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Abstract. A unified and general framework for the study of nondeterministic polynomial opti-
mization problems (NPOP) is presented and some properties of NPOP’s are investigated. A
characterization of NPOP’s with regard to their approximability properties is given by proving
necessary and sufficient conditions for two approximability schemes. Known approximability
results are shown to fit within the general frame developed in the paper. Finally NPOP’s are
classified and studied with regard to the possibility or impossibility of ‘reducing’ certain types of
NPOP’s to other types in a sense specified in the text.

1. Introduction

. Non deterministic polynomial optimization problems (NPOP) as introduced in this
ipaper are intended to provide a basis for a natural generalization of the theory of NP

|sets. Intuitively an NPOP is a set whose elements are encoded according to some

:_‘reasonable’ scheme. Each element in the set has a set of nonnegative integers
associated with it assumed to represent a certain combinatorial property of the

element, a property we are interested in (e.g. if the element is a graph the set of
numbers associated with it could be the magnitudes of the different cliques in that
igraph). The elements of the set or rather their encodings are assumed to be
polynomially recognizable and the sets of numbers associated with those elements
are assumed to be computable by a nondeterministic Turing machine in polynomial
time. An algorithm that solves a given NPOP is understood to be an algorithm which
provides, for any element in the set, the maximal (or minimal according to the
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problem at hand) number out of the set of numbers associated with it. Clearly, if
every element in the set of an NPOP has only two numbers associated with it, O or 1,
then such an NPOP is equivalent to the recognition problem for an NP set. The
conjecture that P # NP is widely believed to be true and NP complete problems are
generally believed to be intractable. This prompted many researchers to develop and
study polynomial approximation schemes for NP-problems. Such schemes are more
natural and easier to define and study in the context of optimization problems where
both the output and its approximation are numerical.

In this paper we suggest a formal definition of NPOP and propose a framework for
their study. The definition is similar to other definitions which appeared in the
literature both in explicit and implicit form (see references at the end of the paper)
and has the property that almost all of the known results concerning NPOP in their
various forms, can be stated within its framework. In addition some new and
important results are stated and proved, results providing some new insight concern-
ing the nature of the various approximation schemes for NPOP investigated by
several authors {see e.g. [1, 3, 5, 6, 9, 10, 13, 15, 16, 21-23]) and providing a
characterization of two different approximation schemes studied in the literature.
We believe that these results are important in several ways: A unified framework for
the study of NPOP, their approximation, and their reductions of different types is set.
(As in the NP case reductions may be useful for getting new approximation
algorithms out of known such algorithms.) A characterization of various approxima-
tion schemes may be useful for the finding of proper approximation schemes to fit
new or existing NPOP. Finally such a characterization may also lead in the future toa
universal algorithm which will fit automatically an approximation algorithm to an
NPOP provided such an algorithm exists and provided that the NPOP in case is
known to have certain properties. '

The paper is divided into five sections including this introductory first section,
Section 2 provides the basic definitions. In the third section some general properties
of NPOP and their relation to NP sets are studied. Section 4, which is the core of the
paper, deals with the approximability properties of NPOP and provides a full
characterization of two known approximation schemes. The last section deals with
reducibility properties of NPOP. The paper has two appendices; the first one
provides formal definitions for the different NPOP quoted in the paper and the
second one contains an NPOP version of Cook’s reducibility result for NP.

2. NP optimization problems

Definition 2.1. An optimization problem is a subscripted triple (A, S, [)ex Where
(1) Ext=Min or Ext = Max. .
(2) A is a recursive set. (A is the set of all well formed encodmgs of some given

combinatorial entity, e.g. graphs, families of sets, integer sequences, etc. over a given
alphabet X.) '
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(3) S is a function S: A - Po(Z*). (Po(2*) denotes the set of all finite subsets of
3*)Foreacha € A, S(a) denotes the set of feasible solutions of a. S(A) denotes the
set UaeA a)

(4) A function f is assumed to be given, 7 : A X S(A) > Z " U {£00}, such that for
each pair (a, b), where a € A, b € S(a), f(a, b) denotes the numerical value of b as a
solution of a.'

(5) For each a€ A, t(a) is defined by:

t(a)=1{k|k = t(a, b) for some b € S(a)}.

(If S(a) =0, then t(a) is defined by t(a) = {+00}.) ¢ is a set function intended to specify
the property of the elements of A we want to study, e.g. the number of clauses which
are satisfiable in a given CNF formula, the number of nodes that are pairwise
adjacentin a given graph, etc. With regard to the function ¢ we shall use the following
notation:

op(a) = optimum{k | k € t(a)}

where optimum is ‘max’ if Ext = Max, and it is ‘min’ if Ext = Min. The value ‘00’ will
be regarded as ‘400’ if Ext = Min and as ‘—o0’ if Ext = Max. Foragivena € A, §*(a)is
defined by:

S*(a)={b|be S(a)and t(a, b) =op(a)}.

An optimization problem is an NP optimization problem (NPOP) if the following
additional conditions hold true:

(6) The set A is recognizable in polynomial time.

(7) For each a € A, the function §: A - S(A) has the following properties:

(7.1) There is a polynomial p such that, if a € A and b € S(a), then {(b) < p(I(a)).?

(7.2) The set {(a, b)|ac A, be S(a)} is recognizable in deterministic polynomial

time.

It is easy to see that the above conditions imply that the function S can be
computed by a nondeterministic polynomial Turing machine.

(8) The function  is of polynomial time complexity.

In many cases, the combinatorial properties (and hence the complexity) of a given
NPOP are determined by A and ¢ alone. We shall therefore abbreviate our notation
and use the notation (A, )g. Whenever the remaining parameter is not relevant to
the context. With each optimization problem and each k € Z*, one can associate aset
defined in a natural way by the following definition:

Definition 2.2. Let (A, t)g, be an optimization problem. Then
(A, e ={ac Aopla)<k}.
' All the results proved in this paper will remain true if ¢ is allowea to assume negative as well as positive

.integral values provided that some minor changes are introduced in the various definitions and proofs.
2 I(x) denotes the length of the input word x. :
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Given an NPOP (A, t)gx, if Ext=Min, then (A, ¢)ex.k is in NP, and if Ext = Max,
then (A, f)gxk i in co-NP. The problem: ‘given ac A, ke Z ", is a € (A, ) mini?’ I8
the recognition problem which corresponds to the optimization problem (A, ¢)in,
and the problem: ‘given ac A, keZ", is acA (A, t)maxx?’ is the recognition
problem which corresponds to (A, )max.

Example 2.3. The subset sum problem is the following NPOP (1s, Sss, fss)max Where:
(1) 1s is the set of all finite sequences of positive integers.
(2) Fora=(ai,...,an b)e1s, Sss(a) is defined by:
Sss(a) :{(Ely cee En)|5i€{0) 1} and (517 LRI EH)¢ (09 e vy O)}

Yea; if Yea;<b,
—© if ¥ ea; > b:

t(a, (1, ..., €a)) ={

(It follows that op(a) = max{k |k =Y &;a;, k <b}.)

