (by

definition of vT ), contradicting B’3 .
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This corollary leads us to the following:

Lemma 3.5. If there is an edge-weighted tree T over the set of taxa Sϕ satisfying
||DT , τϕ||∞ < 1.4β, then the formula ϕ is satisfiable.

Proof. A tree satisfying ||DT , τϕ||∞ ≤ β + δ satisfies the δ-relaxed bounds in
A’1-B’3 as well. So if ||DT , τϕ||∞ < 1.4β, then T satisfies the δ-relaxed bounds
for δ = ||DT , τϕ||∞− β < 2

5β. Now since A’1-2 hold, the assignment σT is well
defined (Corollary 3.2). Assume that σT does not satisfy some clause cj of ϕ.
Then, by definition of σT , lj1, l

j
2, l

j
3 are all descendants of vF , and by Corollary

3.3 the bounds in B’3 cannot hold, in contradiction.

For a distance table τ , let OPT (τ) be the minimal value k, for which there is
a tree T s.t. ||DT , τ ||∞ ≤ k. By Lemma 2.6, if ϕ is satisfiable then OPT (τϕ) ≤
β, and by Lemma 3.5, if ϕ is unsatisfiable then OPT (τϕ) ≥ 1.4β. Thus if
there was a polynomial time algorithm A which is guaranteed to approximate
OPT (τ) within a factor smaller than 1.4, then satisfiability of a formula ϕ
could be determined by executing A on τϕ and obtaining k = ||τϕ,A(τϕ)||∞.
If k < 1.4β then ϕ must be satisfiable, and if k ≥ 1.4β then ϕ is unsatisfiable.
Hence it is NP-hard to find a tree which approximates the optimal `∞ distance
to a given triplet-dissimilarity table by a ratio smaller than 1.4.

4 Hardness of Approximation of Maximal Dis-
tortion and Other Implied Results

We now use the reductions presented in the previous sections to obtain several
related hardness results. As the constructions are similar to these in previous
sections, most proofs in this section are only sketched.

4.1 Hardness of Approximation of Maximal Distortion

Recall the maximal distortion between two triplet-dissimilarity tables :

MaxDist(τ1, τ2)
4
= max

i,j,k∈S

{
τ1(i; jk)
τ2(i; jk)

}
· max

i,j,k∈S

{
τ2(i; jk)
τ1(i; jk)

}
(where 0/0

4
= 1)

We use a reduction similar to the one in Section 2 to prove that MaxDist
of the closest tree cannot be approximated by any multiplicative factor. First,
note that scaling a tree by a multiplicative factor does not affect its MaxDist
from a given triplet-dissimilarity table. In other words, MaxDist(τ, DT ) =
MaxDist(τ, D[γT ]), where γT is the weighted tree obtained by multiplying edge
weights of T by the positive constant γ. This means that if there is a tree T s.t.
MaxDist(τ, DT ) ≤ ρ, then there is a tree T ′ (obtained by re-scaling T ) s.t.

max
{

max
i,j,k∈S

{
τ(i; jk)

DT ′(i; jk)

}
, max

i,j,k∈S

{
DT ′(i; jk)
τ(i; jk)

}}
≤ √

ρ.
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A CNF formula ϕ is translated to a triplet-dissimilarity table τ̃ϕ which en-
forces the inequalities in A1-B3 through bounds on maximal distortion as fol-
lows: An upper bound DT (i; jk) ≤ ω is enforced by setting τ̃ϕ(i; jk) = ω√

ρ , and
a lower bound DT (i; jk) ≥ ω is enforced by setting τ̃ϕ(i; jk) =

√
ρω, where ρ ≥ 1

will soon be defined. By the argument raised above, a tree whose MaxDist from
τ̃ϕ is at most ρ implies a tree satisfying all bounds. We now show how to set
ρ and fill in the rest of the entries of τ̃ϕ, such that the tree T described in the
proof of Lemma 2.6 satisfies MaxDist(τ̃ϕ, DT ) ≤ ρ: Recall that in such a tree,
triplet-dissimilarities not mentioned in A1-B3 fall within the interval [α, α+2β]
for distinct-taxa triplets, and within the interval [2α, 2α + 2β] for taxon-pairs
(see discussion following Lemma 2.6). In order to allow triplet dissimilarities
within these intervals, we set ρ = max{α+2β

