
On the Complexity of Designing Optimal
Partial-Match Retrieval Systems

SHLOMO MORAN
The Technion-Israel Institute of Technology, Haifa

We consider the problem of designing an information retrieval system on which partial match queries
have to be answered. Each record in the system consists of a list of attributes, and a partial match
query specifies the values of some of the attributes. The records am stored in buckets in a secondary
memory, and in order to answer a partial match query all the buckets that may contain a record
satisfying the specifications of that query must be retrieved. The bucket in which a given record is
stored is found by a multiple key hashing function, which maps each attribute to a string of a fixed
number of bits. The address of that bucket is then represented by the string obtained by concatenating
the strings on which the various attributes were mapped. A partial match query may specify only
part of the bits in the string representing the address, and the larger the number of bits specified, the
smaller the number of buckets that have to be retrieved in order to answer the query.

The optimization problem considered in this paper is that of deciding to how many bits each
attribute should be mapped by the bashing function above, so that the expected number of buckets
retrieved per query is minimized. Efficient solutions for special cases of this problem have been
obtained in [l], [12], and [14]. It is shown that in general the problem is NP-hard, and that if P #
NP, it is also not fully approximable. Two heuristic algorithms for the problem are also given and
compared.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems; H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval.

General Terms:

Additional Key Words and Phrases: Partial match retrieval, hashing, searching, tile organization,
NP-hard problems, approximation algorithms