3. Solutions of optimization problems: constructive and nonconstructive

When considering optimization problems a distinction should be made between
‘constructive’ solutions and ‘nonconstructive’ solutions: Consider e.g. the colorabil-
ity problem: It is reasonable to assume that the problem of ascertaining whether a
given graph is k-colorable is different from the problem of actually finding a k
coloration (provided that it exists).

Let (A, S, f)ex be a given NPOP. An algorithm that solves (A, S, )i, is a recursive
function f:X* > Z" U{xoo}u{a} (a is a special symbol not in Z), satisfying the
following conditions:

(a) fiw)=a S wegA,

(2) (Vae A)(f(a)=op(a)). .
An ‘algorithm that solves (A, )gy constructively’ is a recursive function f:3* - .
2* U {B} satisfying the following: , '

(1) fw)=B < we A (B is anew symbol notin X),

(2) (Vae A)(f(a)e S*(a)).

Definition 3.1. (A, S, )gx is (constructively) polynomially solvable if there exists a
polynomial time algorithm that solves (A, S, )gx (constructively). Such an algorithm
is a (constructive) polynomial solution of (A, S, !)gy..

A connection between the complexity of an optimization problem (A, t)gx and the
complexity of the sets (A, #)gx r induced by it is established in the follbwing lemma.
Some more restricted but related results can be found in the literature (see e.g. [20,
Theorem 2.5.1] and [23, p. 732)).
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Lemma 3.2. Let (A, t)gx be an NPOP. The following two conditions are equivalent:
(1) There exists a polynomial p (not depending on k) such that the problem ‘is
ac (A, Hexwr? is decidable in p(l(a)) time.
(2) (A, t)gx is polynomially solvable.

Proof. (2) = (1): By the definition of NPOP, there exists a polynomial p; such that
lop(a)] < 27" for each a in A. Hence, after op(a) has been computed, one needs at
most log(op(a)) <pi(l(a)) steps to find whether op(a) < k.

(1) = (2): Using binary search, at most p;(/(a)) recognition problems ( p; is defined
as above) of the form ‘is a € (A, ?)gx 7’ have to be solved in order to find op(a). Each
of those problems can be solved in time p(/(a)). The total time needed is at most

p((a)) - pr(l(a)).

We shall next formalize and generalize known techniques to obtain polynomial
time constructive solutions to optimization problems, given polynomial time
(nonconstructive) solutions for those problems (see e.g. [20, Theorem 2.3.1)).

Definition 3.3. Let (A, S, 7)g. be an optimization problem, and let x € X* be given.
For each a e A, S,y(a) and 1,,(a) and op.(a) are defined by:

Sw@)y=S(a)nx-X* (={b|beS(a)and b =xy forsome y € I*}),
twla)=1{k|k =1(a, b) for some b € §y(a)},
opx(a)=optimumik | k € t,(a)}.

(If Sry(a) =0, then 1(a) ={£0}.)

Lemma 3.4. Let (A, S, [)ex be an NPOP. If the following ‘prefix restricted form’ of
(A, S, Dexe: ‘on input (a,x),ac A, x € X¥, find opw(a)’ is polynomially solvable,
then (A, S, t)ex is constructively polynomially solvable.

Proof. Assume that the prefix restricted form of (A, S, 7)gy. is poiynomially solvable.
There exists a polynomial p; such that for each a€ A, b€ S(a) irriplies that /(b)) <
p1(l(a)). Thus, if I(x) > pi(l(a)), then there is no b € S(a) whose prefix equals x and
therefore the only solution for such an input (a, x) is £co. Otherwise, if [(x)=<
p1(l(a)), then the length of the inputis bounded by a polynomial in /(a). In both cases
the prefix restricted form of (A, S, 1) is solvable in time polynomial in /(a) alone.

The following algorithm finds a 5* € $*(a) such that 7(a, b*) = op(a) in time which
is polynomialin /(a). (Due to the fact that (A, S, f)ex is solvable in NP space, [(b*) is
bounded by a polynomial in {{a).)

1. x < A;||A denotes the null string ||

2. find op(a); lop(a) = opu,(a)||

3. if x € S(a) and t(a, x) = op(a) then halt and return x. else.
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|IBy the construction of x so far op,)(a) =op(a), and by step 3 above x £ S*(a). It

follows that there exists some y € 37 such that xy € $*(a), and hence there is some

o € 3 such that op(.,(a) =op{a)|

4, find o € 3 such that op(y(a) =op(a). x « xo, go to 3.
Tt is easy to see that the above algorithm constructs, step by step, a string x € * such
that x € $*(a), and that the number of repetitions of lines 3—4 is /(x). The result
follows easily from the fact that |X| is a constant, and op(,(a) is computable in time
polynomial in /{(a) for any x, where the polynomial does not depend on x.

Many problems have the property that the existence of a polynomial time solutions
for them implies the existence of a polynomial time constructive solutions.
The following corollary gives a simple characterization of such problems:

Corollary 3.5. Let (A, S, t)g be an NPOP. If the prefix restricted form of it is
polynomially reducible’ to it, then the problem of solving ‘constructively’ (A, S, [)gx is
polynomially reducible to (A, S, )gx.

Proof. The conditions of the corollary imply the conditions of Lemma 3.4.

A problem for which the condition of the corollary above is not known to hold is
the following optimization version of the ‘non prime’ problem, (Z ™, S,, f,)max Where
foraeZ”, S,(a)={k|keZ",1<k<a}, and t, is defined by

2 ifk|a,
1 otherwise,

g, k)=

t,(a)={b|b=1,(a, k) for some 1<k <a}. Thus, for acZ", op(a)=2 iff a is
nonprime. For a given x € 2* (assume 3 = {0, 1}), op(y)(a) = 2 iff there is a divisor of a
whose (binary) representation is xy for some y. No polynomial time algorithm is
known such that for each x € 3* reduces the prefix restricted form of (Z™, S,, ,)max
to (Z™, S,, t,)max- Indeed, it is probably much easier to solve the problem itself (i.e.,
to tell whether a given integer is a prime) than to solve it constructively (i.e., to find a
divisor of a given integer, provided it is nonprime); see e.g. [19, 25].

Theorem 3.6. The following three conditions are equivalent:
(1) P=NP.
(2) All NPOP’s are polynomially solvable.
(3) All NPOP’s are constructively polynomially solvable.

Proof. (1)= (2): Let (A, ) be an NPOP. It follows from the definitions of an
NPOP that the set

{(a,k)|acA, keZ", opla)<k} C o )

3 le., one can solve the prefix restricted form of (A, S, F)g,. in polynomial time given that (A, S, Pgx is
polynomially solvable. o ‘
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is in NP or in co-NP. Therefore if P = NP the set () is recognizable in time which is
polynomial in the length of the pair (g, k). There is a polynomial p; such that for each
a€A,l(op(a))=p,((a)). Thus,if /(k)>pi(l(a)), then the pair (a, k) is trivially in the
set (). Otherwise, if [(k) =< p;(l(a)), then the length of the pair (a, k) is bounded by a
polynomialin /(a). In both cases, if P = NP, then the set () is decidable in time which
. is polynomial, in [(a) alone. Thus, in order to check whether a € (A, g it is
enough to check whether (a, k) € (), and this can be done in time which is polynomial
in [(a) alone. It follows that the first condition of Lemma 3.2 is satisfied, this implying
by Lemma 3.2. the condition (2) of this lemma.

