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Abstract

Phylogenetic reconstruction methods attempt to reconstruct a tree describing the
evolution of a given set of species using sequences of characters (e.g. DNA) extracted
from these species as input. A central goal in this area is to design algorithms which
guarantee reliable reconstruction of the tree from short input sequences, assuming
common stochastic models of evolution. The fast converging reconstruction algorithms
introduced in the last decade dramatically reduced the sequence length required to
guarantee accurate reconstruction of the entire tree. However, if the tree in question
contains even few edges which cannot be reliably reconstructed from the input se-
quences, then known fast converging algorithms may fail to reliably reconstruct all or
most of the other edges. This calls for an adaptive approach suggested in this paper,
called adaptive fast convergence, in which the set of edges which can be reliably recon-
structed gradually increases with the amount of information (length of input sequences)
available to the algorithm.

This paper presents an adaptive fast converging algorithm which returns a partially
resolved topology containing no false edges: edges that cannot be reliably reconstructed
are contracted into high degree vertices. We also present an upper bound on the
weights of those contracted edges, which is determined by the length of input sequences
and the depth of the tree. As such, the reconstruction guarantee provided by our
algorithm for individual edges is significantly stronger than any previously published
edge reconstruction guarantee. This fact, together with the optimal complexity of our
algorithm (linear space and quadratic-time), makes it appealing for practical use.

1 Introduction.

Phylogenetic reconstruction is the task of figuring out the evolutionary history of a given
set of extant species (terminal taxa). This history is usually described by an undirected
tree whose internal vertices represent past speciation events (extinct species) and whose
leaves correspond to the given set of taxa; edges of the tree are typically identified with
the splits they define on the terminal taxa. Each such edge is associated with a weight (or
length) which describes the amount of evolutionary change along the edge (often measured
by the expected number of mutations). Reconstruction methods typically receive as input
an alignment of sequences, each corresponding to a different taxon, and they are expected
to yield a tree which closely depicts the true phylogenetic tree.

The connection between the length of input sequences and the accuracy of the recon-
structed tree was first studied in the seminal work of Erdös et al. in [11]. They present an
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efficient algorithm that, with high probability, reconstructs any phylogenetic tree accurately
from input sequences of length polynomial in the number of terminal taxa, provided that
the minimal and maximal edge weights are bounded by constants. The main result of [11]
is based on a detailed study of the sequence length required for accurate reconstruction
(w.h.p.) of a quartet (a tree spanning four terminal taxa). The paper develops what turns
out to be a tight connection (up to constants) between this sequence length, the diameter
of the quartet, and the weight of its single internal edge. This basic analysis for quartets
is extended to larger trees by referring to the depth of an edge e, which is the minimal
diameter of a quartet of terminal taxa which are separated by e. The algorithm presented
in [11] is the first algorithm which depends on the depth of the tree (i.e., the maximal
depth of an edge), rather than its diameter. [11] led to a long line of algorithms using a
similar approach, which are now referred to as fast converging phylogenetic reconstruction
algorithms, because they guarantee fast convergence to the true tree (as a function of the
sequences length).

The problem with nearly all fast converging algorithms is that they share an “all or
nothing” nature: if the input sequences allow reliable reconstruction of all edges in the
tree, then these algorithms guarantee accurate reconstruction (w.h.p.) of the tree; but if
the tree contains some indistinguishable edges, then they do not provide any reconstruction
guarantee. An indistinguishable edge is an edge for which accurate reconstruction cannot
be guaranteed statistically (w.h.p.) from input sequences of some given length. This can be
either because the edge is “too short” (few mutations are likely to have occurred along it)
and/or because it is “too deep” (the mutations that occurred along it are likely to have been
overwritten by later mutations). The stated objective of most fast converging algorithms is
to reconstruct the entire tree from input sequences of minimal length, and not to reconstruct
as much of the tree as possible from sequences of any length. Hence these algorithms are
designed to ignore cases where the reconstructed tree has even a few indistinguishable edges.

To illustrate the issue of indistinguishable edges, consider the phylogenetic tree T in Fig.
1, which contains a terminal taxon x whose point of speciation v is very close to another
speciation point u, implying that the edge (u, v) is very short. Assume an input sequence
length k, for which only the edge (u, v) is indistinguishable. It is reasonable to expect that a
phylogenetic reconstruction algorithm will correctly reconstruct all other edges of T , even if
it fails to reconstruct (u, v). However, this is not the case with the fast converging algorithms
which preceded this work: when failing to reconstruct an edge, some of these algorithms do
not return any tree, while others return a tree that may contain many faulty edges1. This
is despite the fact that when executed on all the input sequences but that of x, they do
return the correct subphylogeny (w.h.p.). Note that a similar effect occurs when the edge
(u, v) is not very short, but the terminal taxon x lies on a very long terminal edge (v, x),
implying that both (u, v) and (u′, v) are indistinguishable because they are deep. When
reconstructing very large trees we are likely to encounter such cases of close-by speciation
events and/or long terminal edges, and so it is important to use a reconstruction algorithm
which is capable of dealing with indistinguishable edges.

The inability of fast converging algorithms to deal with even a few indistinguishable
edges has been pointed out in the past [17, 25]. In this paper we present the first fast
converging algorithm which returns a tree which is guaranteed (w.h.p.) to contain all edges
above a certain weight. This weight threshold depends on the input sequence length and the
depth of the tree. This is done by contracting indistinguishable edges and returning a tree
which might contain vertices of degree greater than 3. The approach of edge contraction
dates back to Buneman’s algorithm [2], however, using fast converging techniques enables
our algorithm to reconstruct edges which are much shorter than the ones reconstructed
by Buneman’s algorithm. Another practical feature of this algorithm is its optimal time
complexity of O(n2) (where n is the number of terminal taxa).

1Previous papers on fast converging algorithms, e.g., [5, 6, 11, 12, 17, 20, 23, 24], do not explicitly describe
their behavior in the presence of indistinguishable edges, and this observation is based on our analysis of
these algorithms.
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Figure 1: A tree with a single indistinguishable edge.

1.1 Background and Related Work.

All fast converging reconstruction algorithms (and in fact most efficient tree reconstruction
algorithms) are distance-based, implying that they reconstruct the tree according to esti-
mates of distances between terminal taxa (i.e., estimates of edge-weight sums along paths
connecting leaves in the tree). However, unlike other distance-based algorithms, fast con-
verging algorithms typically use only a subset of the

(
n
2

)
pairwise distances (n denotes the

number of terminal taxa). Erdös et al. initiated the study of fast converging algorithms in
[11] by making the following two observations:

• In order to get any non-trivial (i.e., finite) bound on the error of distance estimation
(under common stochastic models of sequence evolution), the length of input sequences
needs to be exponential in the estimated distance.

• In order to reconstruct a tree from (exact) distances, it is sufficient to query distances
which are typically much smaller than the diameter of the tree. The maximum distance
one has to query in order to reconstruct a given tree is proportional to the depth of the
tree (see Definition 5.1)2. This is significant since the depth of a tree is typically much
shorter than its diameter: assuming all edges are shorter than some global constant g,
the depth of a phylogenetic tree spanning n terminal taxa is bounded by O(g log(n)),
whereas its diameter is bounded by O(gn).

Combining these two observations together, the authors of [11] designed the first algorithm
which guarantees accurate reconstruction (w.h.p.) of a tree whose edge weights are bounded
within the interval [f, g] from sequences of length

k =
log(n)eO(depth(T ))

f2
=

nO(g)

f2
. (1)

Treating f, g as constants, the algorithm of [11] guarantees w.h.p. a correct reconstruc-
tion of the tree from input sequences of length polynomial in the number of terminal taxa
n. This property was later termed as fast convergence. It is important to note that all
previously known sequence length bounds were exponential – see, e.g., [1]. In fact, Neighbor
Joining [30], which is one of the most popular distance-based algorithms in use today, was
shown recently to actually require (in some cases) input sequences which are exponentially
long in n [21]. In attempts to minimize sequence length requirements for reconstruction of
the entire tree, a related line of ongoing research is dedicated to avoiding the exponential
dependence in the depth of the tree. This is typically achieved by reconstructing ancestral
sequences in the tree [24, 9, 22] or by some distance-averaging which imitates reconstruction
of ancestral sequences [29]. However, all these results strictly require that all edge weights do

2Our definition of depth is similar but slightly different from the one used in [11] in similar context.
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not exceed a certain specific threshold. It was shown in [24], that when weights are allowed
to be above this threshold, the exponential dependence in the depth of the tree (as expressed
in (1)) cannot be avoided. Other lower bounds [31, 26] show that the sequence length re-
quired for correct reconstruction of an internal edge of weight w has to be proportional to
1

w2 – indicating that the dependence of k in f in (1) is asymptotically optimal.
A long series of follow up research triggered by [11] (e.g., [17, 5, 6, 20]) propose different

fast converging algorithms which share the same idea of querying the smaller distances,
but differ in the actual technique used to infer tree topology from the queried distances.
Consequently, they vary in time/space complexity and also in the prior knowledge they
require on properties of the tree, such as upper or lower bounds on edge weights. Fast
converging algorithms which require no such prior knowledge are commonly referred to as
being absolute fast converging [23].

As mentioned earlier, the main drawback of all fast converging algorithms is that they
perform poorly on trees with indistinguishable edges. One possible way to deal with such
trees is to relax the original requirement of returning a tree which spans all input taxa, and
return a (fully resolved) tree which spans only a subset of these taxa. If the subphylonegy
spanning this subset contains no indistinguishable edges, then it can be reconstructed reli-
ably (for instance, in the tree depicted in Fig. 1, the subphylogeny spanning all terminal
taxa other than x). This approach increases the number of reconstructed edges at the price
of each reconstructed edge defining a split only on a subset of the input taxa. A nice exten-
sion of this idea was made in the forest reconstruction approach of [25, 8]. This approach
suggests to reconstruct (distinguishable) edges of the tree from its leaves inwards, stopping
when encountering an indistinguishable edge. If the input sequences are too short to reliably
reconstruct the entire phylogeny, these algorithms return a forest of fully resolved subphy-
logenies portraying the periphery of the tree. Still, the presence of shallow indistinguishable
edges in the tree may prevent these algorithms from reconstructing deeper edges, for which
there is clear statistical support.

Another way to deal with indistinguishable edges is to return a partially-resolved version
of the tree, with the indistinguishable edges contracted into high-degree vertices. There are
several algorithms which contract indistinguishable edges, such as Buneman’s algorithm
[2], however, these algorithms also contract many distinguishable edges. As a result, they
typically return very poorly resolved trees. The problem is that these algorithms guarantee
reliable reconstruction of an edge e of weight w(e), only from sequences of length

k ≥ log(n)eθ(diam(T ))

w(e)2
, (2)

where diam(T ) denotes the diameter of T [1]. The fast converging approach suggests that
an algorithm which avoids querying distances which are much larger than the tree depth
could potentially bring the required sequence length to be exponential in the depth of the
tree (as in (1)) rather than its diameter (as in (2)). This hypothesis has been raised few
times in the past (the first time was probably in [17]), and in this paper we present an
algorithm which realizes it.

1.2 Our Results.

An adaptive fast converging algorithm is a fast converging algorithm which guarantees re-
construction of individual edges in the input tree, as defined below:

Definition 1.1. A phylogenetic reconstruction algorithm is said to be adaptive fast converg-
ing if, for each phylogenetic tree T over n terminal taxa, it guarantees to correctly reconstruct
(w.h.p.) all edges of weight greater than ε in T from sequences of length

k =
log(n)eO(depth(T ))

ε2
=

nO(g)

ε2
, (3)
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where g is the maximal edge weight in T .

