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We consider two versions of a game for two players, 4 and B. The game consists of manipulations of
words of length n over an alphabet of size o, for arbitrary n and o. For ¢ = 2 the game is described as
follows: Initially, player 4 puts n drinking glasses on a round table, some of which are upside down.
Player B attempts to force player 4 to set all the glasses in the upright position. For this, he instructs
player 4 to invert some of the glasses. Before following the instruction, player A has the freedom to
rotate the table, and then to invert the glasses that arc in the locations originally pointed by player B.
In one version of the game, player B is blindfolded and in the other he is not. We show that player
B has winning strategies for both games ifl n and ¢ are powers of the same prime. In both games we
provide optimal winning strategies for B.

The analysis of the games is closely related to the concept of the derivative of a o-ary word of
length n. In particular, it is related to the deprh of such word, which is the smallest k such that the kth
derivative of the word is the all-zero word. We give tight upper bounds on the depth of g-ary words
of length n, where ¢ and n are powers of the same prime.
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1. Introduction

1.1. The open glass-inverting game

Consider the following game for two players, A and B, seated by a rotating round
table: The game starts when player A (the adversary) puts four drinking glasses on the
north, west, south and east sides of the table, such that some of the glasses are in the
upright position, and others are upside down. The goal of player B (who sees the table)
is 1o set all the glasses in the upright position, while player A tries to prevent him from
doing so. The first round of the game starts when player B points to some of the
glasses, and asks player 4 to invert them. Next, player A rotates the table counter-
clockwise in an angle which is an arbitrary multiple of 90°, and then he inverts the
glasses at the locations pointed out by player B (i.c., if player B pointed out the south
and east glasses and player A4 rotates the table by 90°, then he inverts the glasses that
originally were at the west and south sides, see Fig. 1). This completes the first round.

Arthur, pleasc invert Well, I'll rotate the
south and east glasses table by ... 90 degrees

Sir, I've just inverted Now, second round.

south and east glasscs Please, invert ...

Fig. 1. Illustration of the open game.



Rotating-table games 313

The second round starts similarly by having player B select a subset of the glasses, and
so on and so forth.

We now generalize the game for an arbitrary number of drinking glasses. For this,
we view n glasses as a sequence of n zeros (for upright glasses) and ones (for upside
down glasses). Players B’s instructions are also viewed as binary words, where oncs
indicate “invert” and zeroes indicate “leave as it is”. The game is, thus, described as
follows: Initially, player 4 chooses a binary word W} of length n. The game continues
in rounds as before, where at the ith round (i=1), the new position of the glasses is
generated as a binary word 1; as follows:

(1) Player B gives player A a binary word, called key;. This word denotes which
glasses should be inverted, after the table is rotated.

(2) Player A4 selects an integer s; in the range [0, ...,n— 1]. 5; corresponds to rotating
the table by an angle of s;-360°/n. Thus, W;=W,_, +E“key;, where the vector
addition is done modulo 2, and E *key denotes a (left) cyclical shift of the word key by
s entries.

Player B wins the game if he can force player 4 to generate the all-zero word [0]".
The question we wish to study is for what values of n player B has a winning strategy,
and in those cases when there is such a strategy, how many rounds are required, in the
worst case, to win.

1.2. A generalization for larger alphabet sizes

The open game described above can be generalized to words over alphabets of
arbitrary size ¢>2, as follows. Instead of n drinking glasses, we now have on the
rotating table n roulettes of ¢ sides each. Denote the sides of the roulettes by
0,...,6—1. Each round starts when player B selects some of the roulettes, and for
each selected roulette, player B also selects an angle by which it should be rotated.
After receiving these instructions, player A first rotates the table, and then he follows
player B’s instructions on the roulettes which after the rotation are at the locations
originally selected by player B. Player B wins the game if he can force player 4 to set
all the roulettes so that the side which is closest to the center of the table is the one
marked by zero. Describing this in the notation of words over alphabet {O, ey g—1},
we get a description similar to the one for binary words (where the addition now is
modulo o).

1.3. The blind game

This game is essentially the same as the open game, with one important exception;
player B is blindfolded from the very beginning of the game. This means that he sces
neither the initial configuration of the glasses, nor any of the subsequent configura-
tions generated by player A.

The blind game can be also described in a different way, which is more convenient
to handle: Since player B gets no information during the game, the sequence
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(keyi.,....key,) which he genecrates during the game depends only on #n (and a).
Therefore, we can describe the blind game as a one player game, in which the
adversary plays against the sequence KEY =(key,, ..., key,,) as follows:

Initially, the sequence KEY is given to A.

Using this sequence, A generates the sequence S=W,, ..., W,, as follows:

(r1) Choose arbitrary vector as W.

Given W;_;, W, is created as follows:

(r2) Sclect an integer s; in the range [0,...,n—1], and sct W;=W,_, +E *key;.

Player A loses the game if one of the W’s is the word [0]"

The sequence KEY is a (g, n) universal (or simply universal) if A must lose the game
(i.e., if he must generate the word [0]") when playing against this sequence. Thus,
Player B (in the original formulation of the game) has a winning strategy for the blind
game iff there exists a universal sequence.

