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Relativized forms of deterministic and nondeterministic time complexity classes are
considered. It is shown, at variance with recently published observations, that one basic step
by step simulation technique in complexity theory does not relativize (i.e., does not generalize
to computations with oracles), using the current definitions for time and space complexity of
oracle computations. A new natural definition is given with respect to which this simulation
does relativize. Further results in the paper are obtained with respect to this new definition. It
is shown that for each “well-behaved” class of functions, 7, there is a set E such that for each
function #(n) € 1, there is a set which is accepted in #(n) time by a nondeterministic Turing
machine with oracle E, but is not accepted in less than O(2“™) time by any deterministic
Turing machine with oracle E, and there is another set which is accepted in t(n) time by a
deterministic Turing machine with oracle E, but is not accepted in less than O(#{n)) time by
any nondeterministic Turing machine with oracle E. The techniques used are based on
refinements of diagonalization techniques of Baker et al. (SICOMP (1975), 421-442) and
Ladner and Lynch (Math. Systems Theory 10 (1976), 19-32). One immediate corollary is a
generalization of a theorem of Baker et al. (SICOMP (1975), 421-442), which asserts that for
some set E, PE % NPE. Other applications concerning deterministic and nondeterministic
relativized time hierarchies are given.

1. INTRODUCTION

The problem whether the class of sets which can be recognized by deterministic
Turing machines in polynomial time is equal to the class of sets which can be
recognized by non-deterministic Turing machines in polynomial time (generally
referred to as the “P = ?NP” problem), has long been known for its hardness (3, 6, 1,
5]. Some researchers tend to explain our difficulty in solving this problem by the
following observations (originating in [2]):

OBSERVATION (la). The P = ?NP problem may have different anwswers under
different relativizations (i.e., for some sets A and B, P* = NP' and P®+ NP®.
PE(NPF) denote the class of sets accepted in polynomial time by (non)deterministic
Turing machines with oracle set E).

OBSERVATION (1b). The methods known today of proving or disproving equality
between classes of sets relativize (i.e., proving by those methods that P= NP
(P # NP) would imply that P* = NP* (P* # NP*) for arbitrary set E).
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Thus, proving that P = NP (P # NP) by a method satisfying observation (1b) will
contradict observation (1a).

A similar argument has been used to provide an evidence for the difficulty of other
hard problems in complexity theory, e.g., the following problem:

Assuming that P # NP, is the Class R, of randomly recognizable in polynomial
time sets, equal to P? (See [9].)

The validity of observation (1b) above may depend on the exact definition of time
(or space) complexity of oracle computations: In [7] a definition of space complexity
is given, under which certain theorems, involving Nlog space complexity classes, do
not relativize. In this paper it is shown that under the standard definition of the
complexity of oracle computations, as used in [2], the linear speed-up theorem does
not relativize. We give a broader definition for time and space complexity of oracle
computations, under which all the above theorems relativize, and this definition is
used in the rest of the paper. (Our results, however, concern only time complexity
classes.)

Failing to solve the P = 7NP problem, it still could be hoped that some nontrivial
upper bound on the time complexity of NP could be found (e.g., that each problem in
NP could be solved in O(2") time—see |1, p. 403]). In this paper we show that,
under certain relativization, no such nontrivial upper bound exists. This implies that
proving such a nontrivial upper bound, if at all possible, requires a technique which
does not relativize, and hence it is probably not substantially easier than solving the
P = INP problem. We also show that proving that nondeterminism is always faster
than determinism (i.e., that each set which is recognizable by a deterministic Turing
machine in t(n) time, where t(n) > O(n),' can be recognized in less than O(t(n)) time
by a nondeterministic Turing machine) requires a technique which does not relativize.
Some applications on the deterministic and nondeterministic time hierarchies under
relativizations are also given.

In Section 2, the preliminary definitions of this paper are given. In Section 3,
Lemma 2, we show that, when using the standard definition for time complexity of
computations with oracle set E, the linear speed-up theorem does not relativize. The
diagonalization technique used to obtain the results of his paper is introduced in this
lemma. We then give an alternative, broader definition for time (and space)
complexity of oracle computations, and the results of this paper apply to this broader
definition. In section 4, the main theorems of this paper are given, together with
several applications.

2. PRELIMINARY DEFINITIONS

Let Z be a finite alphabet. Z* is the set of all finite strings over Z. All sets
mentioned in the sequel are subsets of Z*, for some Z. For a string x € 2*, /(x)
denotes the length of x.

' For functions #(n), s(n), #(n) > O(s(n)) denotes lim,_, ,.(s(n)/1(n)) = 0.
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Our models of computations are multi tape, deterministic and nondeterministic,
Turing machines acceptors, which have one semi-infinite read-only input tape and a
finite number of semi-infinite work tapes. We shall denote (non)deterministic Turing
machines by (N)DTM. The set accepted by an (N)DTM M is the set {x|there is a
computation of M on input x which terminate when M is in an accepting state}. We
shall identify Turing machines with the sets accepted by them. For a more detailed
exposition of Turing machines the reader is referred to |5].