α , 2α+2β
2α } = 1 + 2β

α , and set the rel-
evant entries of τ̃ϕ to

√
ρ ·α and

√
ρ · 2α (corresponding to distinct-taxa triplets

and taxon-pairs respectively). The following lemma ensures that τ̃ϕ and ρ have
the desired properties:

Lemma 4.1. Let α, β > 0 be given, and let ρ = 1 + 2 β
α . Further, let τ̃ϕ be the

triplet-dissimilarity table defined by α, β and ρ as described above, then:

SAT” If ϕ is satisfiable, then there exists a tree T s.t. MaxDist(DT , τ̃ϕ) ≤ ρ.

UNSAT” If ϕ is unsatisfiable, then for every tree T , MaxDist(DT , τ̃ϕ) ≥
ρ

(
1 + 2β

3α

)
.

Proof. (an outline): SAT” is guaranteed by the tree construction described in
the proof of Lemma 2.6 and by the value we chose for ρ, as discussed above.
UNSAT” is proved by adjusting the proof in Section 3. First, we define a set
of bounds A”1-B”3, obtained by a relaxation of A1-B3 by a multiplicative
factor of δ > 1 as follows:

A”1 DT (T ,F) ≥ (2α + 2β)/δ

A”2 ∀i = 1..n : DT (F ;xix̄i) ≤ αδ ; DT (T ; xix̄i) ≤ αδ

B”1 ∀j = 1..m : DT (yj
1; l

j
2l

j
3) ≤ αδ ; DT (yj

2; l
j
1l

j
3) ≤ αδ ; DT (yj

3; l
j
1l

j
2) ≤ αδ

B”2 ∀j = 1..m : DT (yj
1; T F) ≥ α/δ ; DT (yj

2; T F) ≥ α/δ ; DT (yj
3; T F) ≥ α/δ

B”3 ∀j = 1..m : DT (T ; yj
1y

j
2) ≤ αδ ; DT (T ; yj

1y
j
3) ≤ αδ ; DT (T ; yj

2y
j
3) ≤ αδ

Next, we consider a tree satisfying the relaxed bounds, and define the internal
points vT , vF to be at distance α+β

δ − δα from vϕ. To prove the analogue of
Lemma 3.1(1), it is required that DT (F , T ) be strictly larger than 2αδ, which

by A”1 reduces to α+β
δ − δα > 0, i.e. δ <

√
1 + β

α . Corollary 3.3 is proven
by the analogue of Lemma 3.1(2). For this we require α/δ + DT (vF , vT ) > αδ.

Since DT (vF , vT ) = 2(α+β
δ −δα), this is equivalent to δ <

√
1 + 2β

3α . This latter
upper bound on δ implies also the previous one, and hence if ϕ is unsatisfiable,

12



there is no tree satisfying the δ-relaxed bounds in A”1-B”3 for δ <
√

1 + 2β
3α .

In other words, there is no tree T satisfying:

max
{

max
i,j,k∈Sϕ

{
τ̃ϕ(i; jk)
DT (i; jk)

}
, max
i,j,k∈Sϕ

{
DT (i; jk)
τ̃ϕ(i; jk)

}}
<

√
ρ

(
1 +

2β

3α

)
.

This means that there is no tree whose MaxDist from τ̃ϕ is less than ρ
(
1 + 2β

3α

)
,

as claimed.

