
Fast and Reliable Reconstruction of Phylogenetic Trees with
Very Short Edges∗

(Draft)

Ilan Gronau† Shlomo Moran‡ Sagi Snir§

January 17, 2008

Abstract

Phylogenetic reconstruction methods deal with the problem of reconstructing a tree
describing the evolution of a given set of species; this is usually done using sequences
of characters (e.g. DNA) extracted from these species. A central goal in the design
of these methods is to be able to guarantee accurate reconstruction (with high prob-
ability) from short input sequences. Under common models of evolution, the required
sequence length is known to depend on the depth of the tree as well as on its minimal
edge-weight. Fast converging reconstruction algorithms are considered state-of the-art
in this context, as they require asymptotically minimal sequence length in order to ac-
curately reconstruct the entire tree. However, when the tree in question contains very
short edges, the sequence length required for complete (and accurate) topological res-
olution may be too long for practical purposes. This calls for adaptive fast converging
algorithms studied in this paper, which, given input sequences of any length, correctly
reconstruct as many edges of the evolutionary tree as possible.

In this paper we present a fast converging reconstruction algorithm which returns
a partially resolved topology containing no false edges and all “sufficiently long” edges
of the underlying phylogenetic tree. The weight of edges our algorithm guarantees to
reconstruct is determined by the input sequence length and the depth of the tree; it
does not depend, however, on the minimal edge-weight of the tree, and in this aspect
it is strictly stronger than any previously known edge-reconstruction guarantee. This
fact, together with the optimal complexity of our algorithm (linear space and quadratic-
time), makes it appealing for practical use.

1 Introduction.

Phylogenetic reconstruction is the task of figuring out the evolutionary history of a given
set of extant species (taxa). This history is usually described by an edge-weighted tree
whose internal vertices represent past speciation events (extinct species) and whose leaves
correspond to the given set of taxa. The (positive) weight of an edge in this tree describes
the amount of evolutionary change between the two speciation events it connects. Recon-
struction methods typically receive as input an alignment of sequences, each corresponding
to a different taxon, and they are expected to yield a tree which closely depicts the true
phylogenetic tree. In this work we only consider the topology of the output tree, which is es-
sentially its unrooted and unweighted description (disregarding all zero-weight edges). The
output topology is said to be fully resolved if the degree of each internal vertex is exactly
three. We compare the output topology with the original phylogenetic tree by comparing

∗A preliminary version of this paper appeared in the proceedings of SODA08
†Technion - Israel Institute of Technology, Haifa, 32000Israel
‡Technion - Israel Institute of Technology, Haifa, 32000Israel
§Netanya Academic College, Netanya, Israel

1

the splits induced by their edges on the set of taxa. In other words, an edge of the original
tree is said to be correctly reconstructed if the output tree contains an edge inducing the
same split.

A major challenge in designing reconstruction algorithms is being able to guarantee
a maximum amount of correct reconstruction from short alignments. Studies providing
such reconstruction guarantees usually assumes some (relatively simple) model of sequence
evolution, such as the Cavender-Farris-Neyman (CFN) model for binary sequences [5, 15, 25],
or the Jukes-Cantor model for DNA sequences [19]. Many results in this field focus on
determining the minimal sequence length required for correct reconstruction of the entire
phylogenetic tree. These results show that this sequence-length depends on the weight of
the shortest edge in the tree and on some notion of tree-depth. It was already shown in [13]
that correct reconstruction can be guaranteed (w.h.p.) from sequences of length:

k = O

(
log(n)

f2
· exp(depth)

)
, (1)

where n is the number of taxa, f is the minimal edge weight in the tree, and depth is
the depth of the tree (see Definition 6.5). In [22, 24] it is shown that this is the optimal
dependence (up to constants) in f and depth for general trees, and in [12] it is shown that the
(exponential) dependence on depth can be eliminated from §1, when assuming an additional
specific upper bound on edge weights. So for general trees, the algorithm suggested in [13]
requires asymptotically optimal sequence length. Note that if g is an upper bound on edge
weight in T , then depth ≤ g log2(n), and §1 reduces to the following polynomial dependence
in n:

k =
nO(g)

f2
. (2)

Much attention has been focused in recent years on designing other algorithms which
provide a similar guarantee to that of [13] (see e.g. [14, 18, 7, 8, 20, 22, 23, 11]). Such
reconstruction methods are often said to be fast converging (they are called absolutely fast
converging if they do not require a prior knowledge of the lower and upper bounds on edge
lengths [21]). Whereas fast converging algorithms minimize the sequence length required
for correct reconstruction of any given tree, most of them do not attempt to maximize the
amount of correct reconstruction when the input sequences are too short to ensure correct
reconstruction of the entire tree. In fact, the great majority of fast converging algorithms fail
to produce any meaningful output in such a case. This poses an obvious problem when trying
to apply such algorithms on actual (and even simulated) data. The forest reconstruction
algorithms of [23, 11] are the only fast converging algorithms known today which attempt
to cope with this problem. When the sequences are too short for complete reconstruction,
these algorithms return a forest of fully resolved edge-disjoint trees which are consistent
(w.h.p) with the original tree. Whereas this approach allows correct reconstruction of the
‘shallow’ edges in the tree, the presence of some short edges may prevent such algorithms
from reconstructing long edges situated deeper in the tree, as demonstrated by the following
example.

Consider a full binary tree over 4n leaves obtained by taking n 4-leaf trees with an
arbitrarily short internal edge, and attaching them (in the middle of the internal edge) to n
leaves of a full binary tree whose edges all have some (moderate) fixed weight (see Fig. 1).
The algorithms in [23, 11] are based on the disk-covering approach [18], in which the tree is
reconstructed from sub-phylogenies spanning r-disks of taxa; the r-disk of x consists of all
taxa which are at distance at most r from x. In our example, any non-trivial sub-phylogeny
induced by an r-disk of some taxon x must contain a short edge. Now assume that the input
sequences are too short to ensure reliable resolution of these short edges. Then the methods
in [23, 11], and in fact any method which returns (w.h.p.) a forest of correct fully resolved
trees, will return only trees which span at most three taxa, and hence will not resolve any
of the internal edges of such a tree.

2

1 2 3 4 … 4n

Figure 1: Forest Reconstruction. Consider the above full binary tree and assume that
the edges in the highlighted layer are too short to be reconstructed by the input sequences.
Then any disk-covering method which returns a forest of fully resolved trees will not be able
to reconstruct any of the internal edges (even the longer ones).

The above example demonstrates the sensitivity of fast converging algorithms to the ex-
istence of short edges in the tree. This motivates the following extension of fast convergence:

Definition 1.1. A reconstruction algorithm is said to be adaptive fast converging if it
accurately reconstruct all edges of weight greater than ε (w.h.p.), from sequences of length

k =
nO(g)

ε2
. (3)

In this paper we present a technique which enables reconstruction of adaptive fast con-
verging algorithms by contracting low-confidence edges (and thus introducing high degree
vertices). This technique guarantees that: (1) the returned topology contains no false pos-
itives (i.e. edges inducing incorrect splits), and (2) the missing edges correspond only to
“short” edges of the original tree. After introducing the general technique, we show how it
can be applied on pairwise dissimilarity data (extracted from the input sequences) to obtain
an adaptive fast converging algorithm. Contraction of low-confidence edges is an approach
which exists in other known reconstruction methods, such as Buneman’s classic algorithm
and its refinements (see eg [4, 2]). However, our technique results in a more efficient algo-
rithm, and it is adaptive fast converging, and thus allows the reconstruction of much shorter
edges than ones reconstructed by Buneman’s algorithm.

The algorithm presented in this paper follows the incremental approach which was intro-
duced in [3], and later applied to fast converging algorithms in [9, 8, 20]. In this approach,
the topology is constructed by attaching the taxa one by one. The goal in each iteration is to
find the correct place of insertion of the new taxon in the current topology. This is typically
done by querying the vertices of the current topology as to the direction (relative to that
specific vertex) in which the new taxon should be attached. When a vertex in the current
topology corresponds to a vertex of the original tree, such directional queries can be simply
answered by querying quartet splits (see [9, 8]). Our directional queries may fail to return
a direction when it is not confident enough in the answer. In such a case, the introduction
of false edges is avoided by contracting some of the previously constructed edges. As a
result, the topology maintained by our incremental algorithm may contain vertices which
correspond to (contracted) subtrees of the original tree. This significantly complicates the
task of reliably answering a directional query, but we manage to accomplish this task within
the asymptotic optimal time complexity of O(n2).
The performance of our basic algorithm depends on a bound on the diameter of the con-
tracted subtrees, which in extreme cases can be very large. In the final section of this
paper we present a method which avoids this dependence, and thus imply the adaptive fast
convergence of the algorithm.

3

In the next section we present the notations used in the paper. In Sections 3-6 we
present our basic incremental algorithm in a ‘top-down’ fashion: In Section 3 we outline our
algorithm and present the concept of partial directional oracle which is a model-independent
primitive for constructing phylogenetic trees in the presence of noisy information. In Section
4 we prove some basic properties of our algorithm. In Section 5 we present an implementation
of a directional oracle which uses a reliable quartet oracle. In Section 6 we present and
analyze an implementation of our algorithm from a noisy version of the additive metric
induced by the original tree. In Section 7 we analyze the time and space complexities of
our algorithm, and in Section 8 we discuss the performance of our algorithm on a common
model of sequence evolution. In the final section of this paper we present a modification of
the basic algorithm (as presented in sections 3-6), which achieves adaptive fast convergence.

2 Definitions and Notations.

Trees: A tree T is an undirected connected and acyclic graph. V (T) and E(T) denote
the sets of vertices and edges of T , respectively. leaves(T) denotes the leaf-set of T ,
and internal(T) = V (T) \ leaves(T) denotes the set of its internal vertices. For a ver-
tex v ∈ V (T), the neighborhood of v, NT (v), is the set of vertices adjacent to v in T .
The neighborhood of a subset U ⊆ V is defined by NT (U) = ∪u∈UN(u) \ U . The degree
of a vertex, degT (v), is the size of its neighborhood in T . The parent of a leaf x in T ,
parentT (x), is the unique vertex in NT (x). T is said to be a phylogenetic tree over taxon-set
S if leaves(T) = S, the degree of every internal vertex is at least three, and every edge
e ∈ E(T) is associated with a strictly positive weight w(e). The weight function w induces
a metric DT = {dT (u, v)}u,v∈V (T) over V (T), s.t. dT (u, v) is the total weight of pathT (u, v)
– the (unique) simple path connecting u and v in T . The diameter of T (diam(T)) is the
maximum weight of a simple path in T .