Classic (non-adaptive) fast converging algorithms guarantee reconstruction of all edges
in a tree under strict requirements on the input sequence length, which depend on the tree
depth and on the weight of the shortest edges in the tree. An adaptive fast converging algo-
rithm adapts the amount of correctly reconstructed edges to the length of input sequences.
In this sense, adaptive fast convergence is a natural extension of fast convergence which
avoids the assumption of a global lower bound on edge weights. The main contribution of
this paper is a detailed presentation and analysis of the first adaptive fast converging algo-
rithm. Furthermore, this algorithm is realized within optimal time (and space) complexity.

Our adaptive fast converging algorithm is an incremental algorithm. In each stage it
holds a subphylogeny spanning a subset of the input terminal taxa, and it then adds another
taxon by attaching it (as a leaf) to an edge or vertex of this subphylogeny. The incremental
approach was originally introduced in [33] and adapted to fast convergence in [6]. Its
clear advantage is its efficiency: in order to produce a time optimal O(n2) algorithm (as the
algorithms of [33, 6]), all that is needed is a linear-time method for selecting the next terminal
taxon for insertion and finding its appropriate insertion point in the current subphylogeny.
The task of finding the insertion point is typically done by querying the vertices of the
subphylogeny as to the direction of the chosen taxon (relative to that specific vertex).

A typical weakness of the incremental approach is its sensitivity to reconstruction errors:
a single faulty edge introduced in the early stages of the algorithm is likely to cause errors
in future stages, even if the data used from that stage on is completely consistent with the
true tree. Hence, it is necessary to avoid the presence of any faulty edge in the intermediate
subphylogenies. In our algorithm, this is achieved by contracting edges which cannot be
reliably reconstructed. This contraction introduces high-degree (multifurcating) vertices
which represent unresolved portions of the tree topology. A useful side effect of this approach
is that the output of our algorithm is guaranteed w.h.p. to have a zero false positive rate
(it contains no false edges).

A basic algorithmic tool introduced in this paper is the partial directional oracle (PDO),
which allows our algorithm to locate the insertion point of a terminal taxon in an interme-
diate subphylogeny. The inherent difference between this oracle and ones used in previous
works (e.g., [33, 6]) is that it is allowed to return no answer when it does not have a strong
enough statistical support for any of the possible answers. Another implied difference is that
it is designed to deal with internal vertices of high degree. Designing an efficient (asymptot-
ically optimal) implementation of the PDO is one of the main algorithmic challenges dealt
with in this work.

In order to make our algorithm adaptive fast converging, we need to guarantee that it
uses only distances which are at most proportional to the depth of the tree. We achieve this
in two steps. In Sections 3-5 we present a basic version of the algorithm, which achieves this
goal under the (rather natural) restriction that the diameter of the contracted subtrees is at
most proportional to the depth of the tree. Then, in Section 7, we present a variant of the
basic algorithm which gets rid of this restriction, at the price of slightly complicating the
algorithm and increasing constants in the resulting bounds. Both versions of the algorithm
are absolute fast converging (require no prior knowledge on parameters of the phylogeny
being reconstructed) and have optimal time complexity of O(n2).

The rest of this paper is organized as follows. In the next section we present the notations
used in the paper. In Section 3 we describe our incremental algorithm, based on the partial
directional oracle, and prove that it returns a contracted version of the true phylogeny.
Section 4 describes the properties of the partial directional oracle which are needed to bound
the weights of contracted edges. Section 5 provides an upper bound on the weight of the
contracted edges as a function of the tree depth, noise function and properties of the partial
directional oracle. In Section 6 we analyze the performance of our basic algorithm on the
CFN model of evolution (using detailed analysis provided in the appendix), and in Section
7 we present the modification needed to make our algorithm adaptive fast converging for all
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possible input. In Section 8 we mention some issues for further research. In the appendix
we review (and slightly tighten) the analysis of distance estimation error in the CFN model.

2 Definitions and Notations.

Trees: A tree T is an undirected connected and acyclic graph. V (T ) and E(T ) denote
the sets of vertices and edges of T , respectively. leaves(T ) denotes the leaf-set of T ,
and internal(T ) = V (T ) \ leaves(T ) denotes the set of its internal vertices. For a ver-
tex v ∈ V (T ), the neighborhood of v, NT (v), is the set of vertices adjacent to v in T . The
neighborhood of a subset U ⊆ V is defined by NT (U) = ∪u∈UN(u) \ U . The degree of a
vertex, degT (v), is the size of its neighborhood in T . The parent of a leaf x in T , parentT (x),
is the unique vertex in NT (x). T is said to be a phylogenetic tree over a set S of terminal
taxa if leaves(T ) = S, the degree of every internal vertex is at least three, and every edge
e ∈ E(T ) is associated with a strictly positive weight w(e). The weight function w in-
duces a metric DT = {dT (u, v)}u,v∈V (T ) over V (T ), s.t. dT (u, v) is the length (sum of edge
weights) of pathT (u, v) – the unique simple path connecting u and v in T . The diameter of
T (diam(T )) is the maximum weight of a simple path in T .

A subtree of a tree T is a connected subgraph of T . The notion of distances is generalized
for subtrees as follows: for two vertex disjoint subtrees t1, t2 of T , dT (t1, t2) denotes the
length of pathT (t1, t2), the unique shortest path in T connecting a vertex in t1 and a vertex
in t2. Let t1, t2, t3 be mutually disjoint subtrees of T . We say that t2 separates t1 from t3 if
pathT (t1, t3) intersects t2. If t2 does not separate t1 from t3 we say that t1 and t3 are on
the same side of t2 (see Fig. 2). In general, we use lower case t’s to denote subtrees of a
tree T . Also, the subscript T may be removed from the corresponding notation when the
tree T is clear from context.

�

�

�

�

Figure 2: In the above tree, x separates u from v and from w. v, x and w are all on the
same side of u.

Induced subphylogenies: Let T be a phylogenetic tree over a set of terminal taxa S,
and let S′ ⊆ S. T (S′), the phylogenetic tree induced by T on S′, is obtained by taking the
minimal subtree of T which spans S′, and removing all vertices of degree two by iteratively
replacing the two edges which touch such a vertex with a single edge. Note that every
vertex in V (T (S′)) corresponds to a vertex of T and every edge in E(T (S′)) corresponds
to a simple path in T (see Fig. 3). Edge weights in T (S′) are the weights of corresponding
paths in T .
Internal Edge-Contraction: The contraction of an edge e = (u, u′) ∈ E(T ) replaces
e with a single vertex v s.t. N(v) = N({u, u′}). In such a case we say that edge e was
contracted into vertex v. T̂ is said to be an internal (edge) contraction of T if it is obtained
from T by a series of contractions of internal edges (see Fig. 4). Note that if T̂ is an internal
contraction of T then leaves(T ) = leaves(T̂ ). All edge-contractions considered in this
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Figure 3: Induced Sub-phylogeny. Left: A tree over the the set of terminal taxa S =
{1, . . . , 8}. Right: The subphylogeny induced by S′ = {1, 2, 4, 6, 8}. Notice that the edge
(v3, v5) in T (S′) corresponds to the path (v3 − v4 − v5) in T .

paper are internal. T̂ is said to be an ε-contraction of T if each (internal) edge in T which is
contracted in T̂ has weight at most ε. An internal contraction of T to T̂ induces a mapping
between vertices of internal(T̂ ) and vertex disjoint subtrees of internal(T ): each vertex v̂

of internal(T̂ ) corresponds either to a vertex in internal(T ), or to a subtree consisting of
the internal edges contracted into v̂. The subtree of T corresponding to a vertex v̂ of T̂
is denoted by tv̂. Edge weights in a contraction T̂ of T are determined by the weight of
the corresponding edges in T . This means that for neighboring vertices û, v̂ in T̂ , we have
dT̂ (û, v̂) = dT (tû, tv̂), but otherwise, dT (tû, tv̂) is generally larger than dT̂ (û, v̂) (see Fig. 4).
We complete this section with two simple observations which are used later (often implicitly):

Lemma 2.1. Let t be a subtree of T s.t. V (t) ⊆ internal(T ). Then the tree T̂ obtained from
T by replacing t with a single vertex v̂ such that NT̂ (v̂) = NT (V (t)) is an edge-contraction
of T . If in addition the weights of all edges in t are at most ε, then T̂ is an ε-contraction
of T .

Lemma 2.2. [transitivity of ε-contraction] Let T1, T2, T3 be three phylogenetic trees over S.
If T1 is an ε-contraction of T2 and T2 is an ε-contraction of T3, then T1 is an ε-contraction
of T3.
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Figure 4: Internal Edge-Contraction. The tree T̂ is obtained from T by contracting e1, e2

into v̂1 and e4 into v̂2. Note that dT̂ (v̂1, v̂2) = w(e3) = dT (tv̂1 , tv̂2), whereas dT̂ (v̂1, v̂3) =
w(e3) + w(e5) and dT (tv̂1 , tv̂3) = w(e3) + w(e4) + w(e5).
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3 The Incremental Algorithm.

Like other incremental algorithms (e.g., [33, 6]), our algorithm holds in each iteration a
current topology T̂ spanning a subset S′ ⊂ S of the terminal taxa. It then selects a taxon
x ∈ S \ S′ for insertion and attaches it to T̂ .

Procedure Incremental Reconstruct(S):
– Select x0, x1 ∈ S, and initialize: T̂ ← (x0, x1) ; S′ ← {x0, x1}.
– While S′ 6= S do:

1. Select a taxon x ∈ S \ S′ and set S′ ← S′ ∪ {x}.
2. T̂ ←Attach Taxon(T̂ , x)

The following lemma is central in establishing the fact that our incremental algorithm
produces a tree which is an edge contraction of the true tree.

Lemma 3.1. Let T̂ be a contraction of T (S′) and x ∈ S\S′, and let T̂post =Attach Taxon(T̂ , x)
be the content of T̂ at the end of an iteration of Incremental Reconstruct. Then T̂post is a
contraction of T (S′ ∪ {x}).

Section 3.1 is devoted to the proof of this lemma through the use of an abstract im-
plementation of the insertion procedure Attach Taxon based on a partial directional oracle
(PDO). Sections 3.2 and 3.3 present an efficient implementation of a PDO based on quar-
tets. At this stage we assume an arbitrary insertion order over S, meaning that the taxon x
chosen for insertion at step 1 of the loop is an arbitrary taxon in S \S′. A natural criterion
for choosing x in a way which guarantees a good upper bound on the weight of contracted
edges is suggested later in Section 5. The following assumptions hold throughout the rest
of the paper, unless specified otherwise: S′ is a subset of the taxon set S, T̂ (the current
topology) is an edge contraction of T (S′), and x (the taxon chosen for insertion) is a taxon
in S \ S′.

3.1 Attaching a terminal taxon using a partial directional oracle.

The insertion process is based on queries posed to a directional oracle. This oracle receives x
and a vertex v̂ of T̂ and is expected to output a neighbor û of v̂ which indicates the direction
of x with respect to v̂. This oracle is partial in the sense that it is allowed to return an
answer of ‘null’ if there is no such neighbor û or if the direction of x w.r.t. v̂ cannot be
reliably inferred.

Definition 3.2 (Partial Directional Oracle). A partial directional oracle for T is a function
PDO = PDOT which receives queries of the form (T̂ , v̂, x), where v̂ ∈ V (T̂ ), and outputs
either a vertex û ∈ NT̂ (v̂) or ‘null’. PDO is required to be truthful, meaning that its output
must satisfy two requirements:

• If v̂ ∈ leaves(T̂ ), then PDO(T̂ , v̂, x) = parentT̂ (v̂).