(2) = (3): The prefix restricted form of any NPOP is itself an NPOP as one can see
easily. Therefore the above implication follows from Lemma 3.4,

(3) = (1): Trivially.

Another interesting consequence of Lemma 3.4 and Theorem 3.6 is reflected in
the following definition and corollary:

Definition 3.7. An NPOP (A, {)g, is NPOP complete if for each NPOP (B, t')gyt,
there is an algorithm which solves (B, t')gx, in polynomial time if that algorithm is
allowed to use the operation of computing op(a) for each a € A in polynomial time.

Corollary 3.8. If some NPOP complete problem is polynomially solvable then all
NPOP’s are constructively polynomially solvable ; in addition a given NPOP complete
problem is polynomially solvable if and only if it is constructively polynomially
solvable.

4. p-approximations for NPOP’s

The approximability of various optimization problems has been investigated
extensively in the literature in the past few years. While some problems have been
shown to have good approximation algorithms (e.g. [10, 9, 21, etc]), other problems
have been shown not to be approximable (in a sense to be defined) if P > NP (e.g. [22,
6,7, 15, etc]).

Some of the above mentioned results are formalized (to fit our definijtions) and
generalized, and some new results are given in this section.

Definition 4.1. A function h:3* > Z" U{xoo}u{a)} is a p-approximation for an
optimization problem (A, t)gy iff A is a polynomial time function satisfying the
following properties:

(1) hiw)=a <& weg A (a is a special symbol not in Z),

(2) h{a)=opla) if Ext=Min and h(a)<op(a) if Ext =Max;

(3) h(a)==zxw if op(a) = xc0.
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Definition 4.2. A function h.:X*->3* is a constructive p-approximation for an
optimization problem (A, S, f)gx if A is a polynomial time function satisfying the
following properties:

(1) hew)=0a'if weg A (a' is a symbol not in %),

(2) (VaeA) (hla)eS(a)).

The following results hold true for both the constructive and the non-constructive
case. We shall omit the proofs for the constructive case, those proofs being similar to
the proofs for the nonconstructive case.

The performance of a p-approximation 4 can be defined as follows (see e.g.
[10, 217):

|h(a)—op(a)|
(Va e A)P,(a) = { min{h{a), op(a)}

if mih{h(a), opla)}# oo,

00 else.
As a function of the length of the input, the performance is defined by:

(Vrne Z")P,(n)=max{p,(a)|l(a)<n and p,(a) # oo}.

Definition 4.3. An optimization problem is f(n) p-approximable if there is a
p-approximation function, 4, for (A, t)g, such that p,(n)<f(n) forallne Z".

An optimization problem is approximable iff for each £ >0 there is a p-approxi-
mation function h for (A, f)g.« such that p,(a)<e for all ac A. (A, gy is fully
approximable if for each £ >0 there is a p-approximating function 4 as above with
the additional properties that & can be computed in polynomial time Q where
Q =0Q(l{a), 1/¢e), i.e., Q is polynomial in both the length of a and the value 1/¢.
(Those problems are defined as problems which have a ‘polynomial time approxi-
mation scheme’ or ‘fully polynomial time approximation scheme’ respectively in [7].)

It is known from the literature that there are problems which are approximable or
fully approximable, and there are other problems which are not approximable
according to the above definitions, if P# NP. It is important therefore to have
necessary or sufficient conditions for approximability or full approximability.

After the first version of this paper appeared [17], the authors became aware of a
result of Garey and Johnson [7] concerning a necessary condition for full approxi-
mability. That resultis reproduced here (with due changes to fit our definition) for the
sake of comparison and completeness. ‘

Let max be a function from problem instances to Z . Problem instances are
assumed to have components which are positive integers, and max(a) denotes the
maximal integer appearing in a where a € A is an instance of a problem.

An algorithm is pseudo polynomial if its time complexity is ,bourilded from above
by a polynomial in /{a) and max{a).
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Theorem 4.4 (G-J). Let (A, t)ex be an optimization problem such that op(a) is
bounded from above by a polynomial in both max(a) and I(a). If (A, t)ex is fully
“approximable, then it has a pseudo polynomial time solution.

A deficiency of the above theorem is its restricted nature as reflected in the
conditions on op(a) which do not always hold (e.g. consider the problem: ‘on input
(@y,...,Qn by, ..., by, b)findasubset I<{1,2,...,n}suchthat[],_;a; is maximal
subject to ), ., b; < b. Other examples can be found in [16]).

We shall introduce now necessary conditions for approximability and full approx-
imability not having the above deficiency, and stronger in a sense to be described in
the sequel.

4.1. Necessary conditions for approximability and full approximability

Definition 4.5. An optimization problem (A, t)g, is simple iff for each ke Z™,
(A, Dexx s asetin P. (A, H)gx is rigid if it is not simple.

Notice that no connection is assumed between /(a) and op(a) in the condition
defined above. The condition is therefore applicable to the previous examples.

Definition 4.6. A simple optimization problem (A, t)g is p-simple iff there is some
polynomial Q(x, y) such that for each k € Z~, (A, t)gx:.« is recognizable in Q(I(a), k)
time. ’

Remark 4.7. The following properties are easy to prove for a given NPOP (A, #)g:

(1) If it is p-simple and, for all ae A, op(a) is bounded from above by a
polynomial in {(a), then it is polynomially solvable.

(2) If it is p-simple and, for all ae A, op(a) is bounded from above by a
polynomial in max(a) and /(a), then it has a pseudo polynomial solution.

(3) If it has a pseudo polynomial solution and, for all a € A, max(a) is bounded
from above by a polynomial in /(a) and op(a), then it is p-simple (see e.g. [16]).

Theorem 4.8. If (A, t)ex is approximable, then (A, )y is simple.

Proof. Let (A, t)gx be approximable, andlet k € Z be given. Then (A, t)Ext,k isinP:
by definition, for each =0 there is a polynomial (time) function h.:X*->
Z" u{xo}u{a} such that Va € A, :

|he(a)—op(a)|
min{k, (a), op(a)}

Let Ext=Max. (The other case is similar and is omitted.) 4.(a) and op(a) are
integers by definition and 4, (a)<op(a). Thus, k. (a)> k implies that op(a)> k. On
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the other hand, choosing £ = 1/k, the inequality

|he(a)—op(a)] 1
min{h,(a),op(a)} k

implies that

op(a)—hs(a)<l' op{a) 1 1

he(a) 7 ha) ok
and for A.(a) < k this inequality is impossible unless op(a) = k. (a). It follows that:
[hi/k(a)<k]e[opla)<k].

In other words, %1/« is a polynomial function that recognizes (A, t)gxi.

It can be shown that the converse of Theorem 4.8 is not true, and that there are
some simple NPOP’s which are not p-approximable (the TSP* problem [18] is an
example), assuming P # NP.

Theorem 4.9. (A, t)ex is fully approximable implies that (A, t)gy is p-simple.