A subtree of a tree T is a connected subgraph of T . The notion of distances is generalized
for subtrees as follows: for two vertex disjoint subtrees t1, t2 of T , dT (t1, t2) denotes the total
weight of pathT (t1, t2), which is the (unique) shortest path in T connecting a vertex in t1
and a vertex in t2. Let t1, t2, t3 be mutually disjoint subtrees of T . We say that t2 separates
t1 from t3 if pathT (t1, t3) intersects t2. If t2 does not separate t1 from t3 we say that t1
and t3 are on the same side of t2 (see Fig. 2). In general, we use lower case t’s to denote
subtrees of a tree T , and whenever the tree T is clear from context, the subscript T may be
removed from the corresponding notation.

u

v

w

x

Figure 2: In the above tree, x separates u from v and from w. v, x and w are all on the
same side of u.

Induced sub-phylogenies: Let T be a phylogenetic tree over a set of taxa S, and let
S′ ⊆ S. T (S′), the phylogenetic tree induced by T on S′, is obtained by taking the minimal
subtree of T which spans S′, and removing all vertices of degree two by iteratively replacing
the two edges which touch such a vertex with a single edge. Note that every vertex in
V (T (S′)) corresponds to a vertex of T and every edge in E(T (S′)) corresponds to a simple
path in T (see Fig. 3). Edge-weights in T (S′) are determined according to the weight of
corresponding paths in T . Therefore, T (S′) induces a sub-metric to the metric DT induced
by T , and DT is used to describe distances induced by all sub phylogenies of T .

4

6

5

1

2

3

4

7

8

1v

T

4

1

2

6

8

()'T S

2v

3v 4v 5v
6v

1v 3v 5v

Figure 3: Induced Sub-phylogeny. Left: A tree over the taxon-set S = {1, . . . , 8}. Right:
The sub phylogeny induced by S′ = {1, 2, 4, 6, 8}. Notice that the edge (v3, v5) in T (S′)
corresponds to the path (v3 − v4 − v5) in T .

Internal Edge Contraction: The contraction of an edge e = (u, u′) ∈ E(T) replaces
e with a single vertex v s.t. N(v) = N({u, u′}). In such a case we say that edge e was
contracted into vertex v. T̂ is said to be an internal (edge) contraction of T if it is obtained
from T by a series of contractions of internal edges (see Fig. 4). Note that if T̂ is an internal
contraction of T then leaves(T) = leaves(T̂). All edge contractions considered in this
paper are internal. T̂ is said to be an ε-contraction of T if each (internal) edge in T which is
contracted in T̂ has weight at most ε. An internal contraction of T to T̂ induces a mapping
between vertices of internal(T̂) and vertex disjoint subtrees of internal(T): each vertex v̂

of internal(T̂) corresponds either to a vertex in internal(T), or to a subtree consisting of
the internal edges contracted into v̂. The subtree of T corresponding to a vertex v̂ of T̂
is denoted by tv̂. Edge weights in a contraction T̂ of T are determined by the weight of
the corresponding edges in T . This means that for neighboring vertices û, v̂ in T̂ , we have
dbT (û, v̂) = dT (tû, tv̂), but otherwise, dT (tû, tv̂) is generally larger than dbT (û, v̂) (see Fig. 4).
We complete this section with two simple observations which are used later (often implicitly):

Lemma 2.1. Let t be a subtree of T s.t. V (t) ⊆ internal(T). Then the tree T̂ obtained from
T by replacing t with a single vertex v̂ such that NbT (v̂) = NT (V (t)) is an edge contraction
of T . If in addition the weights of all edges in t are at most ε, then T̂ is an ε-contraction
of T .

Lemma 2.2. [transitivity of ε-contraction] Let T1, T2, T3 be three phylogenetic trees over S.
If T1 is an ε-contraction of T2 and T2 is an ε-contraction of T3, then T1 is an ε-contraction
of T3.

1̂v
2v̂ 3v̂

6

5

1

2

3

4

7

8

1e

6

5

1
2

3
4

7

8

T
T̂

2e

3e 4e 5e 3e 5e

Figure 4: Internal Edge Contraction. The tree T̂ is obtained from T by contracting e1, e2

into v̂1 and e4 into v̂2. Note that dbT (v̂1, v̂2) = w(e3) = dT (tv̂1 , tv̂2), whereas dbT (v̂1, v̂3) =
w(e3) + w(e5) and dT (tv̂1 , tv̂3) = w(e3) + w(e4) + w(e5).

5

3 Basics of the Incremental Algorithm.

Our incremental reconstruction algorithm works in iterations, where the objective in each
iteration is to extend an edge contraction of T (S′) for some S′ ⊆ S to an edge-contraction
of T (S′ ∪ {x}) for some x ∈ S \ S′.

Procedure Incremental Reconstruct(S):
– Select x0, x1 ∈ S, and initialize: T̂ ← (x0, x1) ; S′ ← {x0, x1}.
– While S′ 6= S do:

1. Select a taxon x ∈ S \ S′ and set S′ ← S′ ∪ {x}.
2. Attach Taxon(T̂ , x)

The crucial part of this process is pinpointing the anchor of x, which is the location of
parent(x) in the current topology, as defined below.

Definition 3.1 (Anchor). Let T̂ be an edge contraction of T (S′), and let x ∈ S \ S′. The
anchor of x in T̂ , anchorbT (x), is defined as follows: Let px be the parent of x in T (S′∪{x}).
If px is included in tv̂ for some v̂ ∈ V (T̂) (either by being a vertex in tv̂ or by lying on a path
in T which corresponds to an edge of tv̂), then anchorbT (x) = v̂. Otherwise, anchorbT (x) is
the unique edge (û, v̂) ∈ E(T̂) for which px is an internal vertex in pathT (tû, tv̂).

The anchor of x in T̂ is found by querying vertices in T̂ for the location of x. These
queries are posed to a directional oracle which receives the new taxon x and a vertex v̂ of T̂
and is expected to output the neighbor û of v̂ which indicates the direction of x with respect
to v̂ (if such a neighbor exists).

Definition 3.2 (Partial Directional Oracle). Let T be a phylogenetic tree over S. A partial
directional oracle for T is a function PDO = PDOT which receives queries of the form
(T̂ , v̂, x), where

• T̂ is an edge-contraction of T (S′), for some S′ ⊂ S,

• v̂ ∈ V (T̂),

• x ∈ S \ S′,

and outputs either a vertex û ∈ NbT (v̂) or ‘null’. The output must satisfy two requirements:

• If v̂ ∈ leaves(T̂), then PDO(T̂ , v̂, x) = parentbT (v̂).

• If PDO(T̂ , v̂, x) = û, then tû and x are on the same side of tv̂ in T (S′ ∪ {x}) (this
property is also referred to as the truthfulness of the oracle). We sometimes abuse
notation and simply say that û is on the same side of v̂ as x.

Our algorithm uses the partial directional oracle to compute the insertion zone of x in T̂ .

Definition 3.3 (Insertion Zone). Given an edge-contraction T̂ of T (S′), some taxon x ∈
S \ S′, and a partial directional oracle PDO, the insertion zone of x in T̂ , denoted by
t̂inz(T̂ , x, PDO) (or simply t̂inz when T̂ , x and PDO are clear from context), is the subtree
of T̂ defined by the following procedure:

Procedure Find Insertion Zone(T̂ , x, PDO):

1. t̂inz ← T̂

2. For every edge (û, v̂) ∈ E(t̂inz) s.t. PDO(T̂ , v̂, x) = û do:
– Delete from t̂inz all the vertices which are separated from û by v̂.

6

A simple inductive argument using the truthfulness of PDO implies that the above
procedure returns a subtree of T̂ which includes anchorbT (x) as below (see Fig. 5):

Observation 3.4. t̂inz = t̂inz(T̂ , x, PDO) is a subtree of T̂ which satisfies the following:

1. anchorbT (x) is either an internal vertex or an edge (internal or external) of t̂inz.

2. For each leaf v̂ of t̂inz, PDO(T̂ , v̂, x) = parentt̂inz
(v̂).

3. For each internal vertex v̂ of t̂inz (if any), PDO(T̂ , v̂, x) = ‘null’.

We conclude this general overview by describing how to attach x to T̂ given its insertion
zone.

Procedure Attach Taxon(T̂ , x):

1. t̂inz ← t̂inz(T̂ , x, PDO).

2. If t̂inz is a single edge (û, v̂), then attach x to T̂ by introducing a new internal
vertex p̂x and replacing (û, v̂) with the three edges (û, p̂x), (v̂, p̂x), (x, p̂x).

3. If t̂inz has a single internal vertex v̂ (i.e. V (t̂inz) = {v̂} ∪N(v̂)), then add to T̂
the edge (v̂, x).

4. Else (i.e. t̂inz has at least one internal edge), contract all internal edges of t̂inz

into a new vertex v̂ and add to T̂ the edge (v̂, x).

There are two types of edge contraction which may occur during an execution of Attach Taxon(T̂ , x),
which inserts a taxon x ∈ S \ S′ to the current topology T̂ over S′. The first are explicit
contractions, which are implied by contractions of internal edges of t̂inz (including the case
that such an internal edge is the anchor of x). In each iteration however at most one implicit
contraction may occur as well, when the anchor of x is an external edge (û, v̂) of t̂inz (eg
when v is a leaf of t̂inz - see Fig. 6). All the contracted edges (due to explicit or implicit con-
tractions) appear in an intermediate topology T̂+x, which is the following natural extension
of T̂ to a contraction of T (S′ ∪ {x}):

• If the anchor of x in T̂ is a vertex v̂ ∈ V (T̂) then T̂+x is obtained by adding an edge
(v̂, x) to T̂ .