• If PDO(T̂ , v̂, x) = û, then tû and x are on the same side of tv̂ in T (S′ ∪ {x}).
We often abuse notation and simply say that û is on the same side of v̂ as x.

The partial directional oracle is used to locate the anchor of x in T̂ , which is an edge or
vertex of T̂ to which x should be attached.

Definition 3.3 (Anchor). Let px denote the parent of x in T (S′∪{x}). The anchor of x in
T̂ , denoted by anchorT̂ (x), is defined as follows: if px is included in tv̂ for some v̂ ∈ V (T̂ )
(either by being a vertex in tv̂ or by lying on a path in T which corresponds to an edge of tv̂),
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then anchorT̂ (x) = v̂. Otherwise, anchorT̂ (x) is the unique edge (û, v̂) ∈ E(T̂ ) for which px

is an internal vertex in pathT (tû, tv̂).

Since T might contain indistinguishable edges, it might be impossible to locate the exact
location of the anchor of x in T̂ . Therefore, the algorithm uses the partial directional oracle
to compute the insertion zone of x in T̂ through procedure Find Insertion Zone(T̂ , x, PDO)
described below. The truthfulness of the partial directional oracle implies that this procedure
returns a subtree which contains the desired anchor (see Observation 3.4 below).

Procedure Find Insertion Zone(T̂ , x, PDO):

1. t̂inz ← T̂

2. For every edge (û, v̂) ∈ E(t̂inz) s.t. PDO(T̂ , v̂, x) = û do:
– Delete from t̂inz all the vertices which are separated from û by v̂.

Observation 3.4. t̂inz(T̂ , x, PDO) is the maximal subtree t̂ of T̂ which contains anchorT̂ (x)
either as an edge or as an internal vertex , s.t. for each v̂ ∈ internal(t̂), PDO(T̂ , v̂, x) =
‘null’, and for each v̂ ∈ leaves(t̂), PDO(T̂ , v̂, x) 6= ‘null’.

Procedure Attach Taxon specifies how to attach x to T̂ given t̂inz(T̂ , x, PDO) (see Fig. 5).

Procedure Attach Taxon(T̂ , x):

1. t̂inz ← t̂inz(T̂ , x, PDO).

2. If t̂inz is a single edge (û, v̂), then attach x to T̂ by introducing a new internal
vertex p̂x and replacing (û, v̂) with the three edges (û, p̂x), (v̂, p̂x), (x, p̂x).

3. If t̂inz has a single internal vertex v̂ (i.e., V (t̂inz) = {v̂} ∪N(v̂)), then add to T̂
the edge (v̂, x).

4. Else (i.e., t̂inz has at least one internal edge), contract all internal edges of t̂inz

into a new vertex v̂ and add to T̂ the edge (v̂, x).

In order to prove that procedure Attach Taxon satisfies Lemma 3.1, we define an inter-
mediate topology T̂+x, which is a natural extension of T̂ to a contraction of T (S′ ∪ {x}):

• If the anchor of x in T̂ is a vertex v̂ ∈ V (T̂ ) then T̂+x is obtained by adding the edge
(v̂, x) to T̂ .

• Otherwise, the anchor of x in T̂ is an edge (û, v̂) ∈ E(T̂ ), and T̂+x is obtained by
replacing the edge (û, v̂) with the three edges (û, p̂x), (p̂x, v̂), (p̂x, x).

Next we present a proof of Lemma 3.1, which is based on the truthfulness of the partial
directional oracle. An implementation of such an oracle will be presented in Section 3.2.

Proof of Lemma 3.1. T̂+x as defined above is clearly an edge contraction of T (S′ ∪{x}).
Hence, due to Lemma 2.2 (transitivity of edge contraction), all we have to show is that
T̂post is an edge contraction of T̂+x. By Observation 3.4, t̂inz = t̂inz(T̂ , x, PDO) includes
anchorT̂ (x) either as an edge or as an internal vertex. We thus distinguish between the
following cases:

• anchorT̂ (x) is the unique edge in t̂inz (i.e., the insertion zone consists of a single edge).
In this case T̂post = T̂+x.

9
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Figure 5: This figure illustrates a single insertion iteration of the algorithm. In this example
we have S′ = {1, . . . , 8} and x = 9. Left: the induced subphylogeny T (S′), in which the
anchor of x (edge e1) is indicated. Right: three scenarios for the insertion of x into T̂ . The
left tree depicts the current topology T̂ before insertion, with answers to directional queries
and the insertion zone t̂inz marked by a gray cloud. The right tree depicts the topology T̂post

after the insertion. (a,b) The current topology T̂ is obtained from T (S′) by contracting e2,
so the anchor of x in T̂ is e1. (a) t̂inz consists a single edge, so T̂post is obtained from T̂ by
splitting this edge to two and connecting x to the new internal vertex resulting from this.
(b) t̂inz contains one internal edge, which is contracted into a new internal vertex to which
x is connected. (c) The current topology T̂ is obtained from T (S′) by contracting e1, so
the anchor of x in T̂ is the vertex into which e1 is contracted. t̂inz contains a single internal
vertex to which x is connected.
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• anchorT̂ (x) is an internal vertex or edge of t̂inz. In this case T̂post is obtained from
T̂+x by contracting the internal edges of t̂inz. Note that if the anchor is a vertex, then
all internal edges of t̂inz are also edges in T̂+x. On the other hand, if anchorT̂ (x) is
an edge (û, v̂), then in T̂+x this edge is split into two edges (û, p̂x) and (p̂x, v̂), and
both these edges undergo contraction in the transition to T̂post.

• anchorT̂ (x) is an external edge (û, v̂) of t̂inz, where v̂ is a leaf of t̂inz and û is an
internal vertex of t̂inz. In this case T̂post is obtained from T̂+x by contracting the edge
(û, p̂x) as well as all the internal edges of t̂inz (see Fig. 6).
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Figure 6: Edges contracted during a single iteration. This figure demonstrates the
edges that undergo contraction in a single insertion iteration. The demonstration follows
the scenario of Fig 5b. The insertion of x = 9 into T̂ results in the contraction of two edges
((û, ẑ) and (û, p̂x)) into ŵ.

3.2 A quartet-based partial directional oracle.

We implement our partial directional oracle PDO using queries to quartet splits. Let T (q)
be the subphylogeny induced by a quartet q of terminal taxa. The split of q in T is said to
be (a, b|c, d) if T (q) contains an internal edge which separates {a, b} from {c, d}. In order
to determine the direction of a terminal taxon x w.r.t. vertex v̂ ∈ V (T̂ ), PDO queries a
series of quartet splits. Each of these quartets consists of x and three other terminal taxa
from S′ which represent three different directions w.r.t. v̂. These three taxa are directional
representatives maintained by the incremental algorithm.

Definition 3.5 (Directional Representatives). Let (û, v̂) be an edge in T̂ . A leaf s of T̂ is a
valid directional representative of (v̂ → û) if û ∈ pathT̂ (v̂, s). The directional representative
maintained by the algorithm for (v̂ → û) is denoted by sv̂(û).

11



In order to infer a quartet split, PDO queries a partial quartet oracle, which returns
either the split of the quartet in T or ‘null’ if the subphylogeny induced by the quartet is a
star or if its split cannot be reliably inferred.

Definition 3.6 (Partial Quartet Oracle). Let T be a phylogenetic tree over S. A partial
quartet oracle for T is a function PQO = PQOT which receives a quartet q ⊆ S and returns
either the split of q in T , or ‘null’.

Our partial directional oracle PDO consists of two main phases:

Triplets Tournament: In this phase, the set of all possible directions (represented by
NT̂ (v̂)) is iteratively screened to end up with at most one candidate direction. In each
iteration a quartet is queried and as a result at least two directions are eliminated from the
set of candidates. If the tournament results in an empty candidate set, then the directional
oracle returns ‘null’. Otherwise, the tournament results in a single surviving candidate.
When the edge pointing to the direction of x is indistinguishable, a wrong candidate û
may survive this phase. The following validation phase is needed in order to eliminate such
candidates.
Validation: Validation of the direction represented by the surviving neighbor û is done
by another series of quartet queries which contain both x and sv̂(û). If all quartet queries
positively validate this direction (meaning that they put x and sv̂(û) on the same side of
the split), then û is returned. Otherwise, the directional oracle returns ‘null’.

PDO(T̂ , v̂, x):

1. Initialize candidate set C ← NT̂ (v̂).

2. If C = {û} (v̂ is a leaf), return û.

3. Otherwise (|C| ≥ 3), proceed as follows:

4. Triplets Tournament:

– While |C| > 1 do:

• If |C| = 2, then C ← C ∪ {û}, for some û ∈ NT̂ (v̂) \ C.

• Select some triplet {û1, û2, û3} ⊆ C and invoke PQO({x, sv̂(û1), sv̂(û2), sv̂(û3)}).
– If output is ‘null’, then remove û1, û2, û3 from C.
– Otherwise, the output is (x, sv̂(ûi) | sv̂(ûj), sv̂(ûk)) (where {i, j, k} = {1, 2, 3}),

then remove ûj , ûk from C.

– If the tournament results in C = ∅, return ‘null’.

5. Validation: C = {û} for some û ∈ NT̂ (v̂).

(a) Select some vertex û1 ∈ NT̂ (v̂) \ {û}.
(b) For every û2 ∈ NT̂ (v̂) \ {û, û1}, invoke PQO({x, sv̂(û), sv̂(û1), sv̂(û2)}).

• If output is (x, sv̂(û) | sv̂(û1), sv̂(û2)), then continue.
• Otherwise, stop and return ‘null’.

(c) Return û (if it survived all rounds).

Lemma 3.7. If PQO is a partial quartet oracle for T , then procedure PDO described above
is a (truthful) partial directional oracle for T .

Proof. Consider a valid input instance (T̂ , v̂, x) for PDO. If v̂ is a leaf, then PDO returns
the unique neighbor of v̂ in T̂ , as required. So assume v̂ is an internal vertex of T̂ . It is

12



sufficient to show that for any vertex û ∈ NT̂ (v̂) which is not on the same side of v̂ as x, there
exists a vertex which fails û at step 5b of the validation phase. If there is a vertex û′ ∈ NT̂ (v̂)
which is on the same side of v̂ as x, then û′ fails the validation of û when chosen either as û2

or as û1 (see Fig. 7a). If there is no such vertex, then v̂ is the anchor of x in T̂ , meaning that
px, the parent of x in T (S′ ∪ {x})), is contained in tv̂. In this case, we distinguish between
two subcases. First, assume that there is a neighbor û′ ∈ NT̂ (v̂) \ {û} s.t. tû and tû′ are
on the same side of px in T (S′ ∪ {x}) (Fig. 7b)). Note that there is always a neighbor û′′

s.t. tû and tû′′ are separated by px and hence the quartet {x, sv̂(û), sv̂(û′), sv̂(û′′)} fails the
validation of û. We are left to deal with the case in which all neighbors û′ ∈ NT̂ (v̂) \ {û},
are such that tû and tû′ are separated by px in T (S′ ∪ {x}) (Fig. 7c)). In such a case, px

is a vertex also in T (S′), and so the degree of px in T (S′ ∪ {x}) is at least 4. Therefore,
for every choice of û1 in step 5a of the validation phase, there is û2 ∈ NT̂ (v̂) \ {û, û1}, s.t.
T ({x, sv̂(û), sv̂(û1), sv̂(û2)}) is a star, and this quartet fails the validation of û.
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Figure 7: Proof of Lemma 3.7.