We note that the blind game for ¢ =2 resembles the rotating table game of [7, 5].
Lasser and Ramshaw [5] described the history of rotating-table games. These games
are different from our games and the techniques used in analyzing these games are
quite different.

1.4. Summary of results

We show that Player B can win either the open or the blind game iff ¢ and n are
powers of the same prime. We also provide optimal bounds on the number of rounds
needed to win the game in both cases.

The rest of the paper is organized as follows. In Section 2 we prove that player
B cannot have a winning strategy for the open game, unless ¢ and n satisfies the
condition above. In section 3 we define derivative, linear complexity and depth of
a word, which appear to be closely related to the games above. In section 4 we give
a very simple strategy for winning the open game, and proves its optimality. In section
5 we provide optimal strategy for winning the blind game, and an exact bound on the
number of rounds needed by this strategy. Finally, in Section 6 we provide a detailed
analysis on the depth of g-ary words, which provides exact bounds on the number of
rounds needed to win the open game.

2. A necessary condition for winning

In this section we prove that player B cannot win the open game unless n
and ¢ are powers of the same prime. Clearly, this result applies also to blind
game.

Theorem 2.1. If player B can win the open game, then there is a prime p such that ¢ =p”*
and n=p® for some integers «=0 and 0.
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Proof. We prove this theorem by showing that if n and ¢ do not satisfy the above
property, then player 4 has a winning strategy. We do this in two stages, each time
weakening the assumptions on the relation between n and o.

Assume first that ged(o, n)=1. We show that 4 can generate words W, ¥}, ... such
that for all i, w;(0) # w;(1) (wi(j) denotes the jth entry of W)

W, is taken to be the word (1, 0, ..., 0). We now assume that w;_ ;(0) £ w;_, (1), and
show that for every word key =key; supplied by player B, there is an s=s; such that in
W=W;=W;_,+E *key, it holds that w(0)£w(1). Let d=w;_{(0)—w;_(1)(mod 7).
By induction, 0 <d <a. Let key=(key(0), ..., key(n—1)). Then it is easily verified that
an integer s in [0,...,n— 1] satisfies the above ifl it satisfies the following:

key(s+1)—key(s)#£d(mod o), where key(n)=key(0).

Thus, it is sufficient to prove that for some s, the inequality above holds. Assume for
contradiction that for all s, key(s+ 1)=key(s)+d(mod ¢). Then we have
n—1
key(0)=key(0)+ > (key(i+1)—key(i))=key(0)+nd(mod o).
i=0

In particular, we get that nd=0(mod ¢). However, since gcd(o, n)=1, this last
equality implies that ¢ divides d; but this is impossible, since 0 < d <. This contradic-
tion completes the proof for the case that ged(s, n)=1.

Next, we consider the general case, where ¢ and n are not powers of the same prime.
This implies that there are integers g and f, where g divides ¢ and [ divides n, and
o =¢/g and n=n/f are distinct primes. In particular, ged(a, n)=1 and 1 <min {g, i1}
We handle this case by essentially reducing it to the former one. For this, we use the
following notation:

With each word U=(u(0),...,u(n—1)) of length n whose entries are in {0,...,0—1}
associate a word U =(i1(0), ... ia(/i— 1)) of length i1 whose entries are in {0,...,6—1}in
the following way: For i=0,...,n—1,

(i) =u( fi)(mod &)

(ie., the ith entry in U is the fith entry in U modulo ).

Using the above notation, the proof proceeds along lines similar to the previous
case, as follows. Given any sequence KEY=(key,,...,key,,), we prove that KEY is
not universal by showing that 4 can generate words W,, Wy, ..., W, such that for
all i, w;(0)£w;(1). We start by taking W,=(1,0,...,0) (which means that also
Wo=(1,0,...,0)).

We now assume that the claim holds for W,_, 1.e., w;_,(0)#w;_,(1), and show
that for every word key = key; there is an s=s; such that for W= W;=W;_| +E “key, it
holds that w(0)#w(l).

This is done by first considering the words W;_, and key. Since ged(5, 1)=1, the
proof of the previous case implies that for some s it holds that in U= W;_, +E *key,
we have that u(0)u(1) and, hence, w(0)=w(1). [
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3. Derivatives and linear complexity

In both the open and blind games we are making use of derivatives and linear
complexity of words. The derivative was first used by [3, 8] for binary words. [4] is an
excellent reference for the linear complexity.

For a word W=[w(0), w(l),...,w(k—1)], the derivative of W is defined by
(E—1) W=EW— W. The depth of W, denoted by depth(W), is the least x such that
(E—1)*W=0 1f such x exists, and oo otherwise. For the binary case E—1 is often
called the D-morphism [6]. The proof of the following lemma is easy and left to the
reader.

Lemma 3.1. Let W=[w(0), w(l),...,w(in—1)] be a given word. Let W' =[w(n—1),
w(n—2),...,w(0)] be the word W wr:rren in reverse order, and let W' =E*W for some
integer k. Then depth(W)=depth(W')=depth(W").