Now, assume there was a polynomial-time algorithm A which given a triplet-
dissimilarity table τ , was guaranteed to return a tree whose MaxDist from τ
is at most K-times the MaxDist of the closest tree to τ , for some constant
K. Such an algorithm may be used to efficiently deduce whether a formula ϕ is
satisfiable in the following way: given a formula ϕ, calculate τ̃ϕ with parameters
α, β s.t. K < 1+ 2

3
β
α . Execute algorithm A on this triplet-dissimilarity table to

receive a tree T , and calculate r = MaxDist(τ̃ϕ, DT ). Now, if r ≤ Kρ (where
ρ = 1+2β

α as previously defined), then ϕ must be satisfiable due to UNSAT”.
If, on the other hand, r > Kρ, then since A guarantees a K-approximation,
there is no tree whose MaxDist from τ̃ϕ is at most ρ. From SAT” follows that
ϕ is unsatisfiable.

4.2 Fitting distances of distinct-taxa triplets

Triplet distance tables, as we defined them, contain entries corresponding to
distinct-taxa triplets as well as entries corresponding to taxon-pairs (i.e. τ(i; jj)).
In some scenarios it is more natural to separately address pairwise dissimilar-
ities and triplet-dissimilarities. Therefore, we are interested in the problem of
finding a best-fit tree to a triplet-dissimilarity table τ , considering entries corre-
sponding only to distinct-taxa triplets. The best-fit analysis can be done under
any of the `p norms or MaxDist. Results similar to the ones presented above
apply in this case as well. The only modification required in order to adapt the
reduction to this case is changing the bounds in A1, which correspond to the
pairwise distance between T and F . To ensure a similar bound, we introduce
an additional taxon into Sϕ: F ′, and replace A1 by:

A1 DT (T ;FF ′) ≥ 2α + 2β

It is easy to see that this new bound implies the desired lower bound on the
distance between T and F (i.e. A1). The original set of bounds is, therefore,
equivalent to this one, and all claims proven for it apply here as well. The tree
described in the proof of Lemma 2.6 is adapted to the introduction of F ′, by
turning the original taxon F into an internal vertex, and adding two zero-weight
edges from this vertex to F ,F ′. All triplet-dissimilarities concerning F ′ are set
to be equal to their counterparts concerning F . The analysis done in previous
sections is easily adjusted to accommodate this modification of the reduction.

13



4.3 Best-Fit Ultrametric

It is possible to generalize all hardness results shown in this paper for ultramet-
rics as well. A weighted tree is called ultrametric if it contains a point which is
equidistant from all leaves; this point may be an internal vertex, or a degenerate
(degree-2) vertex situated on one of the edges. The problem of finding a best-fit
ultrametric to a given dissimilarity matrix under `∞ (and MaxDist) was shown
to have a polynomial-time algorithm in [9, 7].

In the case of triplet-dissimilarities, the same reductions presented in sections
3 and 4.1 imply that it is NP-hard to find (and to approximate) a best-fit
ultrametric under the `∞ norm, as well as MaxDist. To see this, observe that
if ϕ is unsatisfiable, then the lower bounds proved for UNSAT’ in Lemma 3.5
and for UNSAT” in Lemma 4.1 (for `∞ and MaxDist resp.) are clearly valid
when the trees are restricted to be ultrametrics. We are left to show that if ϕ is
satisfiable then there is an ultrametric tree satisfying all bounds. This follows
from the fact that the construction described in the proof of Lemma 2.6 yields
an ultrametric tree, since the internal point vϕ is at the same distance (α + β)
from all taxa.

5 A Constant-Rate Approximation Scheme

In this section we present a constant-rate approximation algorithm for the prob-
lem of finding a closest tree under `∞ to a given triplet-dissimilarity table. Our
algorithm is based on an approximation algorithm for the corresponding problem
concerning pairwise-dissimilarities. The main result is stated in the following
theorem.

Theorem 5.1. A polynomial time r-approximation algorithm for finding a tree
closest under `∞ to a given dissimilarity matrix implies a polynomial time ( 3

2r+
6)-approximation algorithm for finding a tree closest under `∞ to a given triplet-
dissimilarity table.