3.3 Updating Directional Representatives.

We now describe how directional representatives (DRs) are maintained throughout the in-
cremental algorithm. In the initialization step, T̂ consists of a single edge (x0, x1), and
this edge is assigned the obvious DRs: sx0(x1) = x1 and sx1(x0) = x0. In every insertion
iteration, some DRs require updates due to changes in the edges of T̂ (Fig. 8). We note
that when a terminal taxon x is inserted into T̂ it is associated with a reference taxon y
which is a leaf in T̂ close to it (see Section 5 for more details). Hence, the new external
edge (x, p̂x) is assigned two DRs: sp̂x(x) = x and sx(p̂x) = y. If an edge (û, v̂) is split to
(û, p̂x), (p̂x, v̂), the DRs of the two new edges are assigned according to the DRs of (û, v̂)
as follows: sv̂(p̂x), sp̂x(û) ← sv̂(û), and sû(p̂x), sp̂x(v̂) ← sû(v̂). Finally, if contractions (of
the internal edges of t̂inz) take place, then edges touching the new vertex (resulting from
contraction) inherit the DRs of the respective external edges of t̂inz.

3.4 Section Summary and complexity analysis.

In this section we presented a quartet-based incremental algorithm based on a directional
oracle. A direct inductive application of Lemma 3.1 implies that this algorithm is guaranteed
to return an edge contraction of the true tree, provided the directional oracle it queries is
truthful. Such an oracle was then presented in Section 3.2. An important property of this
algorithm is its optimal time and space complexity. Before turning to analyze the complexity
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Figure 8: Updating Directional Representatives. (a) An edge is split during insertion
of x. Its directional representatives (a, b in the figure above) are copied to the two resulting
edges. (b) An edge is contracted during insertion of x. Directional representatives of
external edges of the insertion zone (marked by a gray cloud) are copied to the edges
touching the new internal vertex (into which the internal edge is contracted).

of the algorithm, we note that this analysis disregards the time required for selecting the
next taxon for insertion. In Section 5 we suggest a specific order of insertion and show that
it can be computed within the time constraints specified here.

The time complexity of each insertion step is dominated by the time it takes to compute
the insertion zone. The insertion zone can be computed by querying the directional oracle
on all vertices of T̂ , and then pruning T̂ in a DFS-traversal according to the queries’ results.
The DFS-traversal and pruning are clearly linear in the size of T̂ . Assuming quartet queries
take constant time, an execution PDO(T̂ , v̂, x) is linear in degT̂ (v̂). This is because the
validation phase simply scans the neighborhood of v̂, and during the triplets tournament
at least two neighbors of v̂ are eliminated from the candidate set during each iteration.
Hence the total time complexity of all queries to PDO is linear in the size of T̂ , and so
each iteration is performed in linear time in the number of terminal taxa n. Therefore, the
total time complexity of the incremental algorithm is O(n2), which is optimal for algorithms
reconstructing phylogenetic trees with unbounded vertex-degrees [7]. The work space used
by the algorithm is also optimal, because the space required for storing the current topology
and directional representatives is linear in n.

4 Bounding the Weights of Contracted Edges.

The previous section describes an incremental algorithm which reconstructs an internal
edge contraction of the true phylogenetic tree. This section focuses on establishing an
upper bound on the weights of contracted edges. As in the previous section, our analysis
focuses on a single insertion iteration. Assume that in some stage of the algorithm, T̂ is an
ε-contraction of T (S′) (for some ε ≥ 0), and let x denote the next taxon chosen for insertion.
Note that the intermediate topology T̂+x, as defined in Section 3.1, is guaranteed to be an
ε-contraction of T (S′ ∪ {x}). In this section we study the conditions under which T̂post,
the tree obtained by applying Attach Taxon(T̂ , x), is guaranteed to be an ε-contraction
of T̂+x (and hence, due to the transitivity of ε-contraction stated in Lemma 2.2, also an
ε-contraction of T (S′∪{x})). Lemma 4.2 below provides the main argument of our analysis
through the concept of ε-environment.

Definition 4.1 (ε-environment). The ε-environment of x in T̂+x, t̂env(T̂ , x, ε), is the max-
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imal subtree of T̂+x which includes x and whose internal edges have weight at most ε. (Note
that an external edge of this subtree is either external in T̂+x or has weight greater than ε.)

Lemma 4.2. If V (t̂inz(T̂ , x, PDO)) ⊆ V (t̂env(T̂ , x, ε)), then T̂post (the tree obtained by
applying Attach Taxon(T̂ , x)) is an ε-contraction of T̂+x.

Proof. We use the following notations for brevity: t̂inz = t̂inz(T̂ , x, PDO) and t̂env =
t̂env(T̂ , x, ε). According to the proof of Lemma 3.1, each edge ê of T̂+x that is contracted
in T̂post satisfies one of the following:

• One end-point of ê is p̂x – the parent of x in T̂+x, and the other end-point is in
internal(t̂inz).

• Both end-points of ê are in internal(t̂inz).

The assumption V (t̂inz) ⊆ V (t̂env) implies that internal(t̂inz) ⊆ internal(t̂env), and the
definition of ε-environment implies that p̂x ∈ internal(t̂env). Hence, in either of the above
cases, ê is an internal edge of t̂env and its weight cannot be greater than ε.

In order to bound the insertion zone within the ε-environment (as required by Lemma
4.2), we consider the set of quartets queried during executions of PDO on vertices in T̂ . The
quartets queried during execution of PDO on a vertex v̂ are included in the quartet-span of
v̂ and x, as defined below.

Definition 4.3 (Quartet-span). The quartet-span of v̂ ∈ V (T̂ ) and x, is the following set:

Quart(v̂, x)
4
=

{
q = {x, s1, s2, s3} | {s1, s2, s3} ⊆ {sv̂(û) : û ∈ NT̂ (v̂)} }

.

Note that the quartet span of v̂ and x depends on the directional representatives main-
tained by the incremental algorithm for T̂ . The ability to infer the split of a given quartet
is known to depend on its diameter and the weight of its internal edge (see, e.g., [11, 8]).
This is captured by the following set of definitions.

Definition 4.4 (r-short quartet). A quartet q ⊆ S is said to be r-short if diam(T (q)) ≤ r.

Definition 4.5 (ε-separated quartet). A quartet q ⊆ S is said to be ε-separated if the single
internal edge in T (q) has weight strictly greater than ε.

Definition 4.6 ((r, ε)-reliability). A partial quartet oracle PQO is said to be (r, ε)-reliable
if it (correctly) infers the split of every quartet which is r-short and ε-separated.

Lemma 4.8 below translates the reliability parameters of PQO to conditions under which
PDO(T̂ , v̂, x) is guaranteed to return a non-null direction. This is done by bounding (from
above) the diameter of quartets in Quart(v̂, x) and (from below) the separation of v̂ and x,
as defined next.

Definition 4.7 (Separating edge/ Separation of v̂ and x). The separating edge of a vertex
v̂ ∈ V (T̂ ) and x is the first edge in the path (in T̂+x) from v̂ to p̂x – the parent of x in
T̂+x. The separation of v̂ and x is the weight of this separating edge. If v̂ = p̂x, then the
separation of v̂ and x is 0.

Lemma 4.8. Assume that PQO is an (r, ε)-reliable partial quartet oracle for r, ε ≥ 0. Let
v̂ be an internal vertex of T̂ satisfying the following:

• All quartets in Quart(v̂, x) are r-short.

• The separation of v̂ and x is strictly greater than ε.
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Then PDO(T̂ , v̂, x) 6= ‘null’.

Proof. We need to show that there is a neighbor û of v̂ which survives the triplets tournament
and the validation phase of PDO(T̂ , v̂, x). We take û to be the unique neighbor of v̂ which
is on the same side as x (such a û exists since v̂ 6= px). Then for each quartet of the
type q = {x, sv̂(û), s1, s2} ∈ Quart(v̂, x), the correct split of q is (x, sv̂(û)|s1, s2). By the
assumptions of the lemma, each such quartet q is r-short and ε-separated (since the internal
edge of q is a path which contains the separating edge of v̂ and x). The (r, ε)-reliability
of PQO implies that it returns the correct split for each such quartet q, meaning that û
survives the triplet tournament and the validation phase, as claimed

The following lemma summarizes the results of this section by specifying the conditions
under which the weights of edges contracted in a single iteration can be bounded by ε. This
is done by considering Quart(T̂ , x, ε), the quartet-span of leaves(t̂env(T̂ , x, ε)), defined by:

Quart(T̂ , x, ε)
4
=

⋃

v̂∈leaves(t̂env(T̂ ,x,ε))

Quart(v̂, x) . (4)

Lemma 4.9. Let T̂ be an internal edge contraction of T (S′) for some S′ ⊂ S, and let x be
a taxon in S \S′. Let ε, r ≥ 0 be s.t. PQO is (r, ε)-reliable and all quartets in Quart(T̂ , x, ε)
are r-short. Then the tree T̂post obtained by applying Attach Taxon(T̂ , x) is an ε-contraction
of T̂+x.

Proof. Let t̂env denote the ε-environment of x in T̂+x. The proof is established by show-
ing that PDO(T̂ , v̂, x) 6= ‘null’ for every v̂ ∈ leaves(t̂env) \ {x}. Establishing this im-
plies (through Observation 3.4) that t̂inz(T̂ , x, PDO) is contained in t̂env, and this implies
(through Lemma 4.2) that T̂post is an ε-contraction of T̂+x.

Consider an arbitrary vertex v̂ ∈ leaves(t̂env). If v̂ is a leaf of T̂ , then (by definition
of PDO) PDO(T̂ , v̂, x) 6= ‘null’. Otherwise, v̂ is an internal vertex of T̂ , and hence the
separation of v̂ and x is greater than ε. Since all quartets in Quart(v̂, x) are r-short,
Lemma 4.8 implies that PDO(T̂ , v̂, x) 6= ‘null’ also in this case.

5 Applying the Algorithm on Noisy Distance Estimates.

By Lemma 4.9, in order to minimize the bound ε on the weights of the edges contracted
in a given iteration, we need to minimize the bound r on the diameters of the quartets
in Quart(T̂ , x, ε), and then to devise a quartet oracle which is (r, ε)-reliable for a minimal
possible ε. In this section we first provide a tight bound on the diameters of the quartets
in Quart(T̂ , x, ε) (Lemma 5.7), and then present and analyze the required quartet oracle.
Both tasks depend on properties of the tree T and the accuracy of the distance estimates
between the terminal taxa, D̂ = {d̂(i, j)}i,j∈S . The main tool for minimizing the diameter
of quartets in Quart(T̂ , x, ε) is choosing an appropriate insertion order.

Taxa in S are selected for insertion according to the following greedy approach: in each
iteration, the taxon selected for insertion is the one closest to the current set of terminal
taxa, according to the distance estimates D̂. The initial taxon-pair (x0, x1) is chosen s.t.
d̂(x0, x1) = mini,j∈S{d̂(i, j)}. Then, in each insertion iteration the algorithm identifies two
taxa x ∈ S \ S′ and y ∈ S′ s.t. d̂(x, y) = mini/∈S′,j∈S′{d̂(i, j)}. x is chosen as the next
taxon for insertion and y is referred to as its reference taxon in S′. Recall that the reference
taxon y is also used as the directional representative of the new external edge (x → p̂x)
(see Section 3.3). Finding such a pair (x, y) can be done in linear time in each iteration
by maintaining for each i ∈ S \ S′ the taxon j ∈ S′ closest to it under D̂. Notice that
a similar technique is applied in the O(n2) implementation of Prim’s MST algorithm [4].
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Therefore, the computation of the insertion order falls within the O(n2) time complexity of
the incremental algorithm.