Proof. Let (A, t)gx be fully approximable and let k € Z ™ be given. Then (A, gy is
recognizable in Q(/(a), k) time for some polynomial Q{(x, y): by definition there is
some polynomial Q'(x, y) such that (A, t)g, is € p-approximable in Q'(l{(a), 1/¢)
time. Choosing £ =1/k, (A, t)gx is 1/k p-approximable in Q'(l{a), k) time, and
applying the same argument as in Theorem 4.8 we see that (A, )gx « 18 recognizable
in Q'(l(a), k) time (thatis: Q= Q").

Remark 4.10. If P# NP, then p-simplicity is not a sufficient condition for full
approximability, as can be shown by the following NPOP ‘modified MAX SUBSET
suM’: (IS, t.s )aax; Which is similar to max subset sum’ with one exception: For an
integer sequence {(ay, as, ..., a, b), ts is defined by:

th(ay, ..., ay, b)={k|k divides b and k = ¥ a;, for some sequence
=1 .

lsi< - <insn}

Given an input (@, * * - an, b) for this problem, its optimum is equal to 4 if and only if
that input satisfies the knapsack property. Let 2 be an ¢ -approximation to the above
problem with ¢ <1. If h(a)>b/2, then b/2 <h(a) <op(a)<b and, as op(a)|b this
implies that op(a) = b. If, on the other hand A(a) < b/2, thenop(a)/h{a)se+1<2
or op{a)<2h(a)<b. Thus op{a) =b iff 1(a)>b/2. This means that any £-approx-
imation with £ <1 to the above problem solves the NP-complete knapsack problem.

4 See Appendix 1.
® See Appendix 1.
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Hence, if P# NP, then this problem is not approximable, and of course not fully
approximable; but it can be shown that this problem is p-simple (see next section).

Remark 4.11. Consider the following problem: Oninput (a1, . . ., a,) where for all i,
a; =3b;, b;c Z", find the minimal k, k > 0, such that k = 1+Y e,a;, where ¢; € {~1, 1}.
This problem is rigid. For k =1, the set (A, t)gq1 (Where (A, £)g. is the above
problem) is easily seen to be equivalent to the partition problem, which is known to
be NP complete, [11]. Therefore, as follows from Theorem 4.8 above, it is not
approximable, which implies that it is not fully approximable. On the other hand, it
does have a pseudo polynomial solution (see [7]). Thus the G-J theorem is not
applicable to this problem (and there are other such problems, see e.g. [16]), while
Theorem 4.8 here is. In addition, it follows from Remark 4.7(2) that the necessary
condition given in the G-J theorem is implied by the necessary condition in Theorem
4.9.1In this sense our necessary condition is stronger than the condition of Garey and
Johnson, as claimed before.

Remark 4.12. One can show that the following problems are simple but not
p-simple: MAX CLIQUE, SET COVER, MAX SAT,® etc. Those problems cannot be fully
approximable if P # NP, as follows from Theorem 4.9. On the other hand, there are
problems which are fully approximable and therefore p-simple [9, 21, 16, etc].

The following is a ‘prototype’ of a p-simple problem — the SUBSET SUM’ problem.

Let a=(ay,...,anb)e(Z*)""" be an input to ‘MAX SUBSET SUM’. Then the
following algorithm will solve the problem: ‘is a € (A, f)gxr? in O(/(a) - k) time
units. The algorithm contains a variable ‘T which is the set of values of all ‘feasible
solutions’, and at the end of the algorithm T = ¢ (a).

begin;

T« {0},i<1;

For every ¢ in T do begin;

If k <c¢+a;<b then halt and reject (comment op(a) > k)
If c+a;<kthen T« Tu{c+a;}end;

If i = n then halt and accept;

i<i+1goto3;

End.

IR I Y N R N e

The algorithm checks, for a given a, whether a & (IS, fi)maxk and'its time
complexity is O(n - k) =0O(l(a) - k). This follows from the fact that |T|<k all
through the execution of the algorithm.

¢ See Appendix 1.
7 See Appendix 1.
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4.2 Other necessary conditions for approximability and full approximability

We are now introducing other necessary conditions for approximability and full
approximability. It will be shown that the conditions in the previous sections together
with the conditions to be introduced here are sufficient for approximability and full
approximability respectively.

Definition 4.13. An NPOP (A, t)gy satisfies the boundedness condition B1 if there is
afunction B:AxZ"»Z3® (forac A, ce Z"*; B(a, c) is denoted by B,.), satisfying
the following:

B1.1: Thereisa polynomial E(rn), E(n)=0 for all positive n, such that for each
ac A andforeachce Z™: '

B..< Opc(“) <B,.+E((a)) i Ext=Max,
Bo=P%o g _E((a) if Ext=Min,

B1.2: The time complexity of B(a, ¢) is bounded from above by Q(/(a), B..),
where Q is some polynomial in two variables.

Definition 4.14. An NPOP (A, 1)g,, satisfies the boundedness condition B2 if there is
a function B as above, satisfying:
B2.1: Thereis some constant E, > 0 such that for each a € A andforeachce Z™:

Ba. = op(a) < B,.+E, if Ext=Max,
C
Ba,c Bop a)BBa,C—EO if Ext =Min.

c
B2.2: The time complexity of B(a, ¢) is bounded by Qg (I(a)), where Qp,_ isa

polynomial which depends on the integer B, . alone.

Remark 4.15. Notice that Condition B1 (and similarly for B2) could also be stated in
the following more natural form.

B1.1: There is a polynomial E(n), E(n)=0 for all positive n, such that for each
acA andforeachceZ™: ‘

0=<(op(a)/c—Ba.)<E(l(a)) if Ext=Max.
B1.2: The time complexity of B(a, ¢) is polynomial in‘l(a) and op(a)/c.
Example 4.16. The MAX SUBSET suM problem satisfies Condition B2;,as shown by
the following algorithm B: - a

8 Z§ denotes the set of nonnegative integers including zero.
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B: Input: ((ai, ..., a b), ¢). Output: B, .
1. Split{1,2,...,n}into Is={i|1<i<n and a; =c} and
Is={1,2,...,nN\g
lcomment: for I ={1,2,..., n}, S; is defined by: St =Y;crai|
2. S* «max{S;|I < Ig, S; <bh}
3, llet Is = (i, . . ., i) for j =1 to [ do
4, if $*+a;, <b then S* « §*+a,
S*
5. Ba,cel—J.
c

Let $* be the value of $* at the termination of the algorithm. If Z?=1 a; < b, then
Y, a;=S*=op(a). Otherwise, by lines 3~4 of the algorithm (and by the definition
of Is), 0= b —S*<c. In both cases ¢ = op(a)—S*=0, and therefore:

0=

M—[QJ =M—Ba,c<2;

C C C

hence Condition B2.1 holds for Eq=2.
The time complexity of lines 1, 3, 4, 5 of the algorithm is O(n). Line.2 can be
performed by the following algorithm:

2.1. Sort the set {a; |i € I's}

|let the so;féd setbe (@1, ..., d), &< di+i
2.2. femax{i|y;_, d;<b}-
2.3. S* e« max{S;|I < I, |I|<T, S, <b}.