3.1. Linear complexity

In this section we assume that the entries of the words are from GF(q), g=p°
p prime, and the addition is the one of GF(g). Any word W=[w(0), w(1),...,w(n—1)],
satisfies a linear recursion

wi+m)+ Y aw(i+m—j)=0, i=0, a;eGF(p),
i=1
where m, the degree of the recursion, is less than or equal to the length of W. In terms
of the shift operator E, the lincar recursion takes the form

f(E) W:(E'"+ ¥ aJ-E"'_f) w=[0]"
i=1

The (linear) complexity C(W) of W is defined as the least integer m for which there
exists a polynomial f(E) of degree m such that f (E) W= [0]". As we see in Lemma 3.3,
in this case the linear complexity and the depth Commdc. Games and Chan [2] gave
an efficient algorithm for computing the linear complexity of words of length 2%,
A generalization of this algorithm for words of length g*, g prime power, with entries
from GF(q), was given by Ding [1].

In Lemmas 3.2 and 3.3, let W be a word of length n=p", for a prime p, with entries
from GF(q),q=p"

Lemma 3.2. Iff(E) is a polynomial with the least degree, with coefficients from GF(p),
such that f(E) W= [0]" and there exists a polynomial g(E) such that g(E) W =[0]" then
f(E) divides g(E).

Proof. Assume that f(E) does not divide g(E); then we can find two polynomials h, (E)
and h,(E) such that g(E)=h;(E) f (E)+ h,(E) and the degree of h;(E) is less than the
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degree of f(E). Now [0]"=g(E) W=(hy(E) f(E)+hy(E)) W=(h,(E) f(E)) W+
h,(E) W=h,(E) W, a contradiction to the fact that f(E) is a polynomial with the least
degree such that f(E) W=[0]". [J

Lemma 3.3. C(W)=c if and only if (E—1)"' W=[d]", for some constant d#0.

Proof. Let f(E) be the polynomial with the least degree such that f (E) W =[0]". Since
E"W— W=(E"—1) W=[0]", then by Lemma 3.2 f(E) divides E"— 1. It is also easy to
verify that p divides (?) for 1<i<p"—1 and, therefore, E*—1=(E—1)" (note that in
GF(2¥) minus and plus are the same). Hence, f(E)=(E—1)° and by the definition of
linear complexity C(W)=c if and only if (E—1)°"' W=[d]", for some constant
d#0. O

3.2. Derivatives

For words of length p” with entries taken from Z,. we have to prove first that the
depth is finite.

Lemma 3.4. Given a word W of length n=p?, p prime, whose entries are from Z ,., then
(E—1y"w=[0]"

Proof. From the proof of Lemma 3.3, we have that in the word (E—1)"" W all the
entries are congruent to 0 modulo p. By induction, in the word (E—1)”" W all the
entries are congruent to 0 modulo p’. Therefore, (E— 1 w=[0]". O

From Lemma 3.4 we infer the following theorem.

Theorem 3.5. Given a word W of length n=p”, p prime, whose entries are from Z -, then
the depth of W is finite.

Another simple observation is the following lemma.

Lemma 3.6. Given a word W of length n=p*, p prime, whose entries are from Z ., then
depth(W)=x if and only if (E—1)*~' W=[d]", for some constant d#0.

4. A winning strategy for the open game

The winning strategy for the open game is very simple. Player B just have to ignore
the fact that player A can rotate the table:
Winning strategy for the open game

(O.1) Assume that in step i the adversary holds the word W,.

(0.2) We choose key;=—W,_;.
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We claim that if the depth of W, is r, then in at most r steps the adversary will hold
the all zero word. This claim is based on the following lemma which can be verified by
simple algebraic manipulations.

Lemma 4.1. If f(E) is a polynomial with coefficients in Z ., W a word with entries from
Z,., and deZ . then f(E)(d W)=df(E)W.

Lemma 4.2. If depth (W,)=r then in at most r steps the adversary will hold the all-zero
word.

Proof. It is sufficient to prove that for every j, depth(W;. )=depth(W,;+
E/ key;, ) <depth(W;). If depth(W;)=x+1 then (E—1)*W;=[d]" by Lemma 3.6.
Then  (E—1key,,;=(E—1)*(— W,)=[—d]":  so, for  every j,
(E—1)*(W,+E’ key;.,)=[0]" and, therefore, depth(W; +E’ key;, ,)<depth(W;). O

Now we prove the following theorem.

Theorem 4.3. If W, is the initial word of the adversary, then there is no strategy that
forces a win in less than r steps.

The proof is an immediate observation from the following two lemmas.

Lemma 4.4. Assume that W and U are two words of length n, where the depth of Wiscy,
and the depth of U is c,, ¢, <c,, then the depth of E*W +EJU, for any i, j, is c,.

Proof. By the definition of the depth, (E—1)2"! W =[0]" and (E— 1)~ 'U=[d]",
for some d #0. Hence, (E—1)">"Y(E‘W+E/U)=[d]" and the depth of E‘ W+E/ U
iSiess B

Lemma 4.5. Let W and U be two words of length n, with the same depth c. Then there
exists some i such that the depth of E*W+U is at least ¢c— 1.