Our approximation algorithm, APP, consists of two stages:

APP1. Given a triplet-dissimilarity table τ over taxon-set S, calculate a dis-
similarity matrix Dτ over S as follows: ∀i, j ∈ S : Dτ (i, j) = τ(i; jj).

APP2. Execute the r-approximation algorithm on Dτ to obtain an edge-weighted
tree T out.

To analyze the approximation ratio of the above algorithm, we start with
some notations. For an arbitrary taxon-pair i, j ∈ S, denote Dτ

min(i, j) =
mink∈S{τ(i; jk) + τ(j; ik)} , and similarly Dτ

max(i, j) = maxk∈S{τ(i; jk) +
τ(j; ik)} . Furthermore, denote by Iτ = maxi,j∈S{Dτ

max(i, j)−Dτ
min(i, j)} the

maximum difference between Dτ
max and Dτ

min. The following lemma contains
two basic inequalities required for the proof of our approximation result.
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Lemma 5.2. Let τ be a triplet-dissimilarity table, and Dτ be the corresponding
dissimilarity matrix defined in APP1. Let further T be an edge-weighted tree
with corresponding additive distance matrix DT and triplet-dissimilarity table
τT . Then we have the following:

1
4
Iτ ≤ ||τ, τT ||∞ ≤ 3

2
(Iτ + ||Dτ , DT ||∞) .

Proof. First we prove that 1
4Iτ ≤ ||τ, τT ||∞. Let i, j be a taxon pair s.t.

Dτ
max(i, j) − Dτ

min(i, j) = Iτ , and let kmax be a taxon s.t. Dτ
max(i, j) =

τ(i; jkmax) + τ(j; ikmax). Since τT (i; jk) + τT (j; ik) = DT (i, j), for all k ∈ S,
then:

Dτ
max(i, j)−DT (i, j) = [τ(i; jkmax) + τ(j; ikmax)]− [τT (i; jkmax) + τT (j; ikmax)]

= [τ(i; jkmax)− τT (i; jkmax)] + [τ(j; ikmax)− τT (j; ikmax)]
≤ 2||τ, τT ||∞ (1)

Similarly, if kmin is a taxon s.t. Dτ
min(i, j) = τ(i; jkmin) + τ(j; ikmin), then:

Dτ
min(i, j)−DT (i, j) ≥ − 2||τ, τT ||∞ (2)

Now, since Dτ
max(i, j) − Dτ

min(i, j) = Iτ , then by subtracting (2) from (1) we
get Iτ ≤ 4||τ, τT ||∞, thus proving the left inequality.

We now turn to prove the right inequality of the lemma. Given an arbitrary
taxon-triplet i, j, k ∈ S, denote ε(i; jk) = τ(i; jk)− τT (i; jk). We will show that
|ε(i; jk)| ≤ 3

2 (Iτ + ||Dτ , DT ||∞). First,

|ε(i; jk) + ε(j; ik)| = |[τ(i; jk)− τT (i; jk)] + [τ(j; ik)− τT (j; ik)]|
= |[τ(i; jk) + τ(j; ik)]− [τT (i; jk) + τT (j; ik)]|
= |τ(i; jk) + τ(j; ik)−DT (i, j)|
≤ |τ(i; jk) + τ(j; ik)−Dτ (i, j)|+ |Dτ (i, j)−DT (i, j)|
≤ |τ(i; jk) + τ(j; ik)−Dτ (i, j)|+ ||Dτ , DT ||∞
≤ Iτ + ||Dτ , DT ||∞

The last inequality follows from the fact that Dτ (i, j) = τ(i; jj)+τ(j; ij). Using
a similar line of argument we get |ε(i; kj)+ε(k; ij)| , |ε(j; ki)+ε(k; ji)| ≤ Iτ +
||Dτ , DT ||∞ as well. This is used to obtain the desired bound as follows:

|ε(i; jk)| =
1
2
|[ε(i; jk) + ε(j; ik)] + [ε(i; kj) + ε(k; ij)]− [ε(j; ki) + ε(k; ji)]|