The integer 7 computed in lines 2.1-2.2 satisfies the following:

(a) if I < I and |I|>7, then §;=Y7, ;> b.

(b) i< |[S§*/c| = B,,, since Z;=1 a;<8*, and for each j, d; = c. If follows from (a)
above that §*, as defined in line 2.3, satisfies: §* = max{S;|I < I, S; < b}. The time
required to compute 7 (lines 2.1 and 2.2) is O(n log n).” The time complexity of line

2.3 1s O(Z]‘-=1 (), and by (b) above:
d h i e a,c
o, () =ow =0t

It follows that the time complexity of the algorithm as a whole is O(n®=<), and hence
Condition B2.2 hoids too.

In the following theorems we shall assume that Ext = Max. The proofs for the cases
where Ext = Min are similar.

Theorem 4.17. If (A, thvax is fully approximable, then (A, t)vax satisfies Condition
BI1. S o

® This can be reduced to O(n), by using median finding algorithms instead of sorting, as proposed in
[13], Section 4]. o :
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Proof. Let (A, f)max be fully approximable. By the definition there exists a poly-
nomial Q(x, y) such that for each ¢ >0, (A, f)gx is £ p-approximable in Q(l(a), 1/¢)
time. Without loss of generality Q is assumed to be nondecreasing in both its
variables. For agivena€ A, c € Z", B, is computed by the following algorithm B:

B: Input: (a,c)€ AXZ". Output: B,

1. Compute an 1-approximation (i.e., an e-approximation for ¢ = 1) to op(a).
Denote this approximation by hi(a). (By definitions, hi(a)<op(a)<
2h4(a).)

c

2. £«

) hi(a)

3. if £ =1 then begin B, < 0, halt, end.

4. else compute an & approximation to op(a), to be denoted as hj(a).
(ha(a)=<op(a)<h,(a)(a+e))

5. B..< V”(“)J, halt

c

Suppose, first that ¢ <1. By the definitions of B, and ¢ in the algorithm we have
the following:

ho(a c hy(a) opla
Bac E_{ 2c )J hi(a) hjgaighf((a)gz
and
Ba,csh—zc(a—)<Ba,c+1.
Hence we have:
B < hzﬁ")s"pc(“)s hzi“) (14£) <(Bac +1)(1+e)

=B,.te By.+1+e<B,. +4.

If £ =1, then ¢/hi(a)=1, and therefore ¢/op(a) =3, or op(a)/c <2. Hence, in this

case,

°p£“)s2:o+2=3a‘c+2. '

B..=0<

In both cases B, . satisfies Condition B1.1. (In fact even Condition B2.1, which is
stronger.)

We shall now show that the time complexity of algorithm B satisfies the Condition
B1.2: The time complexityof Step 1is Q(l(a), 1) = Q4(/(a)). The time‘cjomplexity of
Step 2 is polynomial in [(a) (note that /(op(a)) is bounded by a polynomial in the
length of a). The time complexity of Step 3 is a constant, The time complexity of
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Step 4 1s

o(1@),2) = o ta),

€

h—@) <Q((a), Bae +4).
C

The time complexity of Step 5 is polynomial in /(a). Altogether, the time complexity
of each step in the algorithm is polynomial eitherin /(a) orin /(a) and B, .. Hence the
time complexity of the algorithm as a whole is polynomial in /(a) and B,., as
required.

Theorem 4.18. If (A, t)max is approximable, then it satisfies Condition B2.

Proof. If (A, t)g. is approximable then there exists an infinite sequence of poly-
nomials (Q4(n), Q2(n), .. .)such that for each £ >0, (A, t)ex can be & -approximated
in Q1/.1(/(a)) time. Without loss of generality we may assume that k, > k; implies
O, (n) = Oy, (n) for all . (If this is not the case, define Q% (n) = Z:‘zl Q;(n)and Q%(n)
satisfies the assumption.) Bearing this in mind, Theorem 4.18 can be proved along
the same lines as Theorem 4.17. The details are omitted.

Remark 4.19. While the necessary conditions given in Section 4.1 are decidability
conditions (to decide whether given sets are in P) and as such have been investigated
for many particular cases, the boundedness conditions given here are new, numerical
and have not been yet investigated. To get some more insight into the nature of those
conditions notice the following properties:

(1) As op(a)=<2""“” for some polynomial p and all a€ A, if ¢=2""* (or
I(c) =< p"“”), then the conditions will hold true for B, = 0. Thus the condition must
be verified for bounded c only.

(2) Assume that a given NPOP is fully approximable. Then it is p-simple and it
satisfies B1. If the problem is not polynomially solvable, then op(a) is not poly-
nomially bounded by I(a) (see Remark 4.7(1)). Thus, although |B.;—op(a)|<
E({(a)) itis not ‘practical’ to get an approximation to op(a) by computing B, ; as the
complexity of this computation is polynomial in B, ;, which is ‘polynomially close’ to
op(a) which is not ‘polynomially bounded’ by I/(a).

4.3. Necessary and sufficient conditions for approximability and full approximability

Theorem 4.20. (A, )y is fully approximable & the following conditions holu:
(1) (A, )gx is p-simple,
(2) (A, ex satisfies Condition B1.

Proof. (=) Condition (1) was shown to be necessary in Theorem 4.9 Condjtion (2)
was shown to be necessary in Theorem 4.17, : "

(<) We have to show that there is a polynomial Q(x, y) such that for each ¢ >0,
(A, DExe can be e-approximated using an algorithm with time .complexity
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Q(l(a),1/¢). Given a and ¢, we shall construct an e-approximation of the form
¢ + B, .. Without loss of generality we assume that ¢ <1:

(a) By Condition B1.1, for any ¢ the following inequalities hold provided that
B,.>0: B,.<opla)/c <BaC+E( (a)). Dividing by B, . and rearranging terms,
we get:
op(a)=c¢ * Bac _ E(l(a))

¢ Bac B,

0=

(b) It follows from (a) that ¢ - B, is an e -approximation to op(a), provided that

E(l(a)) E(l(a))
: <g or B, = .
B, ’ £

Notice that the above condition implies that B, > 0.

(c) By the p-simplicity it can be checked in time polynomial in [{a) and 1/¢
whether op(a) <2E(l(a))/e. If this is the case, op(a) can be computed (using binary
search, for instance), in time which is also polynomial in /(a) and 1/e. We shall
assume, therefore, that op(a)>2E(I(a))/e.

(d) There exists a polynomial p(/(a)) (which can be computed in time polynomial
in I(a)) such that op(a) <2°"“”. By Condition B1.1:

op(a)

Bgaruer < —2p(l(a)) 1

and hence B, jruan =0,
(e) Again, by Condition B1.1 we have that B, ; =op(a)— E({(a)). From this, from
(c) above and from the fact that £ <1, we get:

2E(l(a)) E( (a))

B,i1=op(a)-E(l(a))=————E(l{a))=
Since, by (d) above, B, jet@n = 0, there exists an integer k, 0 <k < p(I(a)), such that

_E(a))
£

Ba2 \Ba,Zk_l-

(f) Let k be an integer satisfying the conditions of (e) above. By Condition B1.1,
the following inequalities hold:

2op(a) 2op(a) (1(11))

2.2k ok

Busn< <2(Bur+E(l(a) < 2( (l<a>>)

=§E<l(a>><1+e>,

and since e 1, B 1< (4/g)E(l(a)). ,

(g) By Condition B1.2 the time complexity of the function B :'(4‘1, ¢)=> B, is
bounded by some polynomial in two variables Ol(a), B, ), where O is nondecreas-
ing in both its variables. -
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(h) An integer k satisfying the conditions of (e) above, and the corresponding
B, <1, can be computed as follows:

Step 1: s« p(l(a)); Bap: < 0.
Step 2: while B, <E(l(a))/e do s < s—1 compute B, >
Step 3: k<« s+1, Byy—1< B, halt.