Our greedy insertion order enables to bound the distance from the inserted taxon x to
its reference taxon y in terms of the depth the tree, defined below (a similar notion of tree
depth is used by other fast converging algorithms, e.g., [11]).

Definition 5.1 (Depth). The depth of a tree T (denoted by depth(T )) is given by:

depth(T ) = max
v∈V (T ),u∈NT (v)

{ min{dT (v, s) : s ∈ leaves(T ), u ∈ pathT (v, s)} }.

Lemma 5.2. Let ∅ ⊂ S′ ⊂ S. Then there is a pair of terminal taxa y ∈ S′, x ∈ S \ S′ s.t.
dT (x, y) ≤ 2depth(T ).

Proof. Let T ′ be the subtree of T which spans S′ (note that T ′ may have vertices of degree
two). A vertex of T ′ is said to be full if degT ′(v) = degT (v). Observe that all leaves of T ′

are full, and that since S′ 6= S, there exists a non-full vertex in T ′. Now root T (and T ′) at
some arbitrary vertex r, and let v ∈ V (T ′) be a non-full (internal) vertex which maximizes
dT (r, v). Let u be an arbitrary child of v in T ′. Then, by the maximality of dT (r, v), u and
all its descendants in T ′ are full. Hence there is a taxon y ∈ S′ which is a descendant of u in
T ′ and dT (v, y) ≤ depth(T ). Also, since v is not full, it has a child u′ ∈ V (T ) \V (T ′) s.t. u′

and all its descendants in T are not in T ′, implying similarly that u′ has a descendant taxon
x ∈ S \ S′ s.t. dT (v, x) ≤ depth(T ). Thus dT (x, y) = dT (x, v) + dT (v, y) ≤ 2depth(T ).

The objective of the following analysis is to use Lemma 5.2 to bound the diameter of
the quartets in Quart(T̂ , x, ε). Our analysis is similar to the one in other incremental fast
converging algorithm [6, 20], and is based on the proximity of the input distance estimates D̂
to the true additive distances DT . The difference between these two dissimilarity matrices
is measured by a non-decreasing function α, as defined below.

Definition 5.3 (α-close dissimilarity matrices). Given a non-decreasing function α : R+ →
R+∪{∞}, two dissimilarity matrices D1, D2 over the same taxon set S are said to be α-close
if for every {i, j} ⊆ S,

|d1(i, j)− d2(i, j)| ≤ α(min{d1(i, j), d2(i, j)}) . (5)

Given a noise function α, we use the following notation for a “double portion” of noise:
α+2(d) = α(d) + α(d + α(d)). Note that 2α(d) ≤ α+2(d) ≤ 2α(d + α(d)). The following
lemma provides two basic bounds.

Lemma 5.4. Consider an arbitrary insertion iteration of the incremental algorithm, and let
x be the terminal taxon chosen for insertion (according to the order defined above). Denote
by y the reference taxon of x and by px the parent of x in T (S′ ∪ {x}). Then the following
bounds are implied by the α-closeness of D̂ and DT :

dT (x, y) ≤ 2depth(T ) + α+2(2depth(T )) . (6)
dT (x, px) ≤ depth(T ) + α+2(2depth(T )) . (7)

Proof. Throughout the proof we use depth in short to denote depth(T ) and extensively use
(5) for the α-close matrices D̂, DT . We start by proving that d̂(x, y) ≤ 2depth + α(2depth).
According to Lemma 5.2, there are two terminal taxa x′ ∈ S\S′ and y′ ∈ S′ s.t. dT (x′, y′) ≤
2depth. Due to the criterion by which x and y are chosen, we have d̂(x, y) ≤ d̂(x′, y′), and
thus,

d̂(x, y) ≤ d̂(x′, y′) ≤ dT (x′, y′) + α(dT (x′, y′)) ≤ 2depth + α(2depth) . (8)

Inequality (6) is directly implied by (8) and by dT (x, y) ≤ d̂(x, y) + α(d̂(x, y)).
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We now turn to prove (7). Note that there must be a terminal taxon x′ ∈ S \ S′ s.t.
dT (px, x′) ≤ depth and dT (x, px)− dT (x′, px) = dT (x, y)− dT (x′, y). Hence,

dT (x, px) = dT (x′, px) + [dT (x, y)− dT (x′, y)] ≤ depth + [dT (x, y)− dT (x′, y)] .

We are left to show that dT (x, y) − dT (x′, y) ≤ α+2(2depth). We distinguish between
two cases. If dT (x′, y) ≥ 2depth, then (by (6)),

dT (x, y)− dT (x′, y) ≤ dT (x, y)− 2depth ≤ α+2(2depth) .

Otherwise, dT (x′, y) ≤ 2depth, and we get the following due to d̂(x, y) ≤ d̂(x′, y):

dT (x, y)−dT (x′, y) ≤ [dT (x, y)−d̂(x, y)]+[d̂(x′, y)−dT (x′, y)] ≤ α(d̂(x, y))+α(dT (x′, y)) .

Now, since dT (x′, y) ≤ 2depth and d̂(x, y) ≤ 2depth + α(2depth), we get that

dT (x, y)− dT (x′, y) ≤ α(d̂(x, y)) + α(dT (x, y)) ≤ α+2(2depth) .

Corollary 5.5. At all stages of the incremental algorithm, the following is satisfied:

1. Every edge in T̂ has weight at most depth(T ) + α+2(2depth(T )).

2. For every directional representative sv̂(û) maintained by the algorithm, we have
dT (tv̂, sv̂(û)) ≤ 2depth(T ) + α+2(2depth(T )).

Proof. The corollary clearly holds after the first iteration due to (6). Assume it holds for a
certain iteration, and let x be the taxon inserted at that point. Most of the tree (including
directional representatives) remains unchanged, and so the lemma holds by induction for all
edges except possibly for the new external edge (p̂x, x) and its two directional representatives.
The weight of this edge in bounded by (7), and its directional representatives are sp̂x(x) = x
(where dT (tp̂x , x) is bounded by (7)) and sx(p̂x) = y (where dT (x, y) is bounded by (6)).

The bound on the diameters of quartets in Quart(T̂ , x, ε) has to take into account the
diameters of subtrees contracted during the algorithm, which are shown to be bounded by
the ε-diameter of the tree, defined next.

Definition 5.6 (ε-diameter). For ε ≥ 0, the ε-diameter of T (denoted by diam(T, ε)) is
the maximum weight of a simple path in T consisting only of edges of weight at most ε.

The desired bound on the diameter of queried quartets is given next.

Lemma 5.7. Let T̂ be an edge-contraction of T (S′) kept by the incremental algorithm at
some stage, and let x be the taxon chosen for insertion. Further, let ε ≥ 0 be s.t. T̂ is an
ε-contraction of T (S′). Then all quartets in Quart(T̂ , x, ε) are r-short, where

r = 4depth(T ) + 3α+2(2depth(T )) + 2diam(T, ε) . (9)

Proof. Let v̂ be an arbitrary leaf of t̂env(T̂ , x, ε). We have to show that for every neighbor û ∈
NT̂ (v̂), dT (x, sv̂(û)) ≤ r, and for every neighbor-pair û1, û2 ∈ NT̂ (v̂), dT (sv̂(û1), sv̂(û2)) ≤ r.
First, consider dT (sv̂(û1), sv̂(û2)). Corollary 5.5(2) implies that dT (tv̂, sv̂(ûi)) ≤ 2depth(T )+
α+2(2depth(T )) for i = 1, 2. Furthermore, since T̂ is an ε-contraction of T (S′), we get
diam(tv̂) ≤ diam(T, ε). Hence,

dT (sv̂(û1), sv̂(û2)) ≤ 4depth(T ) + 2α+2(2depth(T )) + diam(T, ε) ≤ r.

Now, consider dT (x, sv̂(û)). This distance is bounded by dividing pathT (x, sv̂(û)) into
four sections:

18



• The path from x to px (the parent of x in T (S′ ∪ {x}). According to Lemma 5.4(7),
the weight of this path is at most depth(T ) + α+2(2depth(T )).

• The path from px to tv̂. The weight of the last edge touching tv̂ is at most depth(T )+
α+2(2depth(T )) (according to Corollary 5.5(1)). The rest of the path consist of edges
which are either contracted in T̂ or internal edges in t̂env(T̂ , x, ε). Either way, their
weight is at most ε. Hence the weight of the path from px to tv̂ is at most depth(T )+
α+2(2depth(T )) + diam(T, ε).

• The path within tv̂. This path consists of contracted edges, and so its weight is at
most diam(T, ε).

• The path from tv̂ to sv̂(û). According to Corollary 5.5(2), the weight of this path is
at most 2depth(T ) + α+2(2depth(T )).

Combining these bounds together yields r as defined in (9).

We conclude this discussion with a corollary of Lemmas 4.9 and 5.7, which establishes
the reliability criterion required of the partial quartet oracle.

Corollary 5.8. Algorithm Incremental Reconstruct constructs an ε-contraction of T if it
uses a partial quartet oracle PQO which is (r, ε)-reliable, where

r = 4depth(T ) + 3α+2(2depth(T )) + 2diam(T, ε) . (10)

We now turn to describe an (r, ε)-reliable distance-based partial quartet oracle. The
partial quartet oracle FPMD̂,α described below uses the input distance estimates in D̂ and
the noise function α to reliably infer quartet splits. This oracle is a modified version of the
well known four-point method (FPM) for inferring quartet splits, which dates back to [34].
A similar variant of FPM is used in the forest reconstruction algorithm of [8]. The reliability
of this oracle is tied to the noise function α in Lemma 5.9 below.

The Partial Quartet Oracle – FPMD̂,α(q):
Let q = {a, b, c, d}, and assume a labeling of the four terminal taxa which satisfies:

d̂(a, b) + d̂(c, d) ≤ min{d̂(a, c) + d̂(b, d) , d̂(a, d) + d̂(b, c)} .

– Compute the following three values:

A = [d̂(a, b) + d̂(c, d)] + [α(d̂(a, b)) + α(d̂(c, d))]

B = [d̂(a, c) + d̂(b, d)]− [α(d̂(a, c)) + α(d̂(b, d))]

C = [d̂(a, d) + d̂(b, c)]− [α(d̂(a, d)) + α(d̂(b, c))]

– If A < min{B, C}, then return (ab|cd). Otherwise, return ‘null’.

Lemma 5.9. Assume that D̂ is α-close to DT . Then for every r, ε ≥ 0, s.t. α+2(r) ≤ ε
2 ,

FPMD̂,α is an (r, ε)-reliable partial quartet oracle for T .

Proof. To establish the truthfulness of FPMD̂,α as a quartet oracle, we need to show that
if A < min{B, C} then (a, b|c, d) is the correct quartet split of T (q). This is implied by the
inequality dT (a, b) + dT (c, d) < min{dT (a, c) + dT (b, d) , dT (a, d) + dT (b, c)}:

dT (a, b) + dT (c, d) ≤ A < B ≤ dT (a, c) + dT (b, d)
dT (a, b) + dT (c, d) ≤ A < C ≤ dT (a, d) + dT (b, c)

We turn to prove the (r, ε)-reliability of FPMD̂,α. Consider an arbitrary r-short quartet

q = {a, b, c, d} (for some r ≥ 0). Since q is r-short, every {i, j} ⊂ q, satisfy |d̂(i, j) −
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dT (i, j)| ≤ α(r), and furthermore α(d̂(i, j)) ≤ α+2(r)− α(r). Now assume that the split of
T (q) is (a, b|c, d) and that q is ε-separated (for some ε ≥ 0). Then:

dT (a, b) + dT (c, d) + 2ε < dT (a, c) + dT (b, d) = dT (a, d) + dT (b, c) .