Proof. Assume that the depth of W+ U is at most ¢—2. By the definition of the
depth, (E—1)*"?(W+ U)=[0]" and, therefore, (E—1)"2 W= [v(0), v(1),...,v(n—1)]
and (E—1 2U=[—v(0), —v(l),..., —v(n—1)]. Since the depth of W is ¢, not
all the v(j) are equal. Thus, v(0)sv(i) for some i and, hence, (E—1)° ?E' W+
(E—1)F ?U=(E—1) >(E'W+U)#[0]" and, therefore, the depth of E*W+U is
at least c—1. [

A winning strategy for words of length ¢” with entries taken from GF(g) and the
addition is in GF(q) is the same.
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5. A winning strategy for the blind game

5.1. Lower bound on the length of universal sequences

Recall that player B can win the blind game iff there exists a (¢, n) universal
sequence, as defined in the introduction.

Lemma 5.1. If KEY=(key,,..., key,,) is universal, then in every play of the game all the
g-ary words of length n must be generated. In particular, m=c¢"—1.

Proof. We assume the contrary, and show that 4 can win the game. Assume that in
some play of the game at least one g-ary word of length n, say U, is never generated.
Let W= W, be the first word generated by A4 in this game.

Consider now another play of the game, in which 4 makes exactly the same moves
as in the original game, with one exception: The first word it generates is not }# but
W—U. It is casy to see that a g-ary word V' is generated in the former game iff the
word V—U is generated in the latter game. In particular, U—U=[0]" is not
generated in the latter game. This means that KEY is not universal, which is the
desired contradiction. [J

We now show that if ¢ and n are powers of the same prime p, then a universal
sequence of optimal length indeed exists. First we consider the case where o=p.

5.2. Optimal universal sequences for a prime o

In this section we assume that |X|=c=p and n=p’ for some prime p and
nonnegative integer . The construction is based on the following lemma, which
asserts that if the depth r of a word is known, then this depth can be reduced by a blind
application of a sequence of length p— 1, all of its entries are an arbitrary fixed word of
the same depth r.

Lemma 5.2. Let U and V be words of length n over Z, such that depth(U)=
depth(V)=r=>0. Let ji,....j,—1 be arbitrary integers in [0,....n—1]. Let further
Vi=E"V, and W;=U+} ._, V;. Then for some i, depth(W;) <r.

Proof. Since depth(U)=depth(V)=r, there arc constants ¢ and d such that
(a) (E—1)"1U=[c]", and
(b) for all i, (E—1)""'V;=[d]"

Since p is a prime, there is iy such that id= —c¢(mod p). This implies that

(E—l)"_l(U+ i V;)=(E— 1) W, =[0]1%
i=1

which means that depth(W; )<r. O

124
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We now describe the construction of a (o, n) universal sequence of optimal length,
KEY. The construction is done in n+ 1 stages, where at stage i, 0<i<n, we construct
a sequence KEY; of length ¢'— 1, having the [ollowing properties:

(i:1) All the words in KEY; are of depth at most i.

(i:2) Let W, be the first word generated by the adversary A. If depth(W,)<i, then
A must lose the game when playing against KEY;.

Note that (i:2) implies that KEY=KEY, 1s a universal sequence.

KEY, is the empty sequence of length 0=p®— 1. It is easily verified that it indeed
satisfies (0:1) and (0:2). Assume now that we are given a sequence KEY; of length
l;=0"—1 which satisfies (i: 1) and (i:2), where 0<i<n. A sequence KEY;.; of length
¢'*1 —1 which satisfies (i+1:1) and (i + 1:2) is constructed as follows:

Let ¥ be an arbitrary word such that depth(V)=i+1, and for i=1,...,a—1, let
Vi=V. Then KEY;. =KEY;o(V{)e KEY;o(V3)o---o(V,_;1)e KEY;.

It is easily observed that [, ,, the length of KEY,,,, is cli+o—1=¢""'—1 Tt
remains to show that (i+1:1) and (i+ [:2) are indeed satisfied by it:

(i+1:1) holds by the induction hypothesis and the construction of KEY,. ;. To see
that (i +1:2) holds, assume first that deprh(W,)<i. Then by the induction hypothesis,
A loses the game during the first application of KEY; on W,. Thus, we are left with the
case where depth(W,)=i+ 1. Assume for the moment that the sequence given to A is
only the subsequence (¥, V5,..., ¥, ). By Lemma 5.2, when 4 plays against this
subsequence only, there exists an i, such that after applying (a cyclic shift of) V;,,
A must generate a word W such that depth(W)=i. Now, by induction, the remaining
words in KEY, ., (excluding the V;’s) are of depth at most i. Hence, by an argument
similar to the one in Lemma 4.4, the application of any subset of them on W cannot
increase its depth above i. In particular, when 4 is using the complete sequence
KEY;, ., the word W' that it generates after applying ¥, is also of depth at most i.
Since immediately after applying V;, the complete sequence KEY; is applied by 4 on
W', A must lose the game by using the induction hypothesis on W'. This proves
(i+1:2)

5.3. Optimal universal sequences for the general case

In this section we extend the construction of Section 5.2 to the case where ¢ = p* for
arbitrary positive integer o. Thus, we prove the following theorem.

Theorem 5.3. Let o=p* and n=p* for positive integers o and f. Then there is a (o, n)
universal sequence of optimal length ¢"— 1.