The time complexity of Step 1 and the number of repetitions of Step 2 are both
bounded by p(l(a)), by (e) above. By (f) above, at all stages of the algorithm
B, <4E(l(a))/e. Hence, by (g), the time required to compute B, - at each stage is
bounded by Ol(a),4E(l(a))/e), which is polynomial in {(a) and 1/e.

Hence, each repetition of Step 2 is of time complexity which is polynomial in /{(a)
and 1/e. It follows that the time camplexity of the evaluation of the integer 2% and of
B, >+~ is polynomial in [(a) and 1/e.

(1) From (b) and (e) above it follows that k1. B, ,+-1is an ¢ -approximation to
op(a). This completes the proof.

Theorem 4.21. (A, t)x is approximable < the following conditions hold :
(1) (A, t)Ext is Simple’
(2) (A, gy satisfies condition B2,

Proof. (=) Condition (1) is necessary by Theorem 4.8. Condition (2) is necessary by
Theorem 4.18.

(&) Most of the details of the proof of this part are omitted, the proof being similar
to that of Theorem 4.20. On input (4, ), we look for an ¢ -approximation to op(a) of
the form ¢ - B,.:

(a) By Condition B2.1, for any c the following inequalities hold:

op(a)
C

Ba,c = $Ba,c+Eo

where Ej is some given constant, or:

op(a)—c - Ba,c< E,

0< :
[ Ba,c Ba,c

provided that B, >0.

(b) From (a) it follows that ¢ - B, is an  -approximation to op(a), provided that
Eo/B..<¢ (or B, =Eo/e>0). :

(c) By the simplicity it can be checked whether op(a)<2Ej,/¢ in time which is
bounded by Qj25,/.1(/{a)) where Qzg,/.1(n) is a polynomial which depends on
[2E,/ ] alone, and hence on ¢ alone. If op(a) <2E,/e, then op(a) can be found in
Q25061 (I(a)) time, where Q25,1 is, another polynomial which depends on
[2E,/ €] alone. '

(d) There exists a polynomial p(n) such that op(a) <27,
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(e) There exists an integer k, 0 <k <p(l(a)) such that
Ba,?.k = ‘Os Ba,?.k_l~
£

(f) For an integer k satisfying (e¢) above, the following inequality holds: B, %1 <
4E/¢€.

(g) By Condition B2.2, for each i € Z" there exists a polynomial Q;(n) such that
the function B : (4, ¢) > B, can be computed in Qp__ time. Moreover: for each i and
j, 1 <j implies Q;(n) < Q;(n) for all n (see Remark 4.19).

(h) An integer k that satisfies the condition of (e), and the corresponding B+~
can be computed as follows:

Step 1: s < p(l(a)), Baz <0,

Step 2: while B, s < Eo/e do s «s5~1, compute B, ;-

Step 3: k «s+1, Byak—1 < B, s, halt.

By an argument similar to that given in part (h) of the proof of Theorem 4.17, it can
be shown that the time complexity of the evaluation of 2* and B, ;-1 is bounded by a
polynomial which depends on 4E/¢ only, and hence on ¢ only.

(@) 2°7- B, ,+-1is an g-approximation to op(a). This concludes the proof.

Remark 4.22. Let us assume that a given problem satisfies the condition: op(a) <
p(l(a)) where p is some polynomial. Such a problem satisfies the B1 condition in a
trivial way (set B, = 0 for all ¢). On the other hand if such a problem is simple it
cannot be p-simple if it is not polynomially solvable (see Remark 4.7). Therefore if
such a problem is to be approximable it will have to satisfy the Condition B2 whose
first part is stronger than the first part of Condition B1, although the resulting
approximability property is weaker than p-approximability. It is therefore not
necessarily the case that providing an approximation scheme for a given problem is
easier than providing a p-approximation scheme for it. In fact most problems that are
known to be approximable are also known to be fully approximable (but see [14]for
an exception).

The theorems proved in this section are summarized in Fig. 1. Arrows represent
implication. The broken line box includes the G-J theorem. The full line box
includes our theorems. ‘

GJ Theorem
e 22 e
 op(a) ip(max(u).l(u))—— full approximability ————
— - m

e — . —_d

{ pseudo polynomial Solution | / I \
p-simpliciiy——d;Bl condition
simplicity — ¢—32 condition

oppronimobility'4—l

Fig. 1.
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5. Reductions which preserve approximability

The concept of ‘reduction’, and in particular polynomial time reduction, is of
crucial importance in the theory of NP recognition problems. There are several
definitions of ‘polynomial reducibility’, due to [11, 4 and 2, p. 373]. According to all
the definitions, if a problem A is polynomially reducible to a problem B, then a
polynomial time solution of B provides a polynomial time solution to A. In this
section we define and study reductions between optimization problems, such that if
an NPOP (A, #1)ex is polynomially reducible to (B, f;)gx. then a ‘good’ p-approxi-
mation algorithm to (B, t;)gx provides a ‘good’ p-approximation to (A, ).

Definition 5.1. Let (A4, S, f1)ex and (A,, Sy, £)ex be two NPOP’s with equal
subscripts Ext. Then g:X* > 3* is a (polynomial time) ratio preserving reduction of
the first NPOP to the second if g is a (polynomial time) function which satisfies the
following conditions:

(1) a1e A1 S gla)e Ay,

(2) there exist constants C; and C,, 0<C; =< (C,, such that for each ac A;,
Ciop(a)=<op(g(a)) =< C,op(a).
If C;=C,=1, then the reduction is measure preserving. The importance of ratio
preserving and measure preserving reductions follows from the following:

Lemma 5.2. Let f(n) be a function which is O(log n)."°Letg: (A, t)ex—> (B, t2)ex be
a ratio preserving polynomial time reduction. Let (B, t2)gx be an f(n) p-approximable
NPOP, where f(n) is as above. Then (A, t1)ex is O(f(n)) p-approximable. If g is
measure preserving and (B, t2)ex is (fully) approximable, then so is (A, t1)gx.