• Otherwise, the anchor of x in T̂ is an edge (û, v̂) ∈ E(T̂), and T̂+x is obtained by
replacing the edge (û, v̂) with the three edges (û, p̂x), (p̂x, v̂), (p̂x, x).

In the second case, if v̂ is a leaf of t̂inz, then (û, v̂) is not contracted but (û, p̂x) is
contracted. This is illustrated in Fig. 6, which describes the edges contracted in T̂+x in the
scenario given in Fig. 5b.

We conclude this section by a definition and an observation which imply the correctness
of our insertion procedure.

Definition 3.5. Let T̂ be an (internal edge) contraction of T (S′) and x ∈ S\S′. Let further
t̃ be a subtree of T̂ . We say that anchorbT (x) touches t̃ if it is either a vertex in V (t̃), or it
is an edge with at least one endpoint in V (t̃).

The following observation follows directly from the definition of internal edge contraction.

Observation 3.6. Let T̂ , x and t̃ be as in Definition 3.5. Then anchorbT (x) touches t̃ ⇐⇒
the tree T̂post obtained from T̂ by contracting t̃ to a new vertex v̂ and adding an edge (v̂, x)
is a contraction of T (S′ ∪ {x}).

7

Attach_Taxon

4

1

3

5 6 7

8

2

5

6
7

8

4

1

3

5 6 7

8

2

?
4

1

3

5 6 7

8

2

9

(')T S T̂ p̂ostT

Attach_Taxon

2e

1e anchor

2e

anchor

Attach_Taxon
?

43

5

6

7

8

12

?

?

4
1

3

5

6
7

8

2

9

1e anchor

a

b

c

43

12

9

?

43

5

6

7

8

12

?

1e anchor

Figure 5: This figure illustrates a single insertion iteration of the algorithm. In this example
we have S′ = {1, . . . , 8} and x = 9. Left: the induced sub-phylogeny T (S′), in which the
anchor of x (edge e1) is indicated. Right: three scenarios for the insertion of x into T̂ . The
left tree depicts the current topology T̂ before insertion, with answers to directional queries
and the insertion zone t̂inz marked by a grey cloud. The right tree depicts the topology T̂post

after the insertion. (a,b) The current topology T̂ is obtained from T (S′) by contracting e2,
so the anchor of x in T̂ is e1. (a) t̂inz consists a single edge, so T̂post is obtained from T̂ by
splitting this edge to two and connecting x to the new internal vertex resulting from this.
(b) t̂inz contains one internal edge, which is contracted into a new internal vertex to which
x is connected. (c) The current topology T̂ is obtained from T (S′) by contracting e1, so
the anchor of x in T̂ is the vertex into which e1 is contracted. t̂inz contains a single internal
vertex to which x is connected.

8

Attach_Taxon

43

5

6

7

8

12

4

1

3

5

6
7

8

2

9

T̂ ˆ
post

T

ˆ x
T

43

5

6

7

8

9

12

anchor

û

û

v̂

v̂

ẑ

ẑ

ŵ

9
p̂

Figure 6: explicit and implicit contractions The insertion of taxon x = 9 into T̂ as
presented in Fig. 5b results in contraction of two edges in T̂+x into the vertex ŵ in T̂post:
An explicit contraction of (û, ẑ) (medium bold) as internal edge of the ε-environment of
x, and an implicit contraction of (û, p̂9) (bold), which occurs since the anchor of x is the
external edge (u, v) of t̂inz.

Lemma 3.7. Let T̂ be a contraction of T (S′) and let x ∈ S\S′. Then the tree T̂post obtained
by Attach Taxon(T̂ , x) is a contraction of T (S′ ∪ {x}).

Proof. The lemma holds trivially if T̂post is obtained by step 2 of the proecedure. It holds
also when T̂post is obtained by step 3 or 4 due to Observation 3.6 and the fact that, by
Observation 3.4(1), anchorbT (x) touches the subtree spanned by internal(t̂inz).

4 ε-Reliable Directional Oracles.

We now formalize the properties of the partial directional oracle which guarantee that all
contracted edges are of weight smaller than ε.

Definition 4.1 (ε-environment). t̂env(T̂ , x, ε), the ε-environment of x in T̂ , is the maximal
subtree of T̂+x which includes x and whose internal edges have weight at most ε.

Definition 4.2 (ε-reliability). A partial directional oracle PDO is said to be ε-reliable for
(T̂ , x), if the insertion zone of x determined by PDO is included in the ε-environment of x,
i.e.: V (t̂inz) ⊆ V (t̂env(T̂ , x, ε)). Specifically, any internal vertex of t̂inz is also an internal
vertex of t̂env(T̂ , x, ε).

Lemma 4.3. If the partial directional oracle PDO used in the calculation of t̂inz is ε-reliable
for (T̂ , x), then T̂post is an ε-contraction of T (S′ ∪ {x}).

Proof. By Lemma 3.7, T̂post is a contraction of T (S′ ∪{x}). Hence, by the assumption that
T̂ is an ε-contraction of T (S′), we only need to prove that all the edges contracted during
the current iteration are of weight smaller than ε. Consider such a contracted edge (û, v̂).
Then each endpoint of e is either an internal vertex of t̂inz and hence, by Definition 4.2 also

9

of t̂env(T̂ , x, ε), or it is px, the parent of x, which by definition is also an internal vertex of
t̂env(T̂ , x, ε). Thus e is an internal edge of t̂env(T̂ , x, ε), and hence its weight is smaller than
ε.

Lemma 4.3 provides the main inductive argument used in the proof of our main result
(Theorem 6.9). It is important to note that the validity of this argument requires that our
partial directional oracle is ε-reliable in every iteration of the algorithm.

5 An Efficient Implementation of the Partial Directional
Oracle Using Quartet Queries.

In this section we present our partial directional oracle and give explicit conditions on T̂
and x under which it is ε-reliable. Our directional oracle PDO uses queries on quartet
splits. A taxon-quartet q = {a, b, c, d} ⊆ S defines an induced sub-topology T (q) which is
either a star or a split (x, y|z, w), where {x, y, z, w} = q, and T (q) has a single internal edge
(of positive weight) separating {x, y} from {z, w}. Reconstructing phylogenetic trees from
quartet splits dates back as far as [4]. In order to allow quartet queries over noisy data, we
introduce the concept of a partial quartet oracle, which may fail to return a split when it is
not confident in the result (even when the topology of the quartet is not a star).

Definition 5.1 (Partial Quartet Oracle). Let T be a phylogenetic tree over S. A partial
quartet oracle for T is a function which receives a quartet q ⊆ S and returns either the
(correct) split of q in T , or ‘null’.

Recall that a partial directional oracle, when queried on a vertex v̂ and taxon x, returns
either ‘null’ or a neighbor û of v̂ which is on the same side of v̂ as x. The procedure described
below seeks such a neighbor via a series of queries to a partial quartet oracle PQO. These
quartet queries include the new taxon x and three other taxa s1, s2, s3 of T̂ which represent
three different directions corresponding to three different neighbors of v̂ in T̂ , defined as
follows:

Definition 5.2 (Directional Representatives). Let (û, v̂) be an edge in T̂ . A taxon s of T̂
is a directional representative of (v̂ → û) if û ∈ pathbT (v̂, s). The directional representative
of (v̂ → û) is denoted by sv̂(û).

Our partial directional oracle contains two main phases:
Triplets Tournament: In this phase, the set of all possible directions (represented by
NbT (v̂)) is iteratively screened to end up with at most one candidate direction. In each
iteration a quartet is queried and as a result at least two directions are eliminated from the
set of candidates. If the tournament results in an empty candidate set, then the directional
oracle returns ‘null’. Otherwise, the tournament results in a single surviving candidate. The
following validation phase is needed in order to guarantee that the surviving candidate (if
exists) indeed indicates the correct direction.
Validation: Validation of the direction represented by the surviving neighbor û is done
by another series of quartet queries which contain both x and sv̂(û). If all quartet queries
positively validate this direction (meaning that they put x and sv̂(û) on the same side of
the split), then û is returned. Otherwise, the directional oracle returns ‘null’.

Claim 5.3. The time required for the execution of PDO(T̂ , v̂, x) is linear in degbT (v̂).

Proof. Each iteration of the triplets tournament phase takes O(1) time, and at least two
neighbors of v̂ are eliminated from the candidate set at each iteration. So this phase ends

10

after at most 1
2degbT (v̂) iterations. The validation phase simply scans the neighborhood of

v̂, and so it ends after at most O(degbT (v̂)) time.

Lemma 5.4. If PQO is a partial quartet oracle for T and all directional representatives
satisfy Definition 5.2, then procedure PDO described above is a (truthful) partial directional
oracle for T .

Proof. Consider a valid input instance (T̂ , v̂, x) for PDO. If v̂ is a taxon, then PDO returns
the unique neighbor of v̂ in T̂ , as required. So assume v̂ is an internal vertex of T̂ . It is
sufficient to show that for any vertex û ∈ NbT (v̂) which is not on the same side of v̂ as x,
there exists a vertex which fails û at step 5b of the validation phase. If there is a vertex
û′ ∈ N(v̂) which is on the same side of v̂ as x, then û′ fails the validation of û when chosen
either as û2 or as û1 (see Fig. 7a). If there is no such vertex, then v̂ is the anchor of x

in T̂ , and px – the parent of x in T (leaves(T̂) ∪ {x}) – is contained in tv̂. In this case,
for each choice of û1 there exists û2 ∈ NbT (v̂) \ {û, û1} s.t. pathT (px, tû) separates tû1 from
tû2 (see Fig. 7b). This means that the quartet {x, sv̂(û), sv̂(û1), sv̂(û2)} is not split by
(x, sv̂(û)|sv̂(û1), sv̂(û2)), and hence the validation of û fails.

The Partial Directional Oracle – PDO(T̂ , v̂, x):

1. Initialize candidate set C ← NbT (v̂).

2. If C = {û} (v̂ is a taxon), return û.

3. Otherwise (|C| ≥ 3), proceed as follows:

4. Triplets Tournament:

– While |C| > 1 do:

• If |C| = 2, then C ← C ∪ {û}, for some û ∈ NbT (v̂) \ C.