This inequality is used to obtain the following series of inequalities:

A ≤ [d̂(a, b) + d̂(c, d)] + 2α+2(r)− 2α(r)
≤ [dT (a, b) + dT (c, d)] + 2α+2(r)
< [dT (a, c) + dT (b, d)]− 2ε + 2α+2(r)

≤ [d̂(a, c) + d̂(b, d)]− 2ε + 2α+2(r) + 2α(r)
≤ B − 2ε + 4α+2(r) .

Hence, A < B + (4α+2(r) − 2ε), and similarly we can obtain A < C + (4α+2(r) − 2ε).
Therefore, if α+2(r) ≤ ε

2 , then A < min{B, C}, and the split (ab|cd) is recovered by
FPMD̂,α(q).

Theorem 5.10 summarizes the results in this section by specifying an upper bound ε on
the weights of contracted edges as a function of the tree depth, its ε-diameter and the noise
function α. In Section 7 we present a modification of the insertion process which avoids the
dependence in the ε-diameter at the cost of increasing the constant in the linear dependence
of ε on the depth of the tree (see Theorem 7.10).

Theorem 5.10. Consider a phylogenetic tree T over a set S of terminal taxa. Let α be a
non-decreasing function, and assume that the input dissimilarity matrix D̂ is α-close to the
additive metric DT . Let ε ≥ 0 be s.t.

α+2 (4depth(T ) + 2diam(T, ε) + 1.5ε) ≤ ε

2
. (11)

Then, when executed on D̂, algorithm Incremental Reconstruct which uses FPMD̂,α, returns
an ε-contraction of T .

Proof. First, denote
r = 4depth(T ) + 2diam(T, ε) + 1.5ε

r′ = 4depth(T ) + 3α+2(2depth(T )) + 2diam(T, ε)

= r + 3(α+2(2depth(T ))− ε

2
). (12)

By Corollary 5.8 and Lemma 5.9, all we have to establish is that α+2(r′) ≤ ε
2 . The

monotonicity of α+2 (implied by the monotonicity of α) and (11) imply that α+2(d) ≤ ε
2

for every d ≤ r. Finally, r′ ≤ r is established by the following series of inequalities (the last
one implied by (12)):

2depth(T ) ≤ r ⇒ α+2(2depth(T )) ≤ ε

2
⇒ r′ ≤ r .

6 Fast Convergence and Adaptive Fast Convergence.

The objective of this section is to provide a connection between the length of input se-
quences and reconstruction guarantees of our incremental algorithm. This is done through
application of Theorem 5.10 with the appropriate noise function αk, which depends on the
length k of the input sequences. The noise function αk is determined by assuming the input
sequences evolve along the tree T through some stochastic site-substitution model. Differ-
ent site substitution models have different formulas for distance estimation (see, e.g., [16])
which imply slightly different noise functions. The noise patterns for simple models like the
Cavender-Farris-Neyman (CFN) model [3, 13, 27] or the Jukes-Cantor model [18] are well
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studied (see, e.g., [11]). But similar noise patterns appear in more complex models [12, 16].
Since the underlying models are stochastic, the noise function αk is ‘probabilistic’ in the
sense that it bounds the noise with sufficiently high probability. In the appendix we de-
velop the noise function under the CFN model. We show (Theorem A.4) that the distances
computed from input sequences of length k in the CFN model are w.h.p. αk-close to the
additive distances associated with the true tree T , where αk is the following non-decreasing
function:

αk(d) = − 1
2

ln

[
1− e2d

√
6 ln(n)

k

]
. (13)

(n denotes the number of terminal taxa, and we use the convention that for z ≤ 0, ln(z) =
−∞.)

The following lemma provides a result which simplifies the use of the noise function αk:

Lemma 6.1. Let k, d, ε > 0 be s.t. k ≥ 3
2

ln(n)
ε2 e4d+2ε, then αk(d) < ε.

Proof. Consider αk(d), for k ≥ 3
2

ln(n)
ε2 e4d+2ε.

αk(d) = −1
2

ln

[
1− e2d

√
6 ln(n)

k

]

≤ −1
2

ln

[
1− e2d

√
4ε2

e4d+2ε

]

= −1
2

ln
[
1− 2

ε

eε

]

(*) < −1
2

ln
[
e−2ε

]
= ε .

The last inequality (*) is based on the Taylor series for the hyperbolic sine function:

sinh(ε) =
eε − e−ε

2
= ε +

ε3

3!
+

ε5

5!
+ · · · > ε (for ε > 0),

which implies that (for ε > 0):

1− 2
ε

eε
> 1− 2

sinh(ε)
eε

= e−2ε .

The following lemma formulates a (rather standard) argument for establishing the fast
convergence of reconstruction algorithms.

Lemma 6.2 (Fast Convergence). Let A be a distance-based phylogenetic reconstruction
algorithm which satisfies the following condition for some positive constants c1, c2:

• For every phylogenetic tree T and every input dissimilarity matrix D̂ which is α-close
to DT (for some non-decreasing function α), it holds that:
If c2α(c1depth(T )) < min{w(e) : e ∈ E(T )}, then A correctly reconstructs T .

Then A is fast converging.

Proof. Let T be an arbitrary tree with n terminal taxa whose edge weights are within the
interval [f, g]. We need to prove that algorithm A which satisfies the condition of the lemma
is guaranteed to correctly reconstruct T w.h.p. from input sequences of length k = nO(g)

f2 .

Let k = c′2
ln(n)
f2 ec′1depth(T ) for c′1 = 4c1 + 2

c2
and c′2 = 3

2c2
2 (where c1, c2 are the constants
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from the condition of the lemma). First, note that since depth(T ) ≤ cg ln(n) (for some
constant c), the sequence length in polynomial in n, as required. All we need to show is that
this sequence length is sufficient to guarantee correct reconstruction of T (w.h.p.). Since
f ≤ depth(T ), the following holds for ε = f

c2
:

k =
3
2

c2
2

ln(n)
f2

e(4c1+
2

c2
)depth(T ) =

3
2

ln(n)
ε2

e4c1depth(T )+2
depth(T )

c2 ≥ 3
2

ln(n)
ε2

e4c1depth(T )+2ε .

This implies, through Lemma 6.1, that αk(c1depth(T )) < ε = f
c2

, and so c2αk(c1depth(T ))
< w(e) for every edge e ∈ E(T ). In such a case, the condition of the lemma states that if
the input dissimilarity matrix computed from the input sequences is αk-close to DT , then A
correctly reconstructs the tree T . According to Theorem A.4, this is guaranteed to happen
with probability greater than 1− 1

n .

Theorem 6.3. The incremental algorithm presented in Sections 3–5 is fast converging.

Proof. We use Lemma 6.2, and show that our algorithm satisfies the condition of this lemma
with c1 = 5.75 and c2 = 4. Let T be an arbitrary phylogenetic tree and let D̂ be a
dissimilarity matrix which is α-close to DT , s.t. 4α(5.75depth(T )) < f

4
= min{w(e) : e ∈

E(T )}. We need to prove that the incremental algorithm correctly reconstructs T when
given D̂ (and α) as input. Theorem 5.10 implies that this happens when α+2(4depth(T ) +
2diam(T, ε)+1.5ε) ≤ ε

2 for some ε < f . Denote ε = 4α(5.75depth(T )), and r = 4depth(T )+
2diam(T, ε) + 1.5ε. We need to show that if ε < f then α+2(r) ≤ ε

2 . Since ε < f , we have
diam(T, ε) = 0 and ε < depth(T ), which imply that α(r) ≤ α(5.5depth(T )) ≤ ε

4 . Hence,

α+2(r) ≤ 2α(r + α(r)) ≤ 2α(r +
ε

4
) ≤ 2α(5.75depth(T )) =

ε

2
,

as required.

Note that our algorithm is actually absolute fast converging, since it requires no prior
knowledge on the parameters of the tree (e.g., its depth or minimal edge weight) in order to
reconstruct it. As such, it is the first (absolute) fast converging algorithm which provides an
upper bound on the weights of edges it does not reconstruct. The following lemma and the
subsequent discussion imply that our algorithm is in fact adaptive fast converging in nearly
all cases, excluding some pathological scenarios.

Lemma 6.4 (Adaptive Fast Convergence). Let A be a distance-based phylogenetic recon-
struction algorithm which satisfies the following condition for some positive constants c1, c2:

• For every ε ≥ 0, phylogenetic tree T , and input dissimilarity matrix D̂ which is α-close
to DT (for some non-decreasing function α), if c2α(c1depth(T )) ≤ ε then A correctly
reconstructs all edges of T of weight greater than ε.

Then A is adaptive fast converging.

Proof. Let T be an arbitrary tree with n terminal taxa whose edge weights do not exceed g.
We need to prove that algorithm A which satisfies the condition of the lemma is guaranteed
to reconstruct w.h.p. all edges of T of weight greater than ε from input sequences of length
k = nO(g)

ε2 . Note that if ε > depth(T ), then this claim holds vacuously (since no edge has
weight greater than depth(T )). Assuming that ε ≤ depth(T ), we can use a similar line of
argument used in the proof of Lemma 6.2: we define k = c′2

ln(n)
ε2 ec′1depth(T ) for c′1 = 4c1 + 2

c2

and c′2 = 3
2c2

2, and show that c2αk(c1depth(T )) ≤ ε. By denoting ε′ = ε
c2

and using the
assumption that ε ≤ depth(T ), we obtain:

k =
3
2

c2
2

ln(n)
ε2

e(4c1+
2

c2
)depth(T ) =

3
2

ln(n)
ε′2

e4c1depth(T )+2
depth(T )

c2 ≥ 3
2

ln(n)
ε′2

e4c1depth(T )+2ε′ .
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This implies, through Lemma 6.1, that c2αk(c1depth(T )) < ε, and so through application
of Theorem A.4 and the condition of the lemma we get that all edges of weight greater than
ε are reconstructed w.h.p..

Discussion: Assume, for the moment, that for all inputs T and ε which are of interest,
it holds that 2diam(T, ε) ≤ depth(T ) (the coefficient 2 could be replaced by any other
positive constant). Then Lemma 6.4 implies (through Theorem 5.10) that our algorithm
is adaptive fast converging. The above assumption (2diam(T, ε) ≤ depth(T )) is likely to
hold in practice whenever we are interested in a weight threshold ε which is not too large,
and the phylogenetic tree of interest does not contain long paths consisting only of very
short edges. However, in order to make our algorithm adaptive fast converging without this
assumption, any dependence of our result on the diameter of contracted components needs
to be eliminated. This task is addressed in the next section.

7 Eliminating Dependence on the Diameter of Con-
tracted Subtrees.

This section presents an alternative insertion procedure (Attach Taxon revised) which elim-
inates the dependence of the analysis on the diameter of contracted subtrees. The intuition
behind the revised insertion procedure is simple: when inserting a new terminal taxon x
into a subphylogeny T̂ induced by the taxon set S′, we ignore terminal taxa which are far
from x, and insert x in a subphylogeny of T̂ induced by a subset S′′ ⊆ S′ containing only
terminal taxa which are close to x. To ensure that the insertion in the induced subphylogeny
T̂ (S′′) guarantees a correct insertion in T̂ , we need that T̂ (S′′) preserves the anchor of x in
T̂ , in some natural sense to be defined.

Lemma 7.1. Assume that T̂ (S′′) is an internal contraction of T (S′′) and that PQO is (r, ε)-
reliable for r = diam(T (S′′ ∪ {x})). Then V (t̂inz(T̂ (S′′), x, PDO)) ⊆ V (t̂env(T̂ (S′′), x, ε)).