≤ 1
2

(|ε(i; jk) + ε(j; ik)|+ |ε(i; kj) + ε(k; ij)|+ |ε(j; ki) + ε(k; ji)|)

≤ 3
2

(Iτ + ||Dτ , DT ||∞)

Our main result (Theorem 5.1) is directly implied by the following lemma:
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Lemma 5.3. Given a triplet-dissimilarity table τ , denote by τout the triplet-
dissimilarity table induced by the output tree T out returned by the algorithm
APP. Then for every triplet-dissimilarity table τT induced by an arbitrary edge-
weighted tree T , we have:

||τ, τout||∞ ≤ (
3
2
r + 6)||τ, τT ||∞

Proof. Denote by Dτ the dissimilarity matrix computed in APP1, and by Dout

and DT the metrics induced over the leaves of T out and T , respectively. The
lemma is proved by the following sequence of inequalities:

||τ, τout||∞ ≤ 3
2

(
Iτ + ||Dτ , Dout||∞

)
(3)

≤ 3
2

(
4||τ, τT ||∞ + ||Dτ , Dout||∞

)
(4)

≤ 3
2

(4||τ, τT ||∞ + r||Dτ , DT ||∞) (5)

≤ (
3
2
r + 6)||τ, τT ||∞ (6)

(3) and (4) follow from the right and left inequalities of Lemma 5.2, respec-
tively. The approximation ratio of the algorithm executed during APP2 implies
(5). (6) follows from the fact that ||Dτ , DT ||∞ ≤ ||τ, τT ||∞, which holds since
Dτ (i, j) = τ(i; jj) and DT (i, j) = τT (i; jj) for every taxon-pair i, j ∈ S.

By Theorem 5.1, the 3-approximation algorithms for pairwise dissimilarities
presented in [1, 8] imply a 10 1

2 approximation algorithm for triplet dissimilar-
ities. However, the 3-approximation ratio of the algorithms in [1, 8] is proved
under the assumption that the input dissimilarity matrix is a distance metric.
Therefore, this bound (of 10 1

2 ) is valid only if the matrix Dτ computed in APP2
satisfies the triangle inequality. When the triangle inequality is not assumed,
the analysis in [1, 8] can be modified to yield a 6-approximation ratio, rather
than the original 3-approximation. This 6-approximation algorithm leads, by
Theorem 5.1, to a 15-approximation of the closest tree to an arbitrary triplet-
dissimilarity table under `∞.

6 Discussion

In this paper we discussed the hardness of several problems of fitting a phy-
logenetic tree to a given triplet-dissimilarity table. This question is moti-
vated by several recent works which reconstruct trees using triplet-dissimilarities
[11, 10, 8]. The optimization criteria considered in this paper are the `∞ norm
and MaxDist, which measure the maximum discrepancy (difference and ratio
resp.) between the input dissimilarities and the ones induced by the desired tree.
It is interesting whether similar hardness results apply also for other common
distance measures such as the `1 and `2 norms.
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The construction in Lemma 2.6 which implies our basic NP-hardness result
yields a tree containing two vertices of very high degree. Common models for
phylogenetic trees assume a binary tree (meaning that all internal vertices have
degree 3). Furthermore, edge-weights are assumed to lie within an interval
[wmin, wmax], where wmin and wmax are strictly positive constants independent
of the size of the tree. It is interesting whether our NP-hardness results apply
also when introducing these assumptions on the desired tree, and specifically
what is the smallest ratio between wmax and wmin mentioned above which still
gives similar hardness results. Can this ratio be a constant independent on
n? Does the NP-hardness result apply also for binary trees with uniform edge
weights?

Another question relates to the approximation ratio given in Section 5. Pos-
sibly, a better approximation ratio may be obtained by a closer analysis of the
algorithms in [1, 8].
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