An oracle Turing machine is a Turing machine which has a distinguished
worktape, called the “‘oracle tape,” and three distinguished states—g,, g, and g,,.
The computations of oracle Turing machine are carried with respect to some oracle
set E. When the machine is at state g,, it enters state g ., (¢,,) if the string written on
the oracle tape at that time is in £ (not in E). All other transitions rules of the
machine are the same as that of a regular Turing machine. For an oracle Turing
machine M and a Set E, M* denotes the set accepted by M with oracle Set E.
Throughout the paper, (T,, 7,...) is an enumeration of the oracle DTMs., and
(NT,.NT,....) 1s an enumeration of the oracle NDTM:s.

For a function : Z* > R* (Z* denotes the nonnegative integers, R denotes the
nonnegative real numbers), D(¢(n))* [ND(t(n))f] denotes the class of sets accepted by
oracle DTMs (NDTMs) with oracle set E, which always stops within #(n) steps on all
inputs of length n. DSPACE(t(n))* (NSPACE(t(n))) denotes the class of sets
accepted by oracle DTMs (NDTMs) with oracle Set E, which for all inputs of length
n, always halts with no more than #(n) cells being visited on any work tape (including
the orcale tape.)

A function ¢(n) > n is fully time constructible if there exists a DTM which for all n
halts in exactly #(n) steps on all inputs of length n (or, equivalently, if there exists a
DTM which for all n, halts in exactly #(n) steps on input 0"). A set r of fully time
constructible functions is recursively enumerable and (¢,(n), t,(n),...) is an
enumeration of 7 if:

(i) For each t(n) € 1, t(n) =t;(n) for some i, and

(i1) There is an enumeration (M,,M,,..) of DTMs. s.t. for each i and n,
t,(n) = the number of steps that M, make before halting on input O".”

The set of polynomial bounded, fully time constructible functions is recursively
enumerable, as can be shown by the following enumeration (t;(n)), where

ti(n)=n if T, oninput 0" halts in less than »n steps
=i+n' if 7, on input 0" does not halt within i + n' steps
=¢,0") otherwise,
where T is the ith DTM, and ¢,(x) is the number of steps T, makes before halting on
input x. (¢,(x) = oo if T, diverges on x.)

It is not hard to show that the class of all fully time constructible functions is not recursively
enumerable.
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For a Turing machine M and a fully time constructible function #(n), “M with a
clock #(n)” is a machine which on each input of length »n simulates M up to #(n)
steps, and then halts.

3. OrRACLE COMPUTATIONS AND THE LINEAR SPEED-Up THEOREM
The linear speed-up theorem,” due to Hartmanis and Stearn [4], is the foliowing:

LEMMA 1. Let t(n) be a function s.t. t(n) > O(n). Then for each positive constant
C, D(t(n)) = D(Ct(n)) [ND(t(n)) = ND(Ct(n))].

Proof. See |5, Theorem 12.3]. §

In contradiction to observation (1b) in Section 1, Lemma 1 above does not
relativize, as follows from the following surprising result:

LEMMA 2. Let t be a recursively enumerable class of fully time constructible
functions. Then there exists a set E s.t. for each t(n) € 1, D(t(n) + 2)* & ND(t(n))".

Proof. The set E c {0, 1}* is constructed in stages, where at stage m at most one
string is inserted into E. Let E(m) denote the set of strings inserted into E before
stage m. E(0) =¢. Let (¢,, t,,...) be an enumeration of 7, and let I = ((i,,/,)(i,,/,),---)
be an enumeration of the pairs of nonnegative integers.

For each pair (j, ), NT;; denotes the ith nondeterministic Turing machine, to which
a clock of time #,(n) is attached. Finally, let e(m) be a fast growing function s.t.
e(0)=1 and for m > 1 ¢; (e(m)) > ¢, (e(k)) for all k < m. ((iy,J,) is the kth pair in 1.)
Such a function exists since for each &, ¢; (n) > n for all n.

Stage m is as follows: Run NT7 (" on 0°. If this accepts, then do nothing, else
add 1% to E. (Note that at stage k, for k < m, no string of length #; (e(m)) is
queried about, since ¢; (e(k))<¢; (e(m)) for k<m, and within the ¢, (e(m))
computation steps at stage m, only strings of length <¢; (e(m)) are queried about.)