Proof. Follows the same lines as the proof of Lemma 4.9.

Lemma 7.2. Let T̂ be an internal contraction of T (S′), and Let S′′ ⊆ S′. Then

1. T̂ (S′′) , the subtree of T̂ induced by S′′, is an internal contraction of T (S′′).

2. An edge (u, v) ∈ E(T (S′′)) is contracted into a vertex v̂ of T̂ (S′′) iff all the edges in
pathT (S′)(u, v) are contracted into v̂ in T̂ .

Proof. We prove the lemma for the case where S′′ = S′ \ {s} (the general case follows by
induction on |S′ \S′′|). The proof (of 1 and 2 above) is established by mapping each internal
vertex v̂ of T̂ (S′′) onto a subtree t′′v̂ of T (S′′), as follows. Consider an arbitrary vertex
v̂ ∈ internal(T̂ ), and the subtree tv̂ of T (S′) contracted into it in T̂ . If V (tv̂) ⊆ V (T (S′′)),
then tv̂ is also a subtree of T (S′′), and t′′v̂ = tv̂. If this is not the case, then tv̂ must
contain ps, the parent of s in T (S′) (since ps is the only possible vertex in internal(T (S′))\
internal(T (S′′))). Furthermore, in this case we must have that degT (S′)(ps) = 3, and
NT (S′)(ps) = {s, u, v} for some edge (u, v) ∈ E(T (S′′)). There are three possible cases:

1. tv̂ contains neither (u, ps) nor (ps, v), in which case V (tv̂) = {ps}, and v̂ /∈ V (T̂ (S′′)).

2. tv̂ contains exactly one of the edges (u, ps), (ps, v) - w.l.o.g. it is (u, ps). Then t′′v̂ =
tv̂ \ {(u, ps)}.

3. tv̂ contains both (u, ps) and (ps, v), in which case t′′v̂ = tv̂ \ {(u, ps), (ps, v)} ∪ {(u, v)}.

Note that the edge (u, v) of T (S′′) is contracted in T̂ (S′′) only in the third case above.
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The correctness of our insertion procedure depends on the condition that the subset S′′

preserves the anchor of x in T (S′), as specified by the following definitions and results.

Definition 7.3. Let v be an internal vertex of a phylogenetic tree T . The v-components of
T are the connected components of T (V \ {v}).

Definition 7.4. Let T be a phylogenetic tree, let v ∈ V (T ) and let S̃ ⊆ leaves(T ). We say
that S̃ preserves v in T , if either v is a terminal taxon in S̃, or S̃ has nonempty intersections
with at least three of the v-components of T . S̃ is said to preserve an edge (u, v) in T if it
preserves both u and v in T .

Observation 7.5. A vertex v of T (S′) is also a vertex in T (S′′) iff S′′ preserves v in T (S′).
Similarly, an edge (u, v) of T (S′) is also an edge of T (S′′) iff S′′ preserves the edge (u, v)
in T (S′). (see Fig. 9)
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Figure 9: Vertex and Edge Preservation. The taxon subset {1, 2, 3, 5} preserves the
internal vertices v1, v4 and the edges (1, v1), (2, v1), (v1, v4) in T .

Lemma 7.6. Let T̂ be an internal edge-contraction of T (S′), and assume that S′′ preserves
anchorT (S′)(x). Then anchorT̂ (x) = anchorT̂ (S′′)(x).

Proof. Assume that anchorT (S′)(x) is an edge e (the proof for the case that anchorT (S′)(x)
is an internal vertex is similar but simpler). Then by Observation 7.5, e is also an edge
in T (S′′). Assume first that e is contracted in T̂ into some vertex v̂, implying that
anchorT̂ (x) = v̂. Then by Lemma 7.2(2), e is also contracted into v̂ in T̂ (S′′), imply-
ing that anchorT̂ (S′′)(x) = v̂ as well. Now assume that e is not contracted in T̂ , then (by

Lemma 7.2(2)) it is also not contracted in T̂ (S′′). Thus, both T̂ and T̂ (S′′) contain an edge
ê which is identical to e (i.e., ê and e induce the same splits in the corresponding trees).
Hence ê is the anchor of x in both T̂ and T̂ (S′′).

Lemmas 7.1 and 7.6 suggest the following insertion procedure:
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Procedure Attach Taxon revised(T̂ , x):

1. Calculate a subset S′′ ⊆ S′, s.t. diam(T (S′′ ∪ {x})) = O(depth(T )) and S′′

preserves the anchor of x in T (S′).

2. t̂′′inz ← t̂inz(T̂ (S′′), x, PDO).

3. If t̂′′inz is a single edge (û, v̂), then attach x to T̂ by introducing a new internal
vertex p̂x and replacing (û, v̂) with the three edges (û, p̂x), (v̂, p̂x), (x, p̂x).

4. If t̂′′inz has a single internal vertex v̂ (i.e., V (t̂′′inz) = N(v̂) ∪ {v̂}), then add to T̂
the edge (v̂, x).

5. Else (i.e., t̂′′inz has at least one internal edge), contract into a new vertex v̂ all
edges in T̂ which lie on paths corresponding to internal edges of t̂′′inz, and add to
T̂ the edge (v̂, x).

Implementation note: Before computing the insertion zone in step 2, the algorithm
computes S′′ (as defined in Lemma 7.9) and constructs T̂ (S′′). This can be done by rooting
T̂ at some arbitrary leaf r and performing a DFS scan from that root-taxon, eliminating all
vertices which do not have descendants in S′′ (and contracting internal vertices of degree
two). Since directional representatives have to be taxa in S′′, they are not kept from one
iteration to the next. However, by the way S′′ is defined, a directional representative sv̂(û)
can be any taxon in S′′ which is separated from v̂ by û. So if û is the parent of v̂ in the
above rooting, then sv̂(û) is set to the root-taxon r, and if û is a child of v̂, then sv̂(û) is
set to an arbitrary leaf in the subtree rooted by û. These directional representatives can be
computed as T̂ (S′′) is being constructed during the same DFS scan. Hence, each insertion
iteration of the modified algorithm is still performed in linear time.

Lemma 7.7. Assume that T̂ is an ε-contraction of T (S′), and let T̂post be the topology
resulting from Attach Taxon revised(T̂ , x). Then if (a) S′′ preserves the anchor of x in
T (S′) and (b) PQO is (r, ε)-reliable, where r = diam(T (S′′ ∪ {x})), then T̂post is an ε-
contraction of T (S′ ∪ {x}).

Sketch of proof. Attach Taxon revised differs from Attach Taxon only in that the insertion
zone t̂′′inz is computed on the induced subtree T̂ (S′′) and not on T̂ . Thus the fact that
all contracted edges are of weight at most ε is proved as for Attach Taxon, noting that
internal edges of t̂′′inz correspond to edges of weight at most ε in T̂ . The fact that the taxon
x is attached to its anchor in T̂post is based on a case analysis similar to the one in the
proof of Lemma 3.1, using the fact that S′′ preserves the anchor of x in T (S′). The lemma
follows.

We are left to specify how the procedure finds a reduced subset of terminal taxa S′′ s.t.
diam(T (S′′ ∪ {x})) = O(depth(T )) and S′′ preserves the anchor of x in T (S′). We assume,
as in Section 5, that the algorithm has access to a dissimilarity matrix D̂ which is α-close
to the tree-induced metric DT . We also assume the insertion order suggested in Section 5.
Let S′i be the set of attached terminal taxa in the beginning of the ith iteration, and let
xi /∈ S′i be the taxon chosen for insertion at that stage. Denote by yi the reference taxon of
xi in S′i (s.t. d̂(xi, yi) = min{d̂(x′, y′) : x′ /∈ S′i, y

′ ∈ S′i}). Our definition of S′′ relies on the
following observation (which can be proved by induction on i):

Observation 7.8. Let d̄i = maxj≤i{d̂(xj , yj)}. Then depth(T (S′i ∪ {xi})) ≤ d̄i + α(d̄i).

Lemma 7.9. Consider the ith iteration in which taxon x = xi is inserted into T̂ (where
S′ = leaves(T̂ )). Denote
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ri = 3(d̄i + α(d̄i)) + α
(
3(d̄i + α(d̄i))

)
. (14)

Then the set S′′ = {s ∈ S′ : d̂(x, s) ≤ ri} preserves the anchor of x in T (S′).

Proof. Assume that the anchor of x in T (S′) is an edge (u, v) (the other case is proved
similarly). Then we need to show that S′′ preserves both u and v in T (S′). We will show
w.l.o.g. that it preserves v. This is done by proving that each v-component of T (S′) contains
a terminal taxon s s.t. d̂(x, s) ≤ ri. Notice that each v-component contains a terminal taxon
s s.t. dT (v, s) ≤ depth(T (S′)). By decomposing the path connecting x and s in T (S′ ∪{x})
into 3 parts we get:

dT (x, s) ≤ w(x, px) + w(px, v) + dT (v, s) ≤ 3depth(T (S′ ∪ {x})) ≤ 3(d̄i + α(d̄i)) .

The lemma then follows since d̂(x, s) ≤ dT (x, s) + α(dT (x, s)).

The final part left in the analysis is to bound the diameter of T (S′′ ∪{x}). Let s1, s2 be
two arbitrary taxa in S′′. Then d̂(x, s1), d̂(x, s2) ≤ ri, and we get:

dT (s1, s2) ≤ dT (s1, x) + dT (s2, x) ≤ 2(ri + α(ri)) . (15)

Equation (8) in the proof of Lemma 5.4 implies that d̄i ≤ 2depth(T )+α(2depth(T )) in every
iteration of the algorithm. Plugging this into ri obtains the following bound:

diam(T (S′′ ∪ {x})) ≤ 2(ri + α(ri))
= 6(d̄i + α(d̄i)) + 2α+2

(
3(d̄i + α(d̄i)))

)

≤ 12depth(T ) + 6α+2(2depth(T )) (16)
+ 2α+2

(
6depth(T ) + 3α+2(2depth(T ))

)
.

We conclude this section by providing a bound on the weight of contracted edges, which
depends only on the depth of the tree (and not on the ε-diameter). This establishes the
adaptive fast convergence of the algorithm (Theorem 7.11). The major downside of this
bound compared to the one of Theorem 5.10 is that the linear dependence of ε on the depth
of the tree is inflated – from factor 4 in Theorem 5.10 to factor 12 in Theorem 7.10. Hence,
in cases where the ε-diameter is not too large, the previous bound is actually tighter.

Theorem 7.10. Let T be a phylogenetic tree over a set S of terminal taxa, and assume
that the input dissimilarity matrix D̂ is α-close to the additive metric DT (for some non-
decreasing function α). Let ε ≥ 0 be s.t.

α+2 (12depth(T ) + 4ε) ≤ ε

2
. (17)

Then, when executed on D̂, algorithm Incremental Reconstruct which uses Attach Taxon revised
and FPMD̂,α, returns an ε-contraction of T .

Proof. The proof is established by showing that the two conditions of Lemma 7.7 are sat-
isfied in every iteration of the incremental algorithm. The first condition (preservation of
the anchor) is given by Lemma 7.9. Hence, we are left to show that FPMD̂,α is (r, ε)-
reliable for r = diam(T (S′′ ∪ {x})). This is implied, through Lemma 5.9, by showing that
α+2 (diam(T (S′′ ∪ {x}))) ≤ ε

2 . Hence, all we are left to show is that

α+2 (12depth(T ) + 4ε) ≤ ε

2
⇒ diam(T (S′′ ∪ {x}) ≤ 12depth(T ) + 4ε .