Proof. Let i be an f(n) p-approximation to (B, £;)ex. By definition we have that
Ciop(a)<=op(g(a)) = Cyop(a) for some two constants C; and C, and all ac A.
Assume that Ext=Min (the proof for the other case is similar) and consider the
following algorithm:

h': Input a € A. Output 2'(a).
1. Reduceabygtob=g(a)eB
2. Compute i (b)
) h(b)J
3. h (a)e{ c

We claim that 4" is an O(f(n)) p-approximation to (A, ¢)gx. The fact that h and g are
of polynomial time complexity implies that 4’ is also of polynomial time complexity.
To show that A’ is an O(f(n)) approximation to (A, ¢)yin We must show that for any
a € A the following inequality holds:

0= < g(1(a))
op(a)

% Te. lim sup g{n)/log (n) <oo.
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where q(n) is some O(f(n)) function. The left-hand side of the above inequality is
implied by the following inequalities:
op(g(a)) _h(gla)) _

opla)= o S G h'(a)

(h is a p-approximation to (B, t2)min). The right-hand side of the above inequality is
equivalent to

h'(a)=<g(l(a))op(a)
where g(n) is O(f(n)). (If g(n) is O(f(n)), then so is g(n) = G(n)—1.) But

h(g(a))—oplg(a))
op(g(a))

<f((g(a))

or

h(g(a)) =< (f(l(g(a)))+1op(g(a)).

Now, as g is polynomial, /{g(a)) is polynomial in the length of a and, as f(n) is
assumed to be O(log(n)), we have that f(l(g(a)))=< Csf(I{a)) where Cs is some
constant. Also op{g(a))= C,op(a), this following from the definitions. Thus

h(g(a)) =< (Csf(l(a)) +1)C0p(a)

and

(g(a)) _ G5(f(l(a))+1)C0p(a)
C1 Cl

where G(l(a)) = Cs(f(I{a)) +1)C5/C1 is O{f(l(a))) as required.
To prove the second part of the lemma notice that if g is measure preserving then
Ci1=1. Thus h'(a) = h{(g(a)) and op(a) =op(g(a)) and we have that

_h(gla))~op(gla)) h'(a)-op(a)
~ op(gla) op(a)

W(a)=" — 4(l(a))op(a)

and

h'(a)—op(a) _h(g(a))-op(g(a))
op(a) op(g(a))

so k' is an & p-approximation if A is.

A measure preserving reduction g : (A, t1)gx = (B, t2)ex 18 constructive if there is a
polynomial time algorithm f: A X B> A such that for all g(a)e B, g*(a)e $*(B)
implies that f(a, g¥(a)) € S*(a) (i.e., one can find an element in $*(a) given g*(a) an
element in $*(B)). Many reductions specified in [11] when analysed in the light of
our definitions here can be shown to be measure preserving reductions, as specified in
the examples below. For the definitions of the NPOP’s involved.in the following



Non deterministic polynomial optimization problem 271

reductions, see Appendix 1. In addition to ratio preserving and measure preserving
reductions one may define and study other types of reductions as well, such as order
preserving reductions, etc. but we shall not deal with this subject here.

Examples 5.3. (i) g;:COLORABILITY - CLIQUE COVER: a graph G (N, A)isreduced
to the complemented graph G'(N, A).
(ii) g7':CLIQUE COVER -> COLORABILITY is also a measure preserving reduction.
(iii) g2:SET COVER—>DOMINATING SET: An input to SET COVER of the form
é=1{81,...,S,}, where |LJ]_, S;=S={x1, ..., xm} is reduced to a graph G(N, A),
where

N={1)2)'"yn7x1’x2;---axm})
A={{pI<i<j=n}u{ x)|x.eS)}

(iv) g2 :DOMINATING SET - SET COVER: An input to DOMINATING SET of the form
G(N, A) is reduced to a family of sets ¢ in the following manner: Suppose
N={1,2,...,n}, then ¢ ={S1, S, ..., S.} where S; ={i}u{j|(, /) A}.

(v) g3:NODE COVER—> DOMINATING SET: An input G(N, A) to NODE COVER is
transformed to G'(N', A") where

N'=NUA,
A'={(i, )i, je N}U{(i, e)|ieN, ec A, iincident to e},

(vi) g4:MAXSAT->MAX CLIQUE: An input to MAX SAT of the form {Cy, . . ., C,},
where each C; is a clause over a set of variables {X, X, ..., X, X, }isreduced to a
graph G(N, A), where

N ={V,;| o isaliteral, c € C},
A={(V,, V)|t#a,i+#]}.

(vil) gs:NODE COVER-—SET COVER: An input to NODE COVER of the form
G(N, A)isreduced to ¢ ={S:}icn, Wwhere S; ={(i, /)| (i, /) € A} (note that the existence
of gs follows from the existence of gz and g3). ‘

(viii) ge¢:NODE COVER -> FEEDBACK NODE SET: A graph G(N, A) is reduced to a
digraph D(V, E) where

V=N, '
E={i~>),(j>D|G)eAL

(ix) g7:NODE COVER->FEEDBACK ARC SET: A graph G(N,A) is reduced to a
digraph D(V, E) where

V= U {i1, i},

ieN

E= U {(i1= i), (2> 1), (1= 2)s (2= iD)};

(i,j)eE
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Fig. 3 illustrates the above reductions:

NODE COVER
~~3s g
9, 2 2
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- M 2 ~

EEEDBSAECTK FEEDBACK DOMINATING SET COVER
NODE SET

-1
g 9
—_-— e
COLORABILITY CLIQUE COVER

MAX SAT
99
MAX CLIQUE

Fig. 3.

The following theorem shows that the classes of NPOP introduced here, rigid,
simple and p-simple but not simple, have the property that no problem in the first
class can be measure preserving reduced to a problem in the second class, the same
being true for the second and third classes.

Theorem 5.4. Let (A, t1)ex be a rigid NPOP, (B, t2)ex be a simple but not p-simple
NPOP, and (C, t3)gyx. be a p-simple NPOP. Then (A, t1)gx is not reducible by a
measure preserving reduction to (B, t2)gx, and (B, t2)ex Is not reducible by a measure
preserving reduction to (C, t3)gx:.

Proof. Let ko be an integer such that (A, t;)gxk, is not in P. If (A, f1)gx is poly-
nomially reducible by a measure preserving reduction to (B, t3)gxt, then the following
algorithm will recognize (A, t1)gxk, in polynomial time: ‘given a € A, reduce a to
be B by a mreaure preserving reduction, and check whether' b € (B, t2)exi ko -
Clearly, a € (A, t1)Extk ift b € (B, t2)Ext k- Hence, (A, t1)ex k, is in P, a contradiction.
The other part of the theorem may be proved similarly. |

We conclude the paper with the following remarks: Let the notation
(A, t)ext Sp (B, t2)ex’ be used to denote polynomial time measure preserving
reducibility of (A, t})ex t0 (B, t2)ex. The relation <, is reflexive and transitive. A
natural question that may be asked is: “Is there an NPOP (Ao, to)ex: which is maximal
with respect to the relation <,?", i.e., is there an NPOP such that every other NPOP
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is polynomially reducible to it by a measure preserving reduction? In Appendix2a
positive answer is given to this question, by adjusting the technique used in Cook’s
theorem for recognition problems to optimization problems.

In the note of Knuth {12]a distinction is made between sets which are NP complete
and sets which are NP complete by transformation, where the former are sets such
that, if one of them is in P, then P = NP, and the latter are sets such that all NP sets can
be transformed to any one of them by a polynomial time algorithm.