• Select some triplet {û1, û2, û3} ⊆ C and invoke PQO({x, sv̂(û1), sv̂(û2), sv̂(û3)}).
– If output is ‘null’, then remove û1, û2, û3 from C.
– Otherwise, the output is (x, sv̂(ûi) | sv̂(ûj), sv̂(ûk)) (where {i, j, k} = {1, 2, 3}),

then remove ûj , ûk from C.

– If the tournament results in C = ∅, return ‘null’.

5. Validation: C = {û} for some û ∈ NbT (v̂).

(a) Select some vertex û1 ∈ NbT (v̂) \ {û}.
(b) For every û2 ∈ NbT (v̂) \ {û, û1}, invoke PQO({x, sv̂(û), sv̂(û1), sv̂(û2)}).

• If output is (x, sv̂(û) | sv̂(û1), sv̂(û2)), then continue.
• Otherwise, stop and return ‘null’.

(c) Return û (if it survived all rounds).

The truthfulness of PDO is not enough: in order to get meaningful results, we need in
addition that in some cases it will return a valid direction (not ‘null’). For this, we need to
clasiffy the cases where our partial quartet oracle guarantees to return a valid split. Under
most common models of evolution, the reliability of quartet splits inferred from estimated
distances increases when the diameter of the quartet decreases and the length of the internal
edge increases [13, 23, 11]. This motivates the definition of a (r, ε)-reliable quartet oracle
below1.

1In Section 6 we present an (r, ε)-reliable distance-based quartet oracle. A somewhat similar oracle is

11

v̂
û

x

ˆ ˆ()vs u

ˆ ˆ()vs u′′

ˆ ˆ()vs u′

û′

x
ˆ 1̂()vs u

2û

ˆ 2ˆ()vs u

xp

û
ˆ ˆ()vs u

v̂t

ba

1û

Figure 7: Proof of Lemma 5.4.

Definition 5.5 ((r, ε)-Reliable Quartet Oracle). A partial quartet oracle is said to be (r, ε)-
reliable if it returns the split of the input quartet q whenever diam(T (q)) ≤ r and the single
internal edge of T (q) has weight greater than ε.

The following lemma specifies the cases in which PDO is guaranteed to return the correct
direction. These cases depend on the (r, ε)-reliability of PQO.

Lemma 5.6. Let T̂ be a contraction of T (S′), and {sv̂(û′) : û′ ∈ N(v̂)} be directional
representatives (see Definition 5.2). Assume further that the following holds for a vertex
v̂ ∈ internal(T̂) and taxon x ∈ S \ S′:

1. v̂ has a neighbor û in T̂ which is on the same side of v̂ as x.

2. PQO is an (r, ε)-reliable quartet oracle for T , where r, ε satisfy the following:

(a) ε < min{dT (tv̂, tû), dT (tv̂, px)}, where px is the parent of x in T (S′ ∪ {x}).
(b) r ≥ max{dT (y, z)}, for all taxon-pairs {y, z} ⊂ {x} ∪ {sv̂(û′) : û′ ∈ N(v̂)}}.

Then PDO(T̂ , v̂, x) = û.

Proof. Consider all taxon-quartets queried by PDO of type q = {x, s, s1, s2}, where s is the
directional representative of (v̂ → û) in T̂ . By condition 2b we have that diam(T (q)) ≤ r.
It is easy to see that the path in T corresponding to the internal edge of T (q) intersects tv̂,
and in addition it either contains px (see Fig. 8a) or intersects tû (see Fig. 8b). Hence,
by condition 2a above, the weight of this path is greater than ε. Therefore, by the (r, ε)-
reliability of PQO we get that PQO(q) = (x, s | s1, s2), which implies that û survives all
rounds of the triplets tournament and the validation phase.

Corollary 5.7. Let T̂ be an internal contraction of T (S′) for some S′ ⊂ S, and let x be a
taxon in S \ S′. Assume that for every v̂ ∈ leaves(t̂env(T̂ , x, ε)) we have:

1. dT (tv̂, x) ≤ r1.

2. diam(tv̂) ≤ r2.

3. ∀û ∈ NbT (v̂) : dT (tv̂, sv̂(û)) ≤ r3.

Then if PQO is (r, ε)-reliable for r ≥ r2 + r3 + max{r1, r3}, PDO is ε-reliable for (T̂ , x).

also implicit in [11].

12

Proof. In order to establish the ε-reliability of PDO, we must show that the insertion zone
of x in T̂ is contained in the ε-environment of x in T̂ . By Observation 3.4(1,3), all we need
to prove is that PDO(T̂ , v̂, x) 6= ‘null’ for every leaf v̂ of t̂env = t̂env(T̂ , x, ε). This clearly
holds if v̂ is a taxon. Thus it is suffices to show that each leaf v̂ of t̂env which is an internal
vertex of T̂ satisfies conditions 1, 2a and 2b of Lemma 5.6.
The definitions of r, r1, r2, r3 imply condition 2b of Lemma 5.6. By the definition of ε-
environment, condition 1 is staisfied by û, the unique neighbor of v̂ in t̂env. Let px be the
parent of x in T (S′ ∪ {x}). Since v̂ is an internal vertex of T̂ which is a leaf of t̂env, the
weight of the external edge of t̂env adjacent to v̂ is larger than ε. If (v̂, û) is the anchor of
x in T̂ , then this edge is (v̂, px) and dT (tv̂, tû) ≥ dT (tv̂, px) > ε; otherwise this edge is (v̂, û)
and dT (tv̂, px) ≥ dT (tv̂, tû) > ε. Thus condition 2a of Lemma 5.6 is satisfied as well.

v̂

x

1s s

û

2s

v̂

x

1ss

û

2s
xp

ba

Figure 8: Proof of Lemma 5.6. (a) If the edge (v̂, û) is the anchor of x in T̂ , then the
weight of the internal edge of T (q) is at least dT (tv̂, px). (b) Otherwise, its weight is at
least w(v̂, û) = dT (tv̂, tû).

Note: Corollary 5.7 assumes a bound (r2) on the diameter of contracted subtrees. In
Section 9 we presnt a variant of our algorithm which is independent on this bound. In
Section 6 we discuss this issue in more details.

6 Applying the Algorithm on Noisy Tree Metrics.

In this section we specify conditions which guarantee that our partial directional oracle is
ε-reliable in every iteration of the incremental algorithm. As commonly done in phyloge-
netic reconstruction, we assume that the input to the algorithm is a dissimilarity matrix
D̂ over S (D̂ = {d̂(i, j)}i,j∈S), which is a noisy version of the metric DT induced by the
phylogenetic tree T . We model this noise by an arbitrary non-decreasing function of the
pairwise distances, as follows:

Definition 6.1. Two dissimilarity matrices D1, D2 over S are said to be α-close, for some
function α : R+ → R+ ∪ {∞}, if for every taxon-pair {i, j} ⊆ S, we have

|d1(i, j)− d2(i, j)| ≤ α(min{d1(i, j), d2(i, j)}) .

Given a noise function α, let us denote B+
α (d) = d + α(d) and B−

α (d) = d − α(d). The
following basic observation is used extensively in our analysis.

Observation 6.2. Assume that D1 and D2 are α-close dissimilarity matrices. Then:

• B−
α (d1(i, j)) ≤ d2(i, j) ≤ B+

α (d1(i, j)),

• B−
α (d2(i, j)) ≤ d1(i, j) ≤ B+

α (d2(i, j)).

13

For our analysis we assume that the input matrix D̂ and the tree-metric DT are α-
close for some efficiently computable non-decreasing function α. Our partial quartet oracle
FPM bD,α(q) is the following modified version of the well-known four-point method (FPM)
(see e.g. [13]).

The Partial Quartet Oracle – FPM bD,α(q):
Let q = {a, b, c, d}, and assume a labelling of the four taxa which satisfies:

d̂(a, b) + d̂(c, d) ≤ min{d̂(a, c) + d̂(b, d) , d̂(a, d) + d̂(b, c)} .

– Return (a, b|c, d), if:

B−
α (d̂(a, c)) + B−

α (d̂(b, d)) > B+
α (d̂(a, b)) + B+

α (d̂(c, d)) (4)

– Otherwise, return ‘null’.

Lemma 6.3. Assume that D̂ is α-close to DT . Then for every r ∈ R+, FPM bD,α is an
(r, εr)-reliable partial quartet oracle for T , where εr = 4α(B+

α (r)).

Proof. First we show that FPM bD,α is a truthful quartet oracle, meaning that if the in-
equality in §4 holds, then (a, b|c, d) is the correct quartet split in T . This is established by
showing that dT (a, b) + dT (c, d) < dT (a, c) + dT (b, d).

dT (a, b) + dT (c, d) ≤ B+
α (d̂(a, b)) + B+

α (d̂(c, d))

(by §4) < B−
α (d̂(a, c)) + B−

α (d̂(b, d)) ≤ dT (a, c) + dT (b, d) .

We are left to show that if (a) T (q) = (a, b|c, d), (b) diam(T (q)) ≤ r, and (c) the
weight of the single internal edge in T (q) is larger than εr = 4α(B+

α (r)), then the quartet
split (a, b|c, d) is returned. Hence we have to prove that (a),(b),(c) imply §4. Notice that (b)
implies that d̂(i, j) ≤ B+

α (r) for all {i, j} ⊂ q. Using the monotonicity of α and Observation
6.2 we get:

B−
α (d̂(a, c)) + B−

α (d̂(b, d)) ≥ d̂(a, c) + d̂(b, d)− 2α(B+
α (r)) ≥

dT (a, c) + dT (b, d)− 4α(B+
α (r)) > (by (a),(c) above)

dT (a, b) + dT (c, d) + 4α(B+
α (r)) ≥ d̂(a, b) + d̂(c, d) + 2α(B+

α (r)) ≥
B+

α (d̂(a, b)) + B+
α (d̂(c, d)).

Lemma 6.3 establishes the (well known) fact, that in order to establish (r, ε)-reliability
for small values of ε, we will have to make sure that the diameters of the quartets queried
by our algorithm are kept as small as possible. For this we select the inserted taxon to be
as close as possible to the current topology, and the directional representatives as close as
possible to the corresponding edges, as specified below.