Proof. We prove, by induction on «, that there is a (p n) universal sequence KEY, of
length [,=p**—1. For « =1, the theorem holds by the construction in Section 5.2. The
(p, n) universal sequence KEY, =(U,,....U,;,) (where [, =p"—1) is used in the recur-
sive construction, as described below. Assume now that the theorem holds for «, and
prove it for o+ 1.
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Let KEY, be the (p® n) universal sequence of length [,=p™ — 1 whose existence is
guaranteed by the induction. We use KEY, to construct a sequence KEY' of words
whose entries are in {0,p,2p,....,p""'—p}, as follows: Replace each word

key=[key(1),...,key(n)] in KEY, by the word p-key=[p-key(1),...,p-key(n)]. The
following observation follows easily by the induction hypothesis and the definition of
KEY".

Observation 5.4. Let ¥, be a word of length n over alphabet 0, p,...,p** ! —p. Then
A must lose the game when playing against KEY".

The construction of KEY, ., is done by interleaving the sequence KE Y’ between
the words of the sequence KEY, as follows: KEY,,;=KEY o(U;)sKEY'o
(Uz)e---o(U,,)°KEY".

ly+1, the length of KEY, . 1,1s given by L., =p"—1+p"L, =p** 1" _1, as claimed.
To see that KEY,,, is a (p*""', n) universal sequence, observe that if all entries of
W, are divisible by p then Observation 5.4 implies that 4 must lose the game.
Otherwise, an argument similar to the one in Section 5.2 shows that if A4 is playing
against the sequence KEY, then for some jin [0,..., p"— 1], all the entries of the word
W generated by A after using (a cyclic shift of) the word U are divisible by p. Since all
the entries of the remaining words in KEY, ., are also divisible by p, this holds also
for the word W generated by A after using U; when playing against the full sequence
KEY, . Immediately after using U;, A must use the complete sequence KEY,; the
proof is now completed by using the induction hypothesis on W’ and KEY,. [J

5.4. Generalization for GF(q)

We generalize the blind game algorithm for the case where the entries of the words
are taken from GF(q), g=p® p prime, and the word length is n=¢*. We will make use
of the following lemma.

Lemma 5.5. Let W=[w(0), w(1),...,w(n—1)] and U= [u(0), u(1),...,u(n—1)] be two
words with linear complexity c¢. Let 7 be a primitive eiemem in GF(g). There exist an
integer i, 0<i<q—2, such that W+ [y'u(0), y'u(1),...,7'u(n—1)] is a word with linear
complexity less than c.

Proof. Since the linear complexity of W and U is ¢, there exist two nonzero entries
d, and d, in GF(qg) such that (E—1)*"! W=[d,]" and (E—1)°" ' U=[d,]". Now, let
i be the integer such that y'=—d,(d,)"! and V= [J {), yiu(l),...,y'un—1)]
It follows that (E—1)"!'V=y"E—-1)F"'U=[y'd,]"=[—d,]" and, hence,
(E—1)*"Y(W+ V)=[0]"; therefore, the linear complexity of W+ Vis less than ¢. [

Let KEY, be the empty scquence. Given a universal sequence K EY; which beats
a word with linear complexity at most i, we construct a universal sequence KEY;,
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which beats a word with linear complexity at most i+ 1. Let ¥ be an arbitrary word
with linear complexity i+ 1 and let y be a primitive element in GF(g). Let V=V and
for l<j<q 2, Vi=y'V—V;_,. Then KEY,. ,=KEY;o(Vy)oKEY;o(V )o--=0
(V,—2)e KEY;. It is easy to observe that KEY;,, is a universal sequence which beats
any word with linear complexity at most i+ 1, as claimed.

6. Bounds on the depth of words for o =p*

A very interesting question in this context is to find what is the maximal depth of
a word. If the length of the word is n=p” and the entries are taken from Z,:, Lemma
3.4 implies that an upper bound on this depth is an. We will improve this bound
to n+(x—1)(n—p®~ ') and show that this is tight. In both upper and lower bound
proofs we first consider the simple case where =1, and then generalize the proof to
arbitrary o.

Lemma 6.1, If «=1 the maximal depth of a word of length n is n and any word W for
which the sum of entries is d, d £ 0(mod p) has depth n.

Proof. By Lemma 3.4, the depth of each word is at most n. Since when a=1 the
computations are modulus a prime p, we have

[F_l)n Er— n—1

1:! 1 T R El
=l Sl i ,ZD

and thus (E—1)""! W=[d]" for some d#0 and, therefore, W has depth n. [J

For the case where o> 1 we distribute all the nonzero words of length n=p” with
entries taken from Z . into o layers. Each layer is divided into n levels. The layers are
labelled by 0, 1,...,x—1. We denote layer i of the words over o=p* by L, ;. When
there is no ambiguity, we will denote L, ; by L;. Layer L; consists of all the words in
which p* divides all the entries, and there is some entry which is not divisible by p'*?.
We now describe how the words in each layer are partitioned into n levels, labelled by
1200

Assume first that @ =1, in which case there is only one layer, L, o. Level 1 of that
layer consists of all words W =[w(0),...,w(n—1)] for which Y72} w(i)#0(mod p).
Levels of higher indices are defined by induction, as follows: A word ¥ is in level i+ 1
iff there is a word U in level i such that '=(E—1)U. Note that, by the proof of
Lemma 6.1, there are exactly n levels, and a word ¥ is in level i ifT its depth is n—i+ 1.