A similar distinction can be made for NPOP’s, where an NPOP complete by
transformation problem is an NPOP such that all NPOP’s can be reduced to it by a
polynomial time measure preserving reduction. By the above discussion, if P # NP,
then the collection of NPOP complete by transformation problems is properly
included in the collection of NPOP complete problems. Such a (proper) inclusion has
not been yet proved (or disproved) for the NP case.

Appendix 1

We give here aformal definition of several NPOP studied in the literature. Some of
the NPOP defined below were mentioned in the paper.

(1) Tsp (Travelling Salesman Problem) := (W(%), trsp)min, where W (%) is the set
of all weighted graphs W{(¥) (that is, graphs combined with a weight function
W:A-Z"), and for a given weighted graph W[{G(N, A)],

trsp( W[G(N, A)]) ={k |there exists a Hamiltonian cycle in the graph
whose weight is k}u {xo0}

(we add £o0 to trsp( W[ G(N, A)]) to make sure that it is not empty).
(2) Max cuT = (W(9), tcut)max, Where W(%) is as above and

teutl W[G(N, A)])={k | A contains a cutset of weight k}.

(3) MAX SUBSET SUM = (IS, f)max Where 18={(ai, ..., a, b)} is the set of all
finite integer sequences, and

te((@y, ..., an b)) ={k |k <b and there are 1 <i; <- - - <i;<n,
Z aij=k}.
j=1

{4) 15D (Job Sequencing with Deadlines) = (153, tis)max Where

IS3={(T17D17P17' sy Tn’Dnypn)|{ﬂ,Di,Pi}CZfOr‘i::]., .. .,n}
and
tis((Ty, Dy, Pa, ..., Ty, Dy, P))

={k |there is a permutation o of (1, 2, ..., n) such that > SU,Qi)‘]’U(i) = k,
i=1

where 8, =[if To()+ Top, T -+ + To,> Doy, then O else 11
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(5) SET COVER = (, t,.)amn Where £ is the set of all finite famiiies of finite sets, and
for {S1,...,S.}ef,

t({Sb RN Sn})
={i|there exists 1 <j; <j,<---<j_nsothat | S =J S,}.
r=1 r=1

(6) DOMINATING SET = (¥, tps)min, Where for G € %,

tps(G) = {k |there are k nodes in G that are adjacent to all other nodes
of G}.

(7) CLIQUE COVER = (%, t..)min, Where for G(V, E)e ¥,
t(G) = {k |there exist k cliques in G whose union is V}.

(8) FEEDBACK ARC SET = (9, frga)min, Where & is the set of all directed graphs,
and for D(V, E)e @ (V =the set of vertices, E = the set of edges)

tesa(D) ={k|there exists k edges in A that each (directed) cycle in D
contains at least one of them}.

(9) FEEDBACK NODE SET = (9, frpn)Min, Where for D(V, E)e &,

tesn(D) = {k |there exists k vertices in N such that each (directed) cycle
contains at least one of them}.

(10) sTEINER TREE= ((W(9), S), tstr)Mmin, Where (W (%), S) is the set of all
weighted graphs together with a given subset of the nodes of the graphs. For a given
element (W(G), S) of this set,

tstr((W(G), S)) = {k | there exists a subtree of G that contains S, whose
weight is k}.

Appendix 2

We present here a set A and corresponding function ¢ such that both (A, )y~ and
(A, t)max are NPOP’s and, for each NPOP (B, #)gxr, (B, ext <p (A, HexT where
EXT = MAX or EXT = MIN. Such an NPOP is an NPOP complete by transformation
problem. Our example will, therefore, provide an analogue to Coqk’s theorem (for
recognition problems) for NPOP’s. As a matter of fact, the example we are going to
present is an extension of the example of Cook made to fit our definitions. We first
restate Cook’s theorem (without proof) in a slightly different form, suitable for our
purpose.

Cook’s Theorem. Let T be an NDTM and let {:Z > Z be a (palj}nomial time
computable) function, f(n) = n. Then there exists a function g :X* 3% that satisfies
the following conditions:
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(1) gw)esAaT & wis accepted by T within f({(w)) steps.

(2) The time complexity of g is p(f(l(w))) for some fixed polynomial p(n)
(p(n)<On™). (In the original theorem of Cook f is the polynomial representing the
time complexity of T.)

Let (W(CNE), tcom) be a set and corresponding t-function where W (CNF) is the
set of all logical formulas in Conjunctive Normal Form over some set of variables X
combined with a weight function W: X -» Z. For a given a € W(CNF), we define
tcom(a) as follows: Let B, ={B|B:X, {0, 1} is a valuation of the set X, of the
variables appearing in a} (B(o) =14 B(g)=0).

Define a function Mcom: B, > Z U {0} as

(VB € B,)Mcom(B)
+00 if B does not satisfy the logical formula a,
{ Y W(x)B(x) else. '
xeX,

Then

tcom(a) = | {Mcom(B)}.

BeB,

Definition A.1. An NP measure function is a function w: 3% > P[Z u{xolua]
(a ¢ Z) that can be computed by a nondeterministic polynomial time Turing machine
(NP measure machine). Let (A, S, t)gxt be an NPOP. By Definition 2.1 there exists
an NP measure machine, 7, such that for each a € A, k € t(a) < there exists a legal
computation of T" which terminates within p ({(a)) steps, in an accepting state, with k
written on its tape. Moreover, we may assume that k is printed in binary digits in
reverse order, i.e.,if Kk = o103 * * * 0, 0; = 0 or g; = 1, then the output on the tape will
be g.o0,-1 - o1

Theorem A.2 (Cook’s theorem for NPOP’s). Let T be a nondeterministic measure
machine, and let f : Z - Z be a recursive (polynomial time) function (f(n)=n). Then
there exists a recursive function g:X* > X* such that ‘ ‘
(1) g(w)e W(CNF) and k € tcom(g(w)) & there exists a legal computation of T
which terminates within f(I(w)) steps in an accepting state with k written on its tape.
(2) The time complexity of g is p(f(l(w))), where p(n) is some fixed polynomial
(p(n)<O(n*).

Proof. Without loss of generality we may assume that T has the properties described
above (i.e., prints the output in reverse order). For a given w € 3*, we define the
reduction g as follows: o ‘

(1) Perform the usual reduction of Cook for w. As a result one gets a logical
formula in CNF, over some set of variables X.
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(2) Define a weight function on X in the following way: Let C (i, [, f({(w))) be the
variables in Cook’s reduction which asserts that the symbol [ is written in cell / at time
flw)),i=0,1,..., f((w)). Now for all xe X:

{2" it x=C(@, 1, fL(w))),

0 else.

Wi(x)=

We now claim that:

(1) forae 2*, g(a)e SAT < oninputa T halts in an accepting state within f{/(w))
steps. (This is, in fact, Cook’s Theorem.)

(2) fora e 2%, k e Mcom(g(a)) € oninput a there exists a legal computation of T
which terminates in an accepting state within time f(/(a)), with k written on its tape,
in reverse order, in binary digits.

(2) follows from (1) and from the definition of the weight function W,

Remark A.3. The time required for the above reduction differs from that of
Cook’s original reduction by at most O(f(/ (@))? steps required to define the weight
function W.
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