For a given function ¢(n) € 7, a set E,, is defined by

E x| 10N € B}, (2.1)

Hny =
En) € D(t(n) + 2)F, since E,,, is recognized by a Turing machine which on input x
writes 1‘“> on the oracle tape, which can be done in t(I(x)) steps due to the fully
time constructibility of #(n), and then queries about 11D "and accepts iff 1'/*’ € E
(i.e., g, is the accepting state.) That can be done in another two steps.

Suppose now that E,,, is accepted by the ith nondeterministic Turing machine NT;
in #(n) time, and let j be such that ,(n)) = #(n). Let (i,/) be the mth pair in 7. Then
{}B(M) cE nelm) e NTEm ., netm) = NITE ., tle(m)) EFE ne(m} e 7 3 contra-

"")‘—'U T l:il'.l-j‘_l' T Ly, @ CcOiiifa

diction. This complete the proof of the lemma. [
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Since clearly D(t(n))f < ND(t(n))?, Lemma 2 above implies that D(t(n) + 2)* &
D(t(n))®, and hence D(t(n))*s D(Ct(n))*® for each constant C > 1—which means
that Lemma 1 (the linear speed-up theorem) does not relativize.

The proof of the linear speed up theorem is based on the following observation: In
order to predict the next m moves of a Turing machine 7, the only information
needed is the current state, and the content of 2m — 1 cells in each tape—the cell
currently scanned by the head, and m — 1 cells to the right and to the left of this cell.
Hence, by encoding m cells into one, a fast simulation is possible. The above obser-
vation does not hold for oracle computations, since each query step depend on the
content of the whole nonblank portion of the oracle tape. Therefore, it seems that just
encoding of m cells. of the oracle tape into one does not guarantee a speed up of the
computation. To overcome this deficiency, a model of oracle computation which
“attribute” the speed up property to the oracle tape is needed. Such a model is given
in the following:

DEFINITION 3.1. Oracle Turing machine with oracle tape compression is an
oracle Turing machine which, for some constant C, can make up to C moves of the
oracle head in one time unit, and can compress up to C cells of the oracle tape into
one space unit.

For an oracle set E and a function t(n), D(t(n))5,,, denotes the class of sets
accepted by a deterministic oracle Turing machine with oracle tape compressing,
using oracle set E, in time (n). ND(¢(n))s,,, DSPACE(«(n)):,, and
NDSPACE(t(n))E,,, are defined similarly.

com

LEMMA 1'. For any function t(n) s.t. t(n) > O(n), for any oracle set E and for
any positive constant C, D(t(n))E,,, = D(Ct(n))E,., - (ND(t(n)):,m = ND(Ct(n))E, ).

Proof. By a straight forward generalization of the technique used to prove
Lemma 1 ([5, Theorem 12.3]) to computations with oracle with tape
compression.

Some results resembling Lemma 2 appear in [7]. For instance, it is shown that for
some Set E, Nlogspace® (the sets accepted by nondeterministic Turing machine with
oracle E in logarithmic space) is not included in P, while it is known that
Nlogspace  P. In the model of oracle computation used in that paper, a distinction
is made between the oracle tape and the work tapes: in a space bounded computation.
the work space of the oracle tape is not counted. In other models of oracle
computations, where the space (and time) complexity of the oracle tape are counted,
the “Nlogspace € P” theorem, as well as other results which concern Nlogspace
complexity which appear in {7], do relativize.

It seems that the model of oracle computations with tape compression introduced
above, is the one which fits best to observation (1b), Section 1. The results of this
paper are, therefore, proved with respect to this model.

The following converse of Lemma 1’ will be used later:
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LEmMMA 3. If A € D(t(n)), [A € ND(t(n))E, ], then for some constant C,
A € D(CH(n))* [4 € ND(CH(n))E].

Proof. Omitted. [

4, MAIN RESULTS

All our results concern oracle computations with tape compression, as defined in
Definition 3.1, and are proved in two stages: First we prove a lemma concerning the
standard definition of time complexity of oracle computation, as given in Section 2,
and then we use Lemma 3 above to obtain a result concerning that broader definition.
Thus, taking Lemma 2 to be the first stage, and Lemma 3 the second, we can prove:

THEOREM 1. Let t be a recursively enumerable class of fully time constructible
Junctions. Then there is a set E, s.t. for each function t(n) € t and for each function
s(n) s.t. t(n) > 0(s(n)), it holds true that D(t(n))E,, & ND(s(n))%,

Proof. Let E be the set contructed in Lemma 2. For #(n) € 7, let E,,, be the set
defined in (2.1). By Lemma 2, E,,, € D(t(n) + 2)*, and hence, by Lemma 1’, E,,, €
D(t(n))eom- If D(t(n))eom < ND(s(n))eom for some s(n) s.t. #(n) > O(s(n)), then E,,, €
ND(s(n))%,,,, this implies, by Lemma 3, that E,,, is in ND(Cs(n))* for some
constant C. Since t(n) > O(s(n)), t(n) > Cs(n) for all but a finite number of n’s.
Hence E,,, is in ND(#(n))*, in contradiction to Lemma 2. |

Theorem 1 above implies that under certain relativizations, there exist sets which
cannot be recognized by nondeterministic algorithms faster than by deterministic
ones. We now show that for some sets, under other relativizations, it is almost the
other way around: It is known that if a set A is recognizable in #(n) time by an
NDTM, then for some constant C, 4 is recognizable in 2 time by some DTM (|5,
Theorem 12.10]). This result easily relativizes to computations with oracles. The next
lemma shows that under some relativization, no better upper bound on the deter-
ministic time complexity of nondeterministic computations does exist.