Order of Insertion: The algorithm starts by setting S′ ← {x0, x1} where x0, x1 are the
closest taxa in D̂, and inserting them to T̂ . In each consequent iteration it selects a taxon
x ∈ S \ S′ closest to S′ (where d̂(S′, x) = miny∈S{d̂(x, y)}).
Updating Directional Representatives: The algorithm holds two representatives sv̂(û), sû(v̂)
for each edge (û, v̂) in T̂ . Consider the updates required after inserting taxon x into T̂ . Let
y denote the taxon closest to x in T̂ (under D̂), and let p̂x denote the parent of x in
T̂ . The following updates take place for the new external edge (x, p̂x): sp̂x(x) ← x and
sx(p̂x) ← y. If an edge (û, v̂) is split to (û, p̂x), (p̂x, v̂), the following updates take place:
sv̂(p̂x), sp̂x(û) ← sv̂(û), and sû(p̂x), sp̂x(v̂) ← sû(v̂). Finally, if contractions (of the internal
edges of t̂inz) take place, then edges touching the new vertex (resulting from contraction)
inherit the directional representatives of the corresponding external edges of t̂inz.

14

b d

e g

Attach_Taxon

a b

a

xx y

a

b

b
a

b

a

b

c

d

e

f

g

h

Attach_Taxon

a c

f h

xx y

Figure 9: Updating Directional Representatives. (a) An edge is split during insertion
of x. Its directional representatives (a, b in the figure above) are copied to the two resulting
edges. (b) An edge is contracted during insertion of x. Directional representatives of
external edges of the insertion zone (marked by a grey cloud) are copied to the edges
touching the new internal vertex (into which the internal edge is contracted).

The bounds on the diameters of the queried quartets depend on two important properties
of the input tree T : its ε-diameter and its depth, which are defined next.

Definition 6.4. For ε ≥ 0, the ε-diameter of T (denoted by diam(T, ε)) is the maximum
weight of a simple path in T consisting only of edges of weight at most ε.

Definition 6.5. The depth of a tree T (denoted by depth(T)) is given by:

depth(T) = max
v∈V (T),u∈NT (v)

{ min{dT (v, s) : s ∈ leaves(T), u ∈ pathT (v, s)} }.

Lemma 6.6. Let ∅ ⊂ S′ ⊂ S. Then there is a taxon-pair y ∈ S′, x ∈ S \ S′ s.t. dT (x, y) ≤
2depth(T).

Proof. Let T ′ be the subtree of T which spans S′ (note that T ′ may have vertices of degree
two). A vertex of T ′ is said to be full if degT ′(v) = degT (v). Observe that all leaves of T ′

are full, and that since S′ 6= S, there exists a non-full vertex in T ′. Now root T (and T ′) at
some arbitrary vertex r, and let v ∈ V (T ′) be a non-full (internal) vertex which maximizes
dT (r, v). Let u be an arbitrary child of v in T ′. Then, by the maximality of dT (r, v), u and
all its descendants in T ′ are full. Hence there is a taxon y ∈ S′ which is a descendant of u in
T ′ and dT (v, y) ≤ depth(T). Also, since v is not full, it has a child u′ ∈ V (T) \V (T ′) s.t. u′

and all its descendants in T are not in T ′, implying similarly that u′ has a descendant taxon
x ∈ S \ S′ s.t. dT (v, x) ≤ depth(T). Thus dT (x, y) = dT (x, v) + dT (v, y) ≤ 2depth(T).

In the analysis below, we use B+2
α (d) to denote the function B+

α (B+
α (d)). We will use

the following observation, which follows from the monotonicity of α:

Observation 6.7. B+2
α (d)− d = α(d) + α(B+

α (d)) is a non decreasing function of d.

Lemma 6.8. Assume that D̂ is a dissimilarity matrix over S which is α-close to the tree-
metric DT , and let S′ ⊂ S. Let x ∈ S \ S′ be a taxon closest to S′ under D̂, and let y ∈ S′

be the taxon closest to x in S′. Finally, let px denote the parent of x in T (S′ ∪ {x}). Then,

1. dT (x, y) ≤ B+2
α (2depth(T)).

2. dT (x, px) ≤ B+2
α (2depth(T))− depth(T).

15

Proof. Throughout the proof we extensively apply Observation 6.2 and use depth in short to
denote depth(T). By Lemma 6.6 there exist x′ ∈ S \S′ and y′ ∈ S′ s.t. dT (x′, y′) ≤ 2depth.
For such x′, y′ we have d̂(x′, y′) ≤ B+

α (dT (x′, y′)) ≤ B+
α (2depth). Hence, since d̂(x, y) ≤

d̂(x′, y′), we get: dT (x, y) ≤ B+
α (d̂(x, y)) ≤ B+

α (d̂(x′, y′)) ≤ B+2
α (2depth).

The second inequality is proved similarly. By the definition of depth there must be
a taxon x′ ∈ S \ S′ s.t. dT (px, x′) ≤ depth. Now notice that dT (x, px) − dT (x′, px) =
dT (x, y)− dT (x′, y), thus

dT (x, px) = dT (x′, px) + [dT (x, y)− dT (x′, y)] ≤ depth + [dT (x, y)− dT (x′, y)] .

So it suffices to show that dT (x, y) ≤ dT (x′, y)+B+2
α (2depth)−2depth. If dT (x′, y) ≥ 2depth,

then this is implied by the fact that dT (x, y) ≤ B+2
α (2depth). So assume that dT (x′, y) <

2depth. Then we get:

dT (x, y) ≤ B+
α (d̂(x, y)) ≤ B+

α (d̂(x′, y)) ≤ B+2
α (dT (x′, y))

(by Observation 6.7 above) ≤ dT (x′, y) + B+2
α (2depth)− 2depth.

We are now ready to present the main result of this section:

Theorem 6.9. Consider a phylogenetic tree T over a taxon-set S. Let D̂ be a dissimilarity
matrix which is α-close to the tree-induced metric DT , for some non-decreasing function α.
Assume that the following holds for some ε ∈ R+:

ε ≥ 4α(B+
α (r)) for r = 3B+2

α (2depth(T))− 2depth(T) + 2diam(T, ε) . (5)

Then, algorithm Incremental Reconstruct (Section 3) which uses the quartet oracle FPM bD,α
returns a topology which is an ε-contraction of T .

Sketch of Proof. We use depth in short to denote depth(T), and Hε to denote diam(T, ε). By
Lemma 6.3, §5 implies that FPM bD,α is an (r, ε)-reliable quartet oracle for r = 3B+2

α (2depth)−
2depth + 2Hε. The proof is completed by proving (inductively) that the topology T̂ our
algorithm holds throughout its execution satisfies the following properties:

1. T̂ is a ε-contraction of T (S′).

2. Every edge in T̂ has weight at most B+2
α (2depth)− depth.

3. For every directional representative sv̂(û) in T̂ , we have d(tv̂, sv̂(û)) ≤ B+2
α (2depth).

The induction is pretty straightforward. Lemma 6.8 is used to prove conditions 2 and 3.
Condition 1 is proved with Lemma 4.3 and Corollary 5.7, using the induction hypothesis to
obtain the following bounds on r1, r2, r3:

r1 = 2B+2
α (2depth)− 2depth + Hε / r2 = Hε / r3 = B+2

α (2depth).

The bounds on r2, r3 follow immediately from conditions 1 and 3. The bound on r1 is
obtained by observing the path in T (S′ ∪ {x}) connecting x and tv̂, where v̂ is an arbitrary
leaf of t̂env: condition 2 implies a bound of B+2

α (2depth)− depth on the weight of the first
and last edges, and the weight of the rest of the path is bounded by Hε since it consists of
edges whose weight is at most ε.

6.1 Guaranteeing Reconstruction of Short Edges

In this section we give a closer look at the weight threshold ε, above which edges in T are
guaranteed (correct) reconstruction by our algorithm. Such weight thresholds were provided
for several other algorithms by Atteson in [1] (by what Atteson terms as ‘edge l∞ radius’).
However, since Atteson ties this threshold to the worst-case noise, the best threshold his

16

analysis provides is 2α(diam(T)) (achieved e.g. by Buneman’s algorithm [4] and DLCA [17]).
To imply (adaptive) fast convergence in common models of evolutions (as will be discussed
in Section 8), we need our algorithm to imply a tighter threshold ε = 4α(c · depth(T)))
for some constant c. To achieve this stronger threshold, we use the following corrolary of
Theorem 6.9.

Corollary 6.10. Let T, D̂ and α be as in Theorem 6.9. Let ε ∈ R+ be s.t. ε ≥ 4α(r′), where
r′ = 4depth(T) + 1.75ε + 2diam(T, ε). Then algorithm Incremental Reconstruct (Section 3)
returns an ε-contraction of T .

Proof. According to Theorem 6.9, all we need to show is that ε ≥ 4α(B+
α (r)) for r =

3B+2
α (2depth(T)) − 2depth(T) + 2diam(T, ε). The fact that ε ≥ 4α(r′) implies that for

every d ≤ r′, we have B+
α (d) ≤ d + α(r′) ≤ d + ε

4 . So we get:

2depth(T) ≤ r′ ⇒ B+
α (2depth(T)) ≤ 2depth(T) +

ε

4
≤ r′ ⇒

B+2
α (2depth(T)) ≤ 2depth(T) +

ε

2
⇒ r ≤ 4depth(T) + 1.5ε + 2diam(T, ε) ≤ r′ ⇒

B+
α (r) ≤ 4depth(T) + 1.75ε + 2diam(T, ε) = r′ ⇒ ε ≥ 4α(B+

α (r)) .

Assume that T and ε are such that depth(T) ≥ 1.75ε + 2diam(T, ε). In this case,
Corollary 6.10 implies that our algorithm is guaranteed to correctly reconstruct all edges in
T which are longer than ε = 4α(5depth(T)). The above assumption (depth(T) ≥ 1.75ε +
2diam(T, ε)) is likely to hold whenever we are interested (a-priori) in weight-thresholds
which are not too large (eg, when most of the edges of the tree are of weight larger than ε).
In Section 9 we present a modification of our algorithm which gurantees a weight-threshold
of ε ≤ 4α(12depth(T)) for any tree T . Whereas in practice we do not expect the modified
algorithm to perform much better than the original one, its significance is in being adaptive
fast convergent (see discussion in Section 8).