For a>1, the levels of layer L,; (0<i<o—1) are defined as follows: Let
V=[v(0),...,v(n—1)] be a word in layer L,; Then wv(k) is divisible by p’ for
k=0,...,n—1 and, hence, the word (1/p‘) ¥V (mod p)=[(v(0)/p")(modp),...,
(v(n—1)/p') (mod p)] is well-defined. Then ¥ is in level j of layer L, ;if (1/p%) ¥ (mod p)
isinlevel jof L, 5. A more illustrative way to describe this definition is as follows: each
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entry v(k) of V' can be written by a p-ary digits, out of which the i least significant
digits, i.e., the digits in positions 0 through i—1, are zeroes. Then V is in level j iff the
word obtained from V" by replacing each entry v(k) by the (i + 1)th least significant
digit, i.e., the digit in position i, of v(k) is in level j of L, ,.

We start with two useful lemmas that follows directly from the definitions and from
Lemma 6.1 and its proof.

Lemma 6.2. (1) If V is in level n of some layer L;, then (E—1)V is either the all-zero
word, or is a word in layer L, for i’ >1i.
(2) If Viis in level j of some layer L;, where j<n, then (E—1)V is in level j41 of L;.

Lemma 6.3. Let V be a word in level j of layer L, ; and let V'=(1/p"") V(mod p*) for
some i' =i and some o' =>i—i'. Then V" is in level j of layer L,. ;_;.. Moreover, let U and
U’ be nonzero words defined by U=(E—1)*V and U'=(E—1)*V". Then U is in level
Jji of layer L, ;, iff U’ is in level j, of layer L, ;, _;.

Before proceeding, we need two more definitions. The height of a word V, denoted
by height(V), is the maximum integer i such that (E—1)!W =V for some word
W (note that (E—1)%V=V by definition; hence, this definition is valid for all
words). The trace of a word V, to be denoted by trace(V), is the set of all nonzero
words U such that (E—1)'V'=U for some i=0. Note that |trace(W)| = depth(W)
and that, by Lemma 6.2, trace(W) contains at most one word in each level of each
layer.

An easy and useful consequence of the above definitions is the following lemma.

Lemma 6.4. If U is in trace(V), then depth(V)< height(U)+depth(U).

The upper bound proof is based on the following lemma.

Lemma 6.5. Let W be a word over o=p? and let O0<iso—2. Let
S=trace(W)n(L; U L;41). If for some 1<j<n/p, S contains a word U in level j of layer
Lisq, then |§S| < n.

The proof of Lemma 6.5 proceeds in few steps. First we consider the case a=2
(which implies that i =0), and then we use Lemma 6.3 to reduce the general case to this
one. The proof for the case « =2 involves some manipulations of binomial coefficients
and polynomials with coefficients from Z ..

Lemma 6.6. Let f(E)= Z?:o a;E’ be a polynomial with coefficients from Z ., k<pf—1,
ay=1, and ay=(—1)*. E—1 divides f(E) and the result is g(E)=f(E)/(E—1)=
Yico BE if and only if b;_i—b;=a(modp?), 1<i<k—1, b,_,=1 and
bo= —agy(mod p?).
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Proof. Follows immediately by computing f(E)=¢(E)(E—1). O

A simple calculation of the binomial coefficients shows that Lemma 6.7 holds.
Lemma 6.7. For 0<j<p", p* divides (") if and only if j % 0(mod p* 1),

Now, we remind the reader that in the Pascal triangle in row k, k =0, and diagonal
i,0<i<k, we have the binomial coefficients (%). We use the Pascal triangle with
computations modulo p®. The following two properties of the Pascal triangle are
needed for our proof:

@ () + () =(51);

(P2) the first number in each diagonal is 1.

Lemma 6.8. The largest x such that (E—1)* divides E” — 1, where the coefficient are
computed in Z ., is x=pf~ 1.

Proof. A simple division shows that

E””l””‘

Ll

Now, note that, by (P2), these coefficients are the 0 diagonal in the Pascal triangle
from row 0 to row p” — 1. By (P1) and (P2), and Lemma 6.6, if the numbers of diagonal
k from row k to row p” — 1, are the coefficients of (E”" — 1)/(E—1)**! then the numbers
of diagonal k+1 from row k+1 to row p’—1, are the coefficients of
(E”" — )/(E—1**2 if and only if (2’7 })=(—1)** (mod p?).

By Lemma 6.7, all the first p” ! entries, except for the first one, in the pPth row of
the Pascal triangle are zeros and the next element is not zero. By using the facts that
the first element in each row is 1 and (P1) it follows that (%7 }) ={— 1) (mod p?)
for i<pf™!'-2. For i=p/~'—1, (7')#(—1)*'(modp?) since (77})=
(—1)"2(mod p?) and (pff.)gé{)(mod AL

We now proceed with the proof of Lemma 6.5 for the case o =2. By Lemma 6.8, for
each j, 1<j<p?~!, we can write E” —1=£,(E)(E—1)’, where [(E)=Y"J a,E'. We
use this to prove the following lemma.

Lemma 6.9. Let 1 <j<p”~"' and let W be a word over 6= p2. Then height (W) isj—1iff
JH(E)W=[d]" for some d +0.