The assumption α+2 (12depth(T ) + 4ε) ≤ ε
2 implies that α+2(2depth(T )) ≤ ε

2 , and so

6α+2(2depth(T )) ≤ 3ε ,

2α+2
(
6depth(T ) + 3α+2(2depth(T ))

) ≤ ε ,

which imply (together with (16)) that diam(T (S′′ ∪ {x})) ≤ 12depth(T ) + 4ε.
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Theorem 7.11. The revised incremental algorithm which uses Attach Taxon revised is
adaptive fast converging.

Proof. We use Lemma 6.4 to establish adaptive fast convergence by showing that our algo-
rithm satisfies the condition of this lemma with c1 = 16.25 and c2 = 4. Let T be an arbi-
trary phylogenetic tree and let D̂ be a dissimilarity matrix which is α-close to DT . Denote
ε = 4α(16.25depth(T )). We will show that the revised algorithm returns an ε-contraction
of T , when given D̂ (and α) as input. If ε > depth(T ), then any internal contraction of T
is an ε-contraction (since the weights of all edges in a tree are no greater than its depth).
So assume ε ≤ depth(T ). We will show that in this case, T and ε satisfy the condition of
Theorem 7.10 stating that α+2(12depth(T ) + 4ε) ≤ ε

2 :

α+2(12depth(T ) + 4ε) ≤ α+2(16depth(T )) ≤ 2α (16depth(T ) + α(16depth(T )))

≤ 2α(16.25depth(T )) =
ε

2
.

8 Conclusion and Discussion.

In this paper we introduced the concept of adaptive fast convergence of phylogenetic recon-
struction algorithms, which draws a direct connection between the amount of information in
the input (i.e., length of input sequences) and the amount of topological resolution provided
by the output tree (i.e., the set of edges for which correct reconstruction is guaranteed).
Then we presented an adaptive fast converging algorithm which also provides a zero false
positive rate, meaning that the edges in its output tree do not induce false splits (w.h.p.).
Our algorithm is based on a partial directional oracle, which is a model-independent primi-
tive for constructing phylogenetic trees in the presence of noisy information, and hence could
be useful for other related tasks. We presented an efficient implementation of the partial
directional oracle, which led to an optimal O(n2) time implementation of our algorithm.

One direction in which our result may be improved is by tightening the tradeoff between
the length of input sequences and the upper bound on the weight of contracted edges.
This can be achieved, for instance, by reducing the size of the constant preceding the term
depth(T ) in formulas (11) and (17). One question which stems from this is what is the
minimal dependence in depth(T ) one can obtain through a time-optimal O(n2) algorithm.

Another direction is to design a “forest reconstruction” version of our adaptive fast
converging incremental algorithm. An extension of adaptive fast convergence to forest re-
construction was established in a recent work of Daskalakis et al. [10]. Specifically, they
present a polynomial time algorithm which, for user controlled parameters τ and M , re-
turns a set of subtrees whose leaves form a partition of the input-taxon set, s.t. each edge
of weight greater than τ and depth smaller than M is included in one of the subtrees (note
that edges here correspond to splits of proper subsets of the taxa). The tradeoff between
the parameters τ, M is governed by the length of input sequences much the same way that
ε depends on depth(T ) in (17). The user can thus specify the depth M he wishes to reach
in the tree, and this dictates the weight of edges which will be contracted on the way. The
user can alternatively restrict the weight of contracted edges τ , and this dictates the depth
the algorithm reaches. Such an approach gives potential users flexible control on the set
of edges they require to correctly reconstruct. An interesting research direction could be
to improve the efficiency of the forest reconstruction algorithm in [10] by incorporating the
time optimal incremental technique presented in this paper.

A more general future research direction concerns the inherent information loss in any
case where the full tree is not returned, due to edge contractions and/or to returning a forest
rather than a tree. When contracting an edge of a partially reconstructed tree (as done by
our algorithm), the information encapsulated in the partial split defined by this edge before
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it was contracted is lost and does not appear in the final output tree. When returning a
forest (of at least two trees), all of the edges in the output represent only partial splits, even
when some (or maybe even most) of these partial splits can be reliably extended to the entire
set. Another problem related to this is that standard measures (such as Robinson-Foulds
distance [28]) are not sufficient for evaluating the amount of information in an output forest,
since a forest edge is contained within a tree which spans only a subset of the taxa being
studied, and thus contains less information than an edge of a tree spanning the full taxon
set.

One possible way to deal with both types of information loss is to design new data
structures that can combine various kinds of splits (partial and full) in a way which is
comprehensible to users of common tree reconstruction tools. We note that for any such
data structure which represents partial splits it is also important to suggest a fair scale for
comparing it with the actual phylogenetic tree of interest.
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Appendix

A Distance Estimation under Stochastic Models of Se-
quence Evolution.

We review here the Cavender-Farris-Neyman (CFN) model of site-substitution [3, 13, 27],
which was assumed in our analysis. Our main objective is to figure out the noise function
α implied by this model. Since the underlying model is stochastic, α is ‘probabilistic’ in the
sense that it bounds the noise only with sufficiently high probability. The noise is expressed
as a function of the distance being estimated and the length k of the evolved sequences – the
longer the sequences, the smaller the noise. We note that similar results on the CFN model
have been shown in other works discussing fast convergence (e.g., in [11, 8]). However,
the analysis presented here is somewhat tighter and provides results with slightly better
constants, and it is perhaps also simpler. We also note that more complex models (such as
the Jukes-Cantor model [18] and Kimura’s 2-parameter model [19]) can be shown to induce
very similar noise functions to the one induced by CFN (with different constants) (see, e.g.,
[12, 29, 16]).

The CFN model is a model for site substitution in binary sequences. It is applied
to DNA sequences by considering purines (bases A,G) as one character and pyrimidines
(bases C,T) as another. The model assumes a rooted tree T , whose edges are associated
with symmetric changing probabilities {pe}e∈E(T ). The process of evolution is modeled by
uniformly randomizing a binary state (0 or 1) at the root and propagating mutations along
the tree edges according to their changing probabilities. A site is defined by the n random
states generated by the above process at the leaves of the tree. Note that under a given
model-tree, the probability distribution of a specific site is well defined. Repeating this
process k times (independently), yields n binary sequences of length k (corresponding to k
sites), which may serve as input to a phylogenetic reconstruction method.

The additive metric DT associated with the model-tree T is defined by assigning the
following weight to each edge e in T :3 w(e) = − 1

2 ln(1 − 2pe). For u, v ∈ V (T ), denote
by puv the compound changing probability between u and v, which is the probability of
observing different states in u and v. The following equation describes the (well-known)
relation between distances in DT and changing probabilities:

3The constant − 1
2

in this formula comes from modeling the number of mutation events along an edge
according to a Poisson distribution (see ,e.g., [14] pp. 156-157). Analysis in other papers sometimes uses
different constants. Consequently, the constants in the resulting noise bounds are changed as well.
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dT (u, v) =
∑

e∈path(u,v)

w(e) = − 1
2

ln(1− 2puv) .

Given a pair of sequences (of length k) corresponding to terminal taxa i, j, the observed
compound changing probability p̂ij is estimated by the normalized hamming distance (i.e.,
the number of sites in the two sequences with different states divided by k). The observed
pairwise dissimilarities are defined accordingly – d̂(i, j) = − 1

2 ln(1 − 2p̂ij). The main
objective of our analysis is to find a “good” noise function αk which bounds the difference
between these dissimilarities and the exact additive distances associated with the model
tree.

Lemma A.1. Let d be the additive distance between two terminal taxa, and let d̂ be the
observed dissimilarity between these two taxa (computed from k-long sequences). Then for
any δ > 0, Pr

(
|d− d̂| > αk,δ(min{d, d̂})

)
< δ, where αk,δ is defined as follows4:

αk,δ(d) = −1
2

ln

[
1− e2d

√
2
k

ln
(

2
δ

)]
. (18)

The main tool used in the proof of this lemma is the following basic bound, implied by
Hoeffding’s inequality.

Lemma A.2 ([32], Theorem 4.5). Let X1, . . . , Xk be independent random variables which

get the value 1 with probability p and 0 with probability 1− p, and let X̂k =
∑k

i=1 Xi

k . Then
for every λ > 0,

Pr
(
X̂k − p > λ

)
≤ exp(−2kλ2) (19)

Pr
(
X̂k − p < −λ

)
≤ exp(−2kλ2) (20)

It is not hard to see that for every taxon-pair i, j, the observed compound changing
probability p̂ij is an average of k random variables satisfying the conditions of Lemma A.2.
Hence, the deviation of p̂ij from its expected value pij can be bounded using this lemma.
Lemma A.3 below translates this deviation to the deviation between the additive distances
and the observed dissimilarities.

Lemma A.3. Let d be the additive distance between two terminal taxa, and let d̂ be the
observed dissimilarity between these two taxa. Then for any β > 0 we have:

Pr
(
d− d̂ > β

)
≤ exp

(
−k

2
(e2β − 1)2

e4d

)
(21)

Pr
(
d− d̂ < −β

)
≤ exp

(
−k

2
(1− e−2β)2

e4d

)
. (22)

Proof. Let p, p̂ be the real and observed compound changing probabilities between the two
terminal taxa mentioned in the lemma. First we establish (21):

d− d̂ > β ⇐⇒ 1
2 ln

(
1−2p̂
1−2p

)
> β ⇐⇒

1−2p̂
1−2p > e2β ⇐⇒
1 + 2 p−p̂

1−2p > e2β ⇐⇒
p− p̂ > 1

2 (e2β − 1)(1− 2p) ⇐⇒
p− p̂ > 1

2 (e2β − 1)e−2d .

(23)

4we use the convention that for z ≤ 0, ln(z) = −∞.
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The inequality in (21) is now obtained by plugging λ = 1
2 (e2β − 1)e−2d in (20). The

inequality in (22) is similarly obtained by first showing (as in (23)) that:

d− d̂ < − β ⇐⇒ p− p̂ <
1
2
(e−2β − 1)e−2d , (24)

and then plugging λ = 1
2 (1− e−2β)e−2d in (19).

Note that the bounds we get in (21) and in (22) are not identical: the RHS of (22) is
greater than the RHS of (21), because β > 0 implies that 1−e−2β < e2β(1−e−2β) = e2β−
1. Hence we get:

Pr
(
|d− d̂| > β

)
< 2 exp

(
−k

2
(1− e−2β)2

e4d

)
. (25)

The bound in (26) below is obtained by noticing that d and d̂ are interchangeable in the
proof of Lemma A.3:

Pr
(
|d− d̂| > β

)
< 2 exp

(
−k

2
(1− e−2β)2

e4 min{d,d̂}

)
. (26)

Proof of Lemma A.1. Note that αk,δ is obtained by setting δ to be equal to the RHS of (26)
and solving for β. By (26), this implies that

Pr
(
|d− d̂| > αk,δ(min{d, d̂})

)
< δ .

Lemma A.1 provides the basic result for establishing the required noise function αk. By
applying the union-bound, we get that for every δ > 0, D̂ and DT are αk,δ-close with
probability at least 1− (

n
2

)
δ. The noise function αk in (27) is obtained by αk,δ for δ = 2

n3 .

Theorem A.4. Let DT be the additive metric induced by a phylogenetic tree T in the CFN
model, and let D̂ be an observed pairwise-dissimilarity matrix derived from k-long sequences
which evolved along T . Then with probability greater than 1 − 1

n , D̂ and DT are αk-close,
where αk is given by:

αk(d) = − 1
2

ln

[
1− e2d

√
6 ln(n)

k

]
. (27)
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