7 Complexity Analysis.

The space complexity of the algorithm (disregarding the space needed for storing the input
dissimilarity matrix D̂) is obviously linear in n (the number of taxa), since the current
topology T̂ and the directional representatives can easily be maintained in linear space
throughout the algorithm. The time complexity of the algorithm is quadratic, which is
asymptotically optimal for algorithms reconstructing a phylogenetic tree with unbounded
vertex-degrees, even from the exact tree-induced metric (see [10]). Each iteration involves
selecting a taxon for insertion and applying Attach Taxon. Note that computing the next
taxon to be inserted (the one closest to S′) can be done in linear time as in Dijkstra MST
algorithm [6]. The most time consuming task in Attach Taxon is computing the insertion
zone. This can be done by querying the directional oracle on all vertices of T̂ , and then
pruning T̂ in a DFS-traversal according to the queries’ results. The DFS-traversal and
pruning is clearly linear in n. By Claim 5.3, the total time complexity of all queries to the
directional oracle PDO is linear in the sum of vertex-degrees, which is also linear in n.

8 Reliable Reconstruction from Biological Sequences.

In this section we study the inter-taxa distances and the noise function induced by a stochas-
tic process of sequence evolution. Since the model is stochastic, the resulting noise function
α will be ‘probabilistic’ in the sense that it bounds the noise only with sufficiently high prob-
ability. We then use this noise function together with the results of Section 6 to establish
the (inverse) relation between the input sequence length and weights of contracted edges.

17

8.1 Stochastic Model of Evolution

The results presented in this section assume the Cavender-Farris-Neyman [5, 15, 25] (CFN)
model of binary sequence evolution, but they may be generalized to more complex models
as well. The CFN model assumes a rooted tree T , whose edges are associated with sym-
metric changing probabilities {pe}e∈E(T). The process of evolution is modelled by uniformly
randomizing a binary state (0 or 1) at the root and propagating mutations along the tree
edges according to their changing probabilities. A site is defined by the n random states
generated by the above process at the leaves of the tree. Note that under a given model-tree,
the probability distribution of a specific site is well defined. Repeating this process k times
(independently), yields n binary sequences of length k (corresponding to k sites), which may
serve as input to a phylogenetic reconstruction method.

The (additive) metric DT induced by the model-tree T is defined by assigning the fol-
lowing weight to each edge e in T : we = − 1

2 ln(1 − 2pe)2. For u, v ∈ V (T), denote by puv

the compound changing probability between u and v, which is the probability of observing
different states in u and v. The corresponding tree metric DT is given by the following
equality:

dT (u, v) =
∑

e∈path(u,v)

we = − 1
2

ln(1− 2puv) .

Given a pair of sequences (of length k) corresponding to taxa i, j, the observed compound
changing probability p̂ij is estimated by the normalized hamming distance (i.e. the number
of sites in the two sequences with different states divided by k). The observed pairwise
dissimilarities are defined accordingly – d̂(i, j) = − 1

2 ln(1 − 2p̂ij). Our analysis is largely
based on the following result:

Theorem 8.1. Let DT be a metric induced by a phylogenetic tree T , and let D̂ be an
observed pairwise-dissimilarity matrix derived (as described above) from length-k sequences
which evolved along T . Then with probability greater than 1 − 1

n , D̂ and DT are αk-close,
where αk is given by:3

αk(d) = − 1
2

ln

[
1− e2d

√
6 ln(n)

k

]
.

In Section 8.2 we provide a proof for this theorem, and in Section 8.3 we discuss its
implication on the (adaptive) fast convergence of our algorithm.

8.2 A Noise Bound for the CFN Model

In bounding the noise for the CFN model, we concentrate on proving the following result:

Lemma 8.2. For any δ > 0, let αk,δ be defined as follows:

αk,δ(d) = −1
2

ln

[
1− e2d

√
2
k

ln
(

2
δ

)]
. (6)

Then the tree-induced metric DT and the observed dissimilarity matrix D̂ are αk,δ-close with
probability larger than 1− (

n
2

)
δ.

Note that Theorem 8.1 is obtained from Lemma 8.2 by substituting δ = 2
n3 . This lemma

is proved by bounding the deviation of the observed dissimilarities from the tree-induced
distances (see Lemma 8.4). The bound on this deviation follows the following basic bound,
implied by Hoeffding’s inequality.

2When assuming that the changes obey a Poisson distribution, this weight is the expected number of
changes that occured along e - see e.g. discussion in [16] pp. 156-157

3we use the convention that for z ≤ 0, ln(z) = −∞.

18

Lemma 8.3 ([26], Theorem 4.5). Let X1, . . . , Xk be independent random variables which

get the value 1 with probability p and 0 with probability 1− p, and let X̂k =
Pk

i=1 Xi

k . Then
for every λ > 0,

Pr
(
X̂k − p > λ

)
≤ exp(−2kλ2) (7)

Pr
(
X̂k − p < −λ

)
≤ exp(−2kλ2) (8)

It is not hard to see that for every taxon-pair i, j, p̂ij (as defined in Section 8.1) is an
average of k random variables satisfying Lemma 8.3. Hence, the deviation of p̂ij from its
expected value pij can be bounded using this lemma. Lemma 8.4 below translates this
deviation to the deviation between tree-induced distances and observed dissimilarities.

Lemma 8.4. Let d be the tree-induced distance between two taxa, and let d̂ be the observed
dissimilarity between these two taxa. Then for any β > 0 we have:

Pr
(
d− d̂ > β

)
≤ exp

(
−k

2
(e2β − 1)2

e4d

)
(9)

Pr
(
d− d̂ < −β

)
≤ exp

(
−k

2
(1− e−2β)2

e4d

)
. (10)

Proof. Let p, p̂ be the real and observed compound changing probabilities between the two
taxa mentioned in the lemma. First we establish §9:

Pr
(
d− d̂ > β

)
= Pr

(
1
2

ln
(

1− 2p̂

1− 2p

)
> β

)
=

Pr
(

1− 2p̂

1− 2p
> e2β

)
=

Pr
(

1 + 2
p− p̂

1− 2p
> e2β

)
=

Pr
(

p− p̂ >
1
2
(e2β − 1)(1− 2p)

)
=

Pr
(

p− p̂ >
1
2
(e2β − 1)e−2d

)
. (11)

The inequality in §9 is now obtained by plugging λ = 1
2 (e2β − 1)e−2d in §8. The inequality

in §10 is similarly obtained by first showing (as in §11) that:

Pr
(
d− d̂ < −β

)
= Pr

(
p− p̂ <

1
2
(e−2β − 1)e−2d

)
, (12)

and then plugging λ = 1
2 (1− e−2β)e−2d in §7.

Note that the bounds we get in §9 and in §10 are not identical: the RHS of §10 is greater
than the RHS of §9, because β > 0 implies that 1 − e−2β < e2β(1 − e−2β) = e2β − 1.
Hence we get:

Pr
(
|d− d̂| > β

)
< 2 exp

(
−k

2
(1− e−2β)2

e4d

)
. (13)

The bound in §14 below is obtained by noticing that d and d̂ are interchangeable in the
proof of Lemma 8.4:

Pr
(
|d− d̂| > β

)
< 2 exp

(
−k

2
(1− e−2β)2

e4 min{d,d̂}

)
. (14)

19

Proof of Lemma 8.2: The noise function αk,δ defined in §6 is obtained by extracting the
value of β for which the RHS of §13 equals δ. Hence for every taxon pair i, j ∈ S, we get
the following inequality by plugging in αk,δ(min{d(i, j), d̂(i, j)}) as β in §14:

Pr
(
|d(i, j)− d̂(i, j)| > αk,δ(min{d(i, j) , d̂(i, j)})

)
< δ . (15)

Now, by applying a simple union bound, we get that DT and D̂ are αk,δ-close with proba-
bility at least 1− (

n
2

)
δ.

8.3 Sequence Length Requirements

By combining Theorems 8.1 and 6.9 we are able to establish the relation between k and the
weight of edges our algorithm contracts.

Theorem 8.5. Let D̂ be a dissimilarity matrix obtained from n binary taxon-sequences of
length k which evolved according to the CFN model along a phylogenetic tree T . Let ε ∈ R+

be s.t.
ε ≥ 4αk

(
B+

αk
(3B+2

αk
(2depth(T))− 2depth(T) + 2Hε)

)
(16)

(where αk is as defined in Theorem 8.1 and Hε = diam(T, ε)).
Then when executed on D̂, algorithm Incremental Reconstruct (Section 3) returns an ε-
contraction of T with probability larger than 1− 1

n .

Proof. This theorem is a direct result of Theorems 6.9 and 8.1

Theorem 8.5 states a condition which allows us to calculate, for a given tree T and input
sequence length k, an upper bound ε on the weight of edges our algorithm contracts. The
following lemma provides a more explicit (but less tight) connection between k and ε.

Corollary 8.6. Let ε ∈ R+, and assume that the sequence length satisfies:

k ≥ 24 ln(n) · e16depth(T)+8ε+8Hε

ε2
. (17)

Then algorithm Incremental Reconstruct returns an ε-contraction of T with high probability.

Proof. Corollary 6.10 implies that it is sufficient to show that ε ≥ 4αk(r′) for r′ = 4depth(T)+
1.75ε + 2Hε. By plugging in αk as defined in Theorem 8.1, we get that this is equivalent to
requiring:

k ≥ 6 ln(n) · e16depth(T)+7ε+8Hε

(
1− e−

ε
2
)2 . (18)

So we are left to show that §17 implies §18. This is established by showing that

4
eε

ε2
≥ (

1− e−
ε
2
)−2

. (19)

Substituting ε = 2t, §19 is equivalent to e2t

t2 ≥ (1− e−t)−2 , or by taking square root to
et

t ≥ (1− e−t)−1 , which is equivalent to the well known inequality et − 1 ≥ t.

Theorem 8.7. Algorithm Incremental Reconstruct is fast converging.