LEMMA 4. Let t be a recursively enumerable class of fully time constructible
functions. Then there is a set E s.t. for each t(n) € t, ND(t(n) + 2)* & D(2"™)".

Proof. The technique of the proof is similar to that of Lemma 2, and is sketched

below:
Tet (¢ ¢ Y he an enumeration of 7 and lat T— (i .Y (7. i). be an
i \F1y EZ3eesj MW GHL VAWMLV WWAVIL VL LERR < ¥4 IHD S ik ,J 1) \*1sJ2) _;
enumeration of the pairs of nonnegative integers. For each pair (i, /) let T}; be the ith

deterministic Turing machine to which a clock of time 2% is attached. Let e(m) be a

function satisfying e(m) > 2%'“**” for all k < m, where (i, j,) is the kth pair in 7, and
let E(m) be the set of strings inserted into E before stage m. Stage m is as follows:
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Run T, on 0°™. If this accepts then do nothing, else add one string of length
(e(m)) Wwhich was not queried about to E. Such a string exists since in 2" steps an
oracle Turing machine queries about less than 2" strings, all of them are of length
<2
Now for a given fully time constructable function f(n), define a set E,,, =
{x |3y € E,l(y)=1t(l(x))}. By an argument similar to the one appearing in Lemma 2,
it can be shown that E,,, € ND(t(n) + 2)*, and E,,, € D(2'™),. |

Using Lemmas 3 and 4, the following theorem can be proved similarly to Theorem
l:

THEOREM 2. Let t be a recursively enumerable class of fully time constructible
functions. Then there exists a Set E s.t. for each function t(n) € t, and for each
Sunction s(n) s.t. 2" > O(s(n)), ND(t(n))eom & D(s(n))eom- N

Combining the diagonalization techniques of Lemmas 2 and 4 (e.g., by executing
stage m of Lemma 2 at stage j = 2m, and stage m of Lemma 4 at stage j =2m + 1), it
is possible to obtain a set £ which satisfies both Theorem 1 and Theorem 2, which
results in:

THEOREM 3. Let t be a recursively enumerable class of fully time constructible
funtions. Then there is a set E s.t. for each t(n) € t:

(a) ND(@(n)E,m € D(s(n)),, for each s(n) s.t. 2" > O(s(n)).
(b) D(t(n))k,m & ND(s(n)),m for each s(n) s.t. t(n) > O(s(n)).

Proof. Omitted.

An interesting corollary of Theorem 3 above concerns the relativization of the
deterministic and nondeterministic time hierarchies:

COROLLARIES 1. Let 7 and E be as in Theorem 3. Then for each t(n) € t and for
each s(n) s.t. Hn)> O(s(n)), it holds true that D(s(n))f,.& D(t(n)),, and
ND(s(n))comS ND(H(1))om-

Proof. Clearly D(s(n))%,., < D(t(n))s,, and ND(s(n))s,, < ND(t(n))s,,,. On the
other hand, by Theorem 3, D(t(n)),,, & ND(s(n))s,,,, which implies that
D(1(n))zom & D(s(1))com> and ND(t(n))com € ND(s(n))ior-

Due to the linear speed-up theorem, the result above is, in a sense, the finest
possible partition of the deterministic and nondeterministic time hierarchies. (For the
unrelativized case, result almost as strong was obtained for the nondeterministic
hierarchy in {10].) This result fits with our intuition that perhaps there are no gaps in
the time hierarchy for “natural” complexity functions.
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5. CONCLUSION

We have shown that under certain relativizations, there is no “uniform” relation
between deterministic and nondeterministic computations: Some sets are accepted by
NDTMs much faster than by DTMs, and for other sets, nondeterminism does not
speed up their deterministic accepting time. The model of time complexity of oracle
computation used is very close to the model of time complexity without oracles,
which implies that proving a result for computations with
the above result is probably not easy, if at all possible.

The most interesting problem related to this paper is, perhaps, the following: is
there a result concerning the relations between time (or space) complexity classes,
which do not relativize to the model of oracle computations with tape compression?
Such a result is necessary for solving the P= ?NP problem, and other problems
mentioned in the text.
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