1. INTRODUCTION

We consider the problem of storing a file F of multiattribute records on which
partial match queries are to be answered. Each record is a list of attributes
(Xl, * - * , x,), where for i = 1, . . . , t, each xi can take one out of di values (di 2 2).
Let ai be the “name” or the “field” of the ith attribute. Then a partial match
query is a query of the form, “Retrieve all records for which ai, = xi,, . . . , ai, =
~~~“(1 I il < - - - < ik I t). This query is said to specify fields ai,, . . . , ai, 

This research was supported in part by the National Science Foundation under Grant MCS78-01736. 

Author’s address: Computer Science Department, The Technion, Israel Institute of Technology, 
Haifa, Israel. 
Permission to copy without fee all or part of this material is granted provided that the copies are not 
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by permission of the Association 
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific 
permission. 
0 1983 ACM 0362-5915/83/1200-0543 $00.75 

ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983, Pages 543-551. 



544 l S. Moran 

Example. Let F be a file on passengers booked on a given airline. Then each 
record in F may consist of the following fields 

a1 = First name 
a2 = Initial 
a3 =Last name 
a4 =Address 
a5 =Phone number 
% =Flight number 
a7 = Flight date 

A partial match query for this file may be “list all records of passengers booked 
on flight number 409 on 4-3-81” or “list all records of passengers whose first 
name is John, last name is Smith, and who are booked on a flight on 4-10-81.” 
The first query specifies fields a6 and a7 while the second specifies fields al, a3, 
and al. 

We consider a system in which the file is stored in a secondary memory, which 
is organized in buckets of fixed capacity. In order to answer a partial match query, 
all the buckets that may contain records satisfying the specification of the query 
have to be transferred to the main memory, where they are searched for the 
desired records. The time required to answer a given query is roughly proportional 
to the number of buckets that have to be searched [14,15]. 

Let A = {al,. . . , a,] be the set of fields, and suppose we know for each subset 
S of A the probability that a query which specifies exactly the fields in S occurs 
(this probability may be 0). The optimization problem discussed in this paper 
involves the minimization of the average number of buckets searched per query. 
One strategy, which was suggested in [12, 141, is to use a multiple key hashing 
function to compute the address of a bucket containing a given record, as 
described below. 

Suppose that the total number of buckets is 2’ for some integer 13. Then each 
bucket may be represented by a sequence of B bits, and the address of the bucket 
may be computed from this representation.’ Given a record R = (x1, . . . , x,), the 
binary sequence that represents the bucket in which R is stored is given by 
&Xl,. * . , xt), where 5 is a multiple key hashing function that maps the set of all 
possible records onto {O, 1, . . . , 2B - 1). We shall assume that h is a product, 
that is, that for i = 1, . . . , t, there are single key hashing functions hi and integers 
b(i) such that 

(a) xi=1 b(i) = B, 
(b) hi maps Xi to a sequence of b(i) bits, and 
(c) &l, * * * , xt) = h(xJ.h(x,).. . . h(x,) (here . represents concatenation). 

Let iE be given, and let S = (ai,, . . . , al;) C A. Define b(S) = b(&) + . - - + b(lj). 
Then a query that specifies fields ai,, . . . , ai, specifies b(S) bits of the binary 
sequences which represent the buckets that have to be searched in order to 
answer this query. Hence, the number of buckets which have to be searched is 

’ The restriction of the number of buckets to be a power of two is not necessary for most of our 
results; however, it simplifies the discussion and fits with binary computers, where information is 
stored by sequences of bits. 

ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983 



Designing Optimal Partial Match Retrieval Systems l 545 

2B-b(S’, which is 2- b(S’ times the size of the entire file. Let Q = (S, . . . , S,), 
where for each i Si C A, and let pi > 0 be the probability that a query specifies 
exactly the fields in Si(C$, pi = 1). Then, on the average, the portion of the 
entire file that has to be searched on each query is given by xF1 pjZdb”‘. The 
optimization problem considered in this paper is to find a distribution of the B 
bits among the various fields such that this average is minimized, In the next 
section we give a formal definition of the problem, together with some known 
results. In Section 3 we show that the problem is NP-hard. In Section 4 we 
extend the result to show that even good approximation algorithms that guarantee 
a worst-case relative error smaller than E in time which is polynomial in both the 
length of the input and l/t do not exist for this problem unless P = NP. In 
Section 5 we describe and compare two heuristic algorithms for the problem. 

2. PRELIMINARIES 

The partial match retrieval optimization problem (PMR) is the following. 

Input. (A, Q, P, B), where A = {al,. . . , a,) is a set of fields; Q = (&, . . . , S,), 
where, for each i, Si !Z A, is a set of “query-specifications;” P = ( pl, . . . , p,, ] is 
the set of the corresponding probabilities (C?Z’=l pi = 1) and B is the number of 
bits (2B is the number of buckets). 

Output. A function b:A + 2’ satisfying 

(1) Cf=l b(Ui) = B 
(2) w(b) = Cj”=lpj2- b(s~) is minimized, where b(Sj) is defined as follows: Let 6ij 

= 0 if ai 4 Sj, 1 otherwise. Then b(Sj) = x:=1 Gijb(ai). w(b) will be denoted 
as the weight of b. 

We shall sometimes assume that the range of b is the set R’ of nonnegative 
real numbers-and in this case we shall refer to the problem as the “continuous 