Proof. The proof rather straightforwardly follows from Corollary 8.6. In order to establish
fast convergence, we need to prove that our algorithm reconstructs the correct topology of T
with high probability from sequences of poly(n) length, when edge-weights of T are assumed
to be within some interval [f, g] (see §2). Applying Corollary 8.6 with any 0 < ε < f ,
implies that our algorithm returns the correct topology with high probability, whenever k >
24
f2 ln(n) · exp(16depth(T) + 8f)). As mentioned already in Section 1, depth(T) ≤ g log2(n),
which gives us the desired polynomial-bounded on the required sequence length.

20

Note that our algorithm is also absolute fast converging since its input (consisting of D̂
and the sequence length k) does not require any knowledge about the originating tree.

For adaptive fast convergence we need that sequences of length k = exp(depth(T))
ε2 suffice

to guarantee correct reconstruction (w.h.p.) of all edges of weight greater than ε (see §3).
Hence Corollary 8.6 implies adaptive fast convergence only when diam(T, ε) = O(depth(T)).
As mentioned in Section 6.1, this restriction is likely to hold in most “normal looking” trees
(which do not have large clusters of short edges). However, for our algorithm to be adaptive
fast convergent we need to remove this restriction. This is done in the next section.

9 Eliminating Dependence on the Diameter of Con-
tracted Subtrees.

In this section we present an alternative insertion procedure which does not depend on
the diameter of contracted subtrees. For this we gurantee that the algorithm queries only
quartets whose diameter is bounded by some linear function of depth(T). In our discussion
we focus on a single insertion iteration in which taxon x is inserted into the current topology
T̂ spanning taxon set S′. The main idea behind this alternative insertion procedure is to
compute the insertion zone over a sub-phylogeny induced by a subset S′′ ⊆ S′ containing
only taxa which are close to x. This approach is justified by Lemmas 9.1 and 9.2.

Lemma 9.1. Assume that T̂ (S′′) is an internal contraction of T (S′′) and that PQO is
(r, ε)-reliable for r = diam(T (S′′ ∪ {x})). Then PDO is ε-reliable for (T̂ (S′′), x).

Proof. This lemma is directly implied by Lemma 5.6 and the discussion following it.

Lemma 9.2. Let T̂ be an internal contraction of T (S′), and Let S′′ ⊆ S′. Then

1. T̂ (S′′) , the subtree of T̂ induced by S′′, is an internal contraction of T (S′′).

2. An edge (u, v) ∈ E(T (S′′)) is contracted into a vertex v̂ of T̂ (S′′) iff all the edges in
pathT (S′)(u, v) are contracted into v̂ in T̂ .

Sketch of Proof. We prove the lemma for the case where S′′ = S′ \ {s} (the general case
follows by induction on |S′ \S′′|). To prove 1, we show that T̂ (S′′) is an internal contraction
of T (S′′) by mapping each internal vertex v̂ of T̂ (S′′) onto a subtree t′′v̂ of T (S′′), as follows.
Consider an arbitrary vertex v̂ ∈ internal(T̂), and the subtree tv̂ of T (S′) contracted into
it in T̂ . If V (tv̂) ⊆ V (T (S′′)), then tv̂ is also a subtree of T (S′′), and t′′v̂ = tv̂. If this
is not the case, then tv̂ must contain ps, the parent of s in T (S′) (since ps is the only
possible vertex in internal(T (S′)) \ internal(T (S′′))). Furthermore, in this case we must
have that degT (S′)(ps) = 3, and NT (S′)(ps) = {s, u, v} for some edge (u, v) ∈ E(T (S′′)) (and
(u, ps), (ps, v) ∈ E(T (S′)). There are three possible cases:

1. tv̂ contains neither (u, ps) nor (ps, v), in which case V (tv̂) = {ps}, and v̂ /∈ V (T̂ (S′′)).

2. tv̂ contains exactly one of the edges (u, ps), (ps, v) - w.l.o.g. it is (u, ps). Then t′′v̂ =
tv̂ \ {(u, ps)}.

3. tv̂ contains both (u, ps) and (ps, v), in which case t′′v̂ = tv̂ \ {(u, ps), (ps, v)} ∪ {(u, v)}.

2 is implied by the fact that the edge (u, v) of T (S′′) is contracted in T̂ (S′′) only in the
third case.

In order to use the reduced subset S′′ in the insertion of x into T̂ , we need the ε-reliability
of PDO for (T̂ (S′′), x) (guaranteed by Lemma 9.1) to translate also to T̂ . This is obtained
by making sure that the anchor of x in T̂ (S′′) is the same as its anchor in T̂ (to be proved

21

in Theorem 9.7). To achieve this, we require S′′ to preserve the anchor of x in T (S′), as
specified by the following definitions and results.

Definition 9.3. Let v be an internal vertex of a phylogenetic tree T . The v-components of
T are the connected components of T (V \ {v}).

Definition 9.4. Let T be a phylogenetic tree, let v ∈ V (T) and let S̃ ⊆ leaves(T). We say
that S̃ preserves v in T , if either v is a taxon in S̃, or S̃ has nonempty intersection with at
least three of the v-components of T . S̃ is said to preserve an edge (u, v) in T if it preserves
both u and v in T .

Observation 9.5. A vertex v of T (S′) is also a vertex in T (S′′) iff S′′ preserves v in T (S′).
Similarly, an edge (u, v) of T (S′) is also an edge of T (S′′) iff S′′ preserves the edge (u, v)
in T (S′). (see Fig. 10)

3

4

2

1

5

6

4v

T

1

2

3

5

{ }()1,2,3,5T

1v

2v

1v 4v

3v

Figure 10: Vertex and Edge Preservation. The taxon subset {1, 2, 3, 5} preserves the
internal vertices v1, v4 and the edges (1, v1), (2, v1), (v1, v4) in T .

Lemma 9.6. Let T̂ be an internal edge contraction of T (S′), and assume that S′′ preserves
anchorT (S′)(x). Then anchorbT (x) = anchorbT (S′′)(x).

Proof. Assume that anchorT (S′)(x) is an edge e (the proof for the case that anchorT (S′)(x)
is an internal vertex is similar but simpler). Then by Observation 9.5, e is also an edge
in T (S′′). Assume first that e is contracted in T̂ into some vertex v̂, implying that
anchorbT (x) = v̂. Then by Lemma 9.2(2), e is also contracted into v̂ in T̂ (S′′), imply-
ing that anchorbT (S′′)(x) = v̂ as well. Now assume that e is not contracted in T̂ , then (by

Lemma 9.2(2)) it is also not contracted in T̂ (S′′). Thus, both T̂ and T̂ (S′′) contain an edge
ê which is identical to e (i.e., ê and e induce the same splits in the corresponding trees).
Hence ê is the anchor of x in both T̂ and T̂ (S′′).

Lemmas 9.1 and 9.6 suggest the following insertion procedure:

22

Procedure Attach Taxon revised(T̂ , x):

1. Calculate a subset S′′ ⊆ S′, s.t. diam(T (S′′ ∪ {x})) is small, and S′′ preserves
the anchor of x in T (S′).

2. t̂′′inz ← t̂inz(T̂ (S′′), x, PDO).

3. If t̂′′inz is a single edge (û, v̂), then attach x to T̂ by introducing a new internal
vertex p̂x and replacing (û, v̂) with the three edges (û, p̂x), (v̂, p̂x), (x, p̂x).

4. If t̂′′inz has a single internal vertex v̂ (i.e. V (t̂′′inz) = N(v̂) ∪ {v̂}), then add to T̂
the edge (v̂, x).

5. Else (i.e. t̂′′inz has at least one internal edge), contract into a new vertex v̂ all
edges in T̂ which lie on paths corresponding to internal edges of t̂′′inz, and add to
T̂ the edge (v̂, x).

Implementation note: Before computing the insertion zone in step 2, the algorithm
constructs T̂ (S′′) and determines all directional representatives. Since directional repre-
sentatives have to be taxa in S′′, they are not kept from one iteration to the next. The
construction of T̂ (S′′) (including calculation of directional representatives) may be achieved
in linear time using two DFS scans of T̂ .

Theorem 9.7. Assume that T̂ is an ε-contraction of T (S′), and let T̂post be the topology
resulting from Attach Taxon revised(T̂ , x). Then if S′′ preserves the anchor of x in T (S′)
and PDO is ε-reliable for (T̂ (S′′), x), then T̂post is an ε-contraction of T (S′ ∪ {x}).

Proof. If t̂′′inz consists of a single edge (û, v̂), then all we need to show is that (û, v̂) is
the anchor of x in T̂ : This holds since by Observation 3.4(1), anchorbT (S′′)(x) = (û, v̂),
and by Lemma 9.6 anchorbT (x) = anchorbT (S′′)(x). So assume t̂′′inz contains some internal

vertices. We prove first that if T̂ is an internal contraction of T (S′), then T̂post is an internal
contraction of T (S′ ∪ {x}). For this, let t̃ be the subtree of T̂ spanned by internal(t̂′′inz).
Then T̂post is obtained by contracting t̃ into a new vertex v̂ and attaching x to v̂. Hence,
by Observation 3.6, it suffices to show that anchorbT (x) touches t̃. This last claim holds
since anchorbT (x) = anchorbT (S′′)(x) (lemma 9.6) and anchorbT (S′′)(x) touches t̃ in T̂ (S′′)
(Observation 3.4(1)).

It remains to prove that all the contracted edges are of weight at most ε. Consider
an edge e of T (S′ ∪ {x}) which is contracted in T̂post. If e was contracted already in T̂

then (by our assumption on T̂) w(e) ≤ ε. Otherwise, by the ε-reliability of PDO for
(T̂ (S′′), x), e must lie on a path corresponding to an internal edge e′ of t̂env(T̂ (S′′), x, ε),
and w(e) ≤ w(e′) ≤ ε.

We are left to show how to find a reduced subset of taxa S′′ s.t. T (S′′∪{x}) has a small
diameter and S′′ preserves the anchor of x in T (S′). We assume, as in Section 6, that the
algorithm has access to a dissimilarity matrix D̂ which is α-close to the tree-induced metric
DT . We also assume the insertion order suggested in Section 6. Let S′i be the set of attached
taxa in the beginning of the ith iteration, and let xi /∈ S′i be the taxon chosen for insertion
at that stage. Then there is a taxon yi ∈ S′i s.t. d̂(xi, yi) = min{d̂(x′, y′) : x′ /∈ S′i, y

′ ∈ S′i}.
Our definition of S′′ relies on the following observation (which can be proved by induction
on i):

Observation 9.8. Let d̄i = maxj≤i{d̂(xj , yj)}. Then depth(T (S′i ∪ {xi})) ≤ Bα(d̄i).