Proof. A word is in level 1 of layers 0 or 1 iff the sum of its entries is not congruent
to O(modp?). Hence, a word W is in level 1 iff [(E”—1)/E-1)]W=
SITo EfW=f,(E) W=[d]" for some d #0. Hence, by the definition of the levels, for
a word Wand 1<j<p”™", height(W)=j—1 iff f;(E)W=[d]". O
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Lemma 6.10. Let j and W be as in Lemma 6.9. If Wis in level j of L, (=L, ), then
height(W)=j—1.

Proof. By Lemma 6.9, it is sufficient to prove that for each word W in level j of L, it
holds that f;(E) W=[d]" for some d #0, where 1 <j<p”~'. For j=1 this holds since
the sum of the entries of a word W in level 1 is not congruent to 0(mod p?). The proof
for 1<j<p?~"' is by induction, using the equality of S(E)=(E—1) f;+,(E) and
Lemma 6.2. [J

Proof of Lemma 6.5. Assume first that «=2 and i=0. In this case, |S| = depth(¥).
Assume that trace(W) contains a word U at level j of L, for some 1< j<n/p. Then, by
Lemma 6.10, height(U)=j—1, and by Lemmas 6.1 and 6.2 and the definitions,
depth(U)=n—j+ 1. Using Lemma 6.4, we get

depth(W)< height(U)+depth(U)=n,

which proves the lemma for az=2.

Assume now that «>2, and let W and i be given (0<i<«—2). The lemma holds
trivially if S does not contain a word in L;, so assume that ¥ is a word of SnL; of
minimum possible level. Let V' =(1/p’) ¥(mod p?). Then, using Lemma 6.3, we get
that for 0k and ¢=0, 1, (E—1) *Vis in level j of L, ;,, iff (E—1) ¥} is in level j of
L, .. In particular, |Sn(L;uL;y )| =depth(V)<n. O

Theorem 6.11. The depth of a word of length n=p? over oc=p* is at most
n+(e—1)n—p? H=n+(a—1)(n—n/p).

Proof. Since depth(W)=|trace(W)|, it is sufficient to prove that |[trace(W)|<
n+(a—1)(n—n/p). We define T;=trace(W)nL; and prove that Y }|Ti|<
n+(e—1)(n—n/p).

Denote T; as critical if 0<i<a—1 and T; contains a word V in level j of L;, where
1< j<n/p If no T is critical, then | T;| < n—n/p for all i except possibly i=0, and the
theorem follows. So, assume that some 7} is critical. Let i, be the maximal index such
that T, is critical. Then by Lemma 6.5, |T;, U T}, - ;| < n. Now, let i, be the maximal
i<i;— ] for which T, is critical (if there is such an i). Then |T,,uT,,_,|<n.
Continuing this way, we eventually get a sequence iy, ..., i, such that i,, ; <i;— 1, each
T;, s critical, and for every i which is not in {i;,i; —1,i5, i —1,..., i, i—1}, T; is not
critical. The 2k indices iy, i; — 1,..., i, i, — 1 correspond to 2k layers which contains at
most kn entries of trace( W). Out of the remaining o — 2k layers, no one is critical. This
means that except possibly L, each of these remaining layers contains at most n—n/p
entries of trace( W). Thus, we get

=ik

S | Til<n+kn+(x—2k—1)(n—n/p).

i=0
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Since n—n/p=n/2, the above inequality attains its maximum when k=0. This
completes the proof of the theorem. [

We now prove that the lower bound of Theorem 6.11 is tight. Specifically, we prove
a slightly stronger result.

Theorem 6.12. For I=1,...,a, all the words in level 1 of layer L, .-, are of depth
n+(l—1)(n—n/p).

The proof of Theorem 6.12 is by induction on [. The base [=1 follows from Lemmas
6.1 and 6.3. Before proving the induction step, we next prove that, for each i, all the
words in level 1 of L, ; have the same depth.

Lemma 6.13. For all o and i (i<w), all the words in level 1 of L, ; have the same depth.

Proof. Let W*=[p',0,...,0]. Then all the words in layer L; are spanned by W* and
its cyclic shifts, which means, by the linearity of the operator E, that for every word
Vin L;, depth(V)<depth(W*). We will show that for every ¥ in level 1 of layer L,
depth(V)=depth(W*).

Let depth(W*)=k for some k. Then (E—1)*"* W*=[b]" for some b #0(mod p*). It
is sufficient to prove that for every ¥V in level 1 of layer L;, (E—1)*"' V' =[d]" for
some d #0(mod p*). Since V is in level 1, ¥'=p'U for some U=[u(0),...,u(n—1)],
where Y725 u(i)=c for some ¢#0(mod p). In particular, by Lemma 3.1, ¥ has the
same depth as V'=(Y"Z, u(i)E")(W*) and, hence, again by the linearity of the
operator E, (E—1)F~ 1V’—c[Eu—l]"" W*=c[b]"=[bc]"=[d]", where d= bc. Since
b#0(modp*) and c#0(modp), we have that d=£0(mod p*), which proves the
lemma. [l

By Lemma 6.13, in proving Theorem 6.12 it is sufficient to consider words of the
form [p’, 0,...,0] or cyclic shifts of such words. Lemma 6.3 can now be used to reduce
this further.

Lemma 6.14. Let W=[p',0,...,0] be a word in level 1 of layer L,; Then
depth(W)=depth(W’), where W' =[1,0,...,0] is in level 1 of layer L,_;,.