23

Lemma 9.9. Consider the ith iteration in which taxon x = xi is inserted into T̂ (where
S′ = leaves(T̂)). Then the following set preserves the anchor of x in T (S′):

S′′ =
{

s ∈ S′ : d̂(x, s) ≤ B+
α

(
3B+

α (d̄i)
)}

Proof. Assume that the anchor of x in T (S′) is an edge (u, v) (the other case is proved
similarly). Then we need to show that S′′ preserves both u and v in T (S′). We will show
w.l.o.g. that it preserves v. This is done by proving that each v-component of T (S′) contains
a taxon s s.t. d̂(x, s) ≤ B+

α

(
3B+

α (d̄i)
)
. Notice that each v-component contains a taxon s

s.t. dT (v, s) ≤ depth(T (S′)). By decomposing path connecting x and s in T (S′ ∪ {x}) into
3 parts we get:

dT (x, s) ≤ w(x, px) + w(px, v) + dT (v, s) ≤ 3depth(T (S′ ∪ {x})) ≤ 3B+
α (d̄i) .

The lemma then follows since d̂(x, s) ≤ B+
α (dT (x, s)).

The final part left in the analysis is to bound the diameter of T (S′′ ∪{x}). Let s1, s2 be
two arbitrary taxa in S′′. Then d̂(x, s1), d̂(x, s2) ≤ B+

α

(
3B+

α (d̄i)
)
, and we get:

dT (s1, s2) ≤ dT (s1, x) + dT (s2, x) ≤ B+
α (d̂(s1, x)) + B+

α (d̂(s2, x)) ≤ 2B+2
α

(
3B+

α (d̄i)
)

(20)

Now, Lemma 6.8(1) implies that d̄i ≤ B+
α (2depth(T)) in every iteration of the algorithm.

This gives us the following bound:

diam(T (S′′ ∪ {x})) ≤ 2B+2
α

(
3B+2

α (2depth(T))
)

. (21)

We conclude this section by outlining the adjustment of the the main results from Sec-
tions 6 and 8 to the case when Attach Taxon revised is used in each iteration of Incremen-
tal Reconstruct.

Theorem 9.10. Consider a phylogenetic tree T over a taxon-set S. Let D̂ be a dissimilarity
matrix which is α-close to the tree-induced metric DT , for some non-decreasing function α.
Then the modified algorithm returns a topology which is an ε-contraction of T where

ε = 4α
(
B+

α

(
2B+2

α

(
3B+2

α (2depth(T))
)))

. (22)

Proof. We show (by induction) that in every iteration of the algorithm, the current topology
T̂ is an ε-contraction of T (S′). Consider an arbitrary iteration where x is inserted into T̂
(which is assumed to be an ε-contraction of T (S′)). Let S′′ be the reduced subset calculated
by Attach Taxon revised (as defined in Lemma 9.9). The definition of ε and the bound
established on diam(T (S′′ ∪ {x})) imply by Lemma 6.3 that FPM bD,α is an (r, ε)-reliable
quartet oracle for r = diam(T (S′′ ∪ {x})). And so by Lemma 9.1, PDO is an ε-reliable
directional oracle for (T̂ (S′′), x). Hence, from Theorem 9.7 (together with Lemma 9.9) we
get that T̂post is an ε-contraction of T (S′ ∪ {x}).
Adjusting Theorem 9.10 to the probabilistic setting of Section 8 yields the following:

Theorem 9.11. Let D̂ be a dissimilarity matrix obtained from n binary taxon-sequences
of length k which evolved according to the CFN model along a phylogenetic tree T . Then
when executed on D̂, the modified algorithm returns with probability larger than 1 − 1

n an
ε-contraction of T , where

ε = 4αk

(
B+

αk

(
2B+2

αk

(
3B+2

αk
(2depth(T))

)))
. (23)

We now turn to prove the adaptive fast convergence of the modified algorithm. To
establish this we have to determine the sequence length k required for correct reconstruction
of edges whose weight is greater than ε. First we simplify equation §23 similarly to the way
Corollary 6.10 simplifies equation §5.

24

Lemma 9.12. Let ε ∈ R+ be s.t. ε ≥ 4α
(
12depth(T) + 17

4 ε
)
, then

ε ≥ 4α
(
B+

α

(
2B+2

α

(
3B+2

α (2depth(T))
)))

.

Proof. Similar to the proof of Corollary 6.10.

Theorem 9.13. The incremental algorithm using Attach Taxon revised is adaptive fast
converging.

proof outline. In order to establish adaptive fast convergence it is enough to show that
assuming edge weights in T are not greater than g, sequences of length k = nO(g)

ε2 are
sufficient for the modified algorithm to return (w.h.p.) an ε-contraction of T (see §3).
According to Theorem 9.11 and Lemma 9.12, ε contraction is guaranteed w.h.p. if ε ≥
4αk

(
12depth(T) + 17

4 ε
)
. Using similar arguments to the ones used in the proof of Corollary

8.6, we get that this is ensured whenever:

k ≥ 24 ln(n) · e48depth(T)+18ε

ε2
. (24)

Now assuming g is an upper bound on edge weights, we have depth(T) ≤ g log2(n) and
w.l.o.g. ε ≤ g (otherwise all edge weights are smaller than ε, and hence any execution of
our algorithm outputs an ε-contraction of T). Hence the required sequence length is smaller
than

24 ln(n) · n48g log2 e · e18ε

ε2
=

nO(g)

ε2
,

as required.

Acknowledgement:

The first author would like to thank Elchanan Mossel for a very helpful discussion at the
early stages of this research.

References

[1] K. Atteson. The performance of neighbor-joining methods of phylogenetic reconstruc-
tion. Algorithmica, 25:251–278, 1999.

[2] V. Berry and D. Bryant. Faster reliable phylogenetic analysis. In RECOMB ’99:
Proceedings of the third annual international conference on Computational molecular
biology, pages 59–68, 1999.

[3] W. Beyer, M. Singh, T. Smith, and M. Waterman. Additive evolutionary trees. J Theor
Biol, 64(2):199–213, January 1977.

[4] P. Buneman. The recovery of trees from measures of dissimilarity. Mathematics in the
Archeological and Historical Sciences, pages 387–395, 1971.

[5] J. Cavender. Taxonomy with confidence. Math Biosci, 40:271–280, 1978.

[6] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. MITP,
2001. 2nd edition.

[7] M. Cryan, L. Goldberg, and P. Goldberg. Evolutionary trees can be learned in poly-
nomial time in the two-state general markov model. SIAM Journal on Computing,
31(2):375–397, 2001.

[8] M. Csürös. Fast recovery of evolutionary trees with thousands of nodes. Journal of
Computational Biology, 9(2):277–297, 2002.

25

[9] M. Csürös and M. Kao. Recovering evolutionary trees through harmonic greedy triplets.
In SODA: ACM-SIAM Symposium on Discrete Algorithms, pages 261–270, 1999.

[10] J. Culberson and P. Rudnicki. A fast algorithm for constructing trees from distance
matrices. Information Processing Letters, 30(4):215–220, February 1989.

[11] C. Daskalakis, C. Hill, A. Jaffe, R. Mihaescu, E. Mossel, and S. Rao. Maximal accurate
forests from distance matrices. In RECOMB ’06: Proceedings of the tenth annual
international conference on Computational molecular biology, pages 281–295, 2006.

[12] C. Daskalakis, E. Mossel, and S. Roch. Optimal phylogenetic reconstruction. In STOC
’06: Proceedings of the thirty-eighth annual ACM symposium on Theory of computing,
pages 159–168, 2006.

[13] P. Erdos, M. Steel, L. Szekely, and T. Warnow. A few logs suffice to build (almost) all
trees (I). Random Structures and Algorithms, 14:153–184, 1999.

[14] P. Erdos, M. Steel, L. Szekely, and T. Warnow. A few logs suffice to build (almost) all
trees (II). Theoretical Computer Science, 221:77–118, 1999.

[15] J. Farris. A probability model for inferring evolutionary trees. Systematic Zoology,
22:250–256, 1973.

[16] J. Felsenstein. Inferring Phylogenies. Sinauer Associated, Inc., Sunderland, MA, 2004.

[17] I. Gronau and S. Moran. Neighbor joining algorithms for inferring phylogenies via
LCA-distances. Journal of Computational Biology, 14(1):1–15, 2007.

[18] D. Huson, S. Nettles, and T. Warnow. Disk-Covering, a fast-converging method for
phylogenetic tree reconstruction. J Comp Biol, 6:369–386, 1999.

[19] T. Jukes and C. Cantor. Evolution of protein molecules. In H.N. Munro, editor,
Mammalian Protein Metabolism, pages 21–132. Academic Press, New York, 1969.

[20] V. King, L. Zhang, and Y. Zhou. On the complexity of distance-based evolutionary
tree reconstruction. In SODA: ACM-SIAM Symposium on Discrete Algorithms, pages
444–453, 2003.

[21] B. Moret, K. St. John, and T. Warnow. Absolute convergence: true trees from short
sequences. In SODA: ACM-SIAM Symposium on Discrete Algorithms, pages 186–195,
2001.

[22] E. Mossel. Phase transitions in phylogeny. Trans Amer Math Soc, 356:2379–2404, 2004.

[23] E. Mossel. distorted metrics on trees and phylogenetic forests. ACM Transactions on
computational biology and bioinformatics, 4:108–116, 2007.

[24] E. Mossel and M. Steel. How much can evolved characters tell us about the tree that
generated them?, chapter 14. 2005.

[25] J. Neymann. Molecular studies of evolution: A source of novel statistical problems. In
S. Gupta and Y. Jackel, editors, Statistical Decision Theory and Related Topics, pages
1–27. Academic Press, New York, 1971.

[26] L. Wasserman. All of Statistics. Springer, New York, 2004.

26