Substituting i=o—/in Lemma 6.14, the induction step in the proof of Theorem 6.12
will follow from Lemma 6.15.

Lemma 6.15. Assume that Theorem 6.12 holds for 1—1 (I>1), and let W=[1,0,...,0]
be in level 1 of layer L, . Then there exists a word U in layer L, | such that

(1) U=(E-1)"W.

(2) U=(E=1)"?V for some V in level 1 of layer L, ;. Hence, by induction,
depth(U)=(I—1)(n—n/p).
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In particular, depth(W)=depth(U)+n=n+(—1)(n—n/p).

Thus, it only remains to prove Lemma 6.13. As in the case of the lower bound proof,
we use Lemmas 6.2 and 6.3 to reduce Lemma 6.15 to the case x=2. In particular,
Lemma 6.15 will follow from the induction hypothesis for | —1 and from Lemma 6.15'.

Lemma 6.15". Let W=[1,0,...,0] be in level 1 of layer L, o. Then there exists a word
U in layer L, ; such that

(1) U=(E—1)"W.

(2) U=(E—1)""V for some V in level 1 of layer L, ;. Hence, depth(U)=n—n/p.
In particular, depth(W)=depth(U)+n=n+(n—n/p).

The proof of Lemma 6.15" will follow from some results concerning the binomial
coefficients (mod p?), which are presented next.

Lemma 6.16. Let p be an odd prime, then (,f" 1) =(2)=(—1)"""! p/i(mod p?), for i <p,
where 1/i is the inverse of i modulo p*.

Proof. We compute the two binomial coefficients

(.v) p!  _(p—i+D(p=i+2)--(p—2)(p—1)p

i/ (p—Dli!™ 12--(i—2)(i—1)1
_G=0(=2-2 1 (=W -
= (=2 1D)i =(—1)""p/i(mod p-).

( P ): (7)!
ip"' ) (P —ip" )lipT M)

S{pi=ip i e o) (p 2 )
1-2-(ip" T =2)(ip" "= 1)ip" !

(i P (=
12 (p = =) (i~ = D)i

=(—1)"!pfi(mod p?). O

Lemma 6.17. Let p be an odd prime, then (E—1)"" = ¥2_ (— 1)@ =% FO)EP
where the coefficients are computed modulo p?.

Proof. Follows immediately from expanding (E—1)” and Lemma 6.7. [

Lemma 6.18. Let p be an odd prime, n=p*, W a word with entries from Z ,> which are
divisible by p. Then (E—1)"'W=(E" "—1)W.
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Proof. Follows from Lemma 6.17 and the fact that p divides (”; '), 1<j<pf ' —1,
and r-;r:;-lz)_}-‘pEO(mOd p*) for any y (any entry in W is yp for some ¥y O

Lemma 6.19. Let X=[x(0), x(1),....x(p—1)] be a word defined by x(0)=0,
x()=(=1)"'(}), 1<i<p—1. Then, there exists a word Y such that (E—1)Y=X,
where computation performed modulo p?, and the sum of entries in Y is not congruent to
0 modulo p>.

Proof. Let Y= [}‘{0)1 Jr(t}a L }{ P— I}]‘ WhCIC _]"(OJ =0$ y{g): Zj‘:l x(J) =
Yi=1 (=1)771(%), 1<i<p—1. It is clear that (E—1)Y=X. Also, y(p—1)=0 since

p—1 is even and (’;)=(P”,.). Therefore, by using Lemma 6.16 and the following
equality,

(—1}*'"(p—f—l)(’.’)ﬂ—l)”‘f-lu—l)( . .)z(—l)f‘lfp—zf)(‘?)
i p—i i

E(—I}I_'(—Zf)(?)(modpz},

we have

r—1 P2 i . 23 r—=2 ' P
roal=3 ) (—IJ"_l(j)E > (—1]‘_1lP—f—I}(i)
i=0 i=1

i=1 j=1

2 e |
= ), (=2)(=1)" (i)E S e e
i=1 i=1
g1
3
EIZ (—2p)=p(mod p?). O

Proof of Lemma 6.15'. Assume first that p is an odd prime, and let n=p”, as before.
Let x=2, m=p’~! —1 and X the word defined in Lemma 6.19. Let U’'=(E—1)" W.
By Lemmas 3.1 and 6.17, U’ has the same depth as U =[x(0), 0™, x(1),...,0" x(p—1),
0™]. Then, by Lemmas 6.18 and 6.19, the word V"= y(0), 0™, y(1),...,0™, »p—1),07]
is in layer 1 level 1 and (E—1y" V=(E" '—1)V=U. By the correctness of the
theorem for I=1, depth(V)=n and, hence, depth(U)=n—n/p, meaning that
depth(W)= n+(n—n/p), as claimed.

For p=2, =2, we have by Lemma 6.7 that (E—1)* =E¥ +2E¥ '+ 1 and, hence,
for W*=[1,0,...,0], we have (E—1)*W*=[2,0"""20"""!]. The word
V=[2,0"" '] is the one in layer 1 level 1, for which (E—1)*" ' V=(E—1* W*. [

As mentioned before, the proof of Theorem 6.12 follows immediately from Lemmas
6.15 and 6.15,
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