PMR.” 

Efficient algorithms to solve the PMR have been found in some special cases: 
In [12] an efficient solution is given for the case where all the subsets of A of a 
given cardinality have the same probability to be specified (see also [2, 151). In 
[14] a solution is given to the case where each query specifies only one field, and 
in [l] a solution is given to the case where the fields are specified independently. 
None of these cases seems to be general enough to reflect realistic models, like 
the example given at the beginning of this paper. (Among the queries that specify 
exactly two fields, last name and first name are more likely to be specified than 
initial and telephone number. It is also likely that the event that the first name 
is specified is dependent on the event that the last name is specified.) However, 
in the next section we shall show that in the general case the problem is NP- 
hard. This should also be compared with a result in [2], which shows that the 
continuous PMR can be solved efficiently in the general case.* 

* Since an optimal solution to the continuous PMR may consist of irrational numbers (even if the 
input numbers are rational), we define an efficient algorithm for this pioblem to be an algorithm 
which efficiently finds (i.e., in polynomial time) an optimal solution rounded to some fixed (but 
arhitrarily large) number of digits. 

ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983 



546 l S. Moran 

Note 1. In general, we should have for each field ai an upper bound Mi I 1 on 
b(ai). Mi is determined by the number di of the possible values which ai can 
attain. (e.g., if ai specifies sex, then only 2 values are possible, and hence Mi = 
1). All the results of this paper apply to both the case where the Mis are not 
specified and to the case where the Mis are specified and take any value ~1. 

Note 2. An important requirement for an optimal design for the PMR is the 
existence of balanced hashing functions which distribute the di possible values of 
field oi evenly among the 2 b(ni) buckets. We shall not discuss this requirement in 
this paper, but shall take the existence of such hashing functions for granted. 

3. NP-HARDNESS OF THE PMR 

The NP-hardness of the PMR will follow from the NP-completeness of the 
following 3 Hitting Set (3HS) problem: 

Input. (A, Q), where A = (al, . . . , a,) is a set, Q = {S,, . . . , &,I is a family of 
subsets of A, such that for each ai E A there are exactly 3 sets Sj c Q such that 
Ui t Sj. 

Property. There is a set H G A such that ] H n Sj ] = 1 for j = 1, . . . , 3n. 

LEMMA 3.1. The 3HS problem is NP-complete. 

PROOF. We shall show that the NP complete problem exact couer with 3 
element per set (3 X C, [4,9]) is polynomially reducible to 3HS. 

Input(to3XC). AsetT=(xl,...,r~,jandafamily(T1,...,T,)ofsubsets 
of T, where for 1 5 i 5 t, 1 Ti 1 = 3. 

Property. There are 1 I il, . . . , i,, I t such that Uj”=, Tij = T. The reduction is 
A = (al,. . . , a,], and Q = {S,, . . . , S3”}, where Si = (cj ] Xi E Tjl. Cl 

THEOREM 3.1. The PMR problem is NP-hard. 

PROOF. We shall prove the NP-completeness of the corresponding recognition 
problem. 

Input. (A, Q, P, B, r), where A, Q, P, B are as in the definition of the PMR 
problem, r is a rational number. 

Property. There is a function b:A + 2’ such that C:=l b(ui) = H and w(b) = 
Cj”=l pj2-b’SJ 5 r. 

We shall see that the problem remains NP-complete even if all the elements 
of Q have the same probability, and b is restricted by b(ui) I 1 for i = 1, . . . , t. 
Note that the problem is trivially in NP. To prove its completeness, we shall 
reduce the 3HS problem to it: 

Let (A, Q) be an input to 3HS, where A = (al,. . . , a,), Q = (S1,. . . , SSn). We 
reduce it to (A, Q, P, B, r) where: P = (PI, . . . , psn}, pi = l/3 for i = 1,. . . , 3n; 
B = n; r = 5. Again, let 6ij be 1 if ci E Sj, 0 otherwise. Then for each i, Ci3_nl 6ij = 
3. First we note that for each function b:A + Z+ which satisfies Es=1 b(ui) = n 
we have 

F b(Sj) = F Ik &jb(ui) = il [b(ai) ,Fl &j] = il 3b(ai) = 3n. 
j=l j=l izzl 

ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983 



Designing Optimal Partial Match Retrieval Systems l 547 

Denote, for a given b, xi = 2 -b(%) Then in view of the equality above we can . 
restate the recognition problem, in this specific case, by: Are there numbers 
b-h,. . . , u3n) such that 

(i) W = (Cj2l Xj)/3n 5 l/2 
(ii) nj”=nl Xj = 2-3” 
(iii) There exists a function b:A + Z+ such that for i = 1, . . . , 3n, Xj = 2-‘@). 

Consider now (i) and (ii) alone: By the arithmetic-geometric inequality, w is 
minimized if and only if xj = (2-3”)1/.7n = .5 for i = 1, . . . , 3n, and the minimal 
value for w is, hence, 1/3n(xj$ .5) = 5. This means that (A, Q, P, B, 5) has 
the desired property if and only if Xj = .5 for j = 1, . . . , 3n, which is equivalent 
to b(Sj) = 1 forj = 1,. . . , 3rz, which, in turn, is equivalent to the statement: The 
set H = (aj 1 b(uj) = 1) is a Hitting Set for (A, Q) (and b(uj) = 0 for aj t H). This 
completes the proof of the theorem. q 

4. ON THE APPROXIMABILITY OF THE PMR 

The NP-hardness of the PMR indicates that probably no polynomial time 
algorithm can find the optimal solution to this problem. However, it does not 
exclude the existence of polynomial time algorithms which are guaranteed to find 
near optimal solutions for the problem even if P # NP. In fact, there are some 
NP-hard optimization problems that have algorithms that, for a given t > 0, find 
a solution to the given problem whose relative error is guaranteed to be smaller 
than t in time which is polynomial in both the size of the problem and l/c. Such 
a problem is said to be “fully approximable” or to have a “fully polynomial time 
approximation schema” (see [4,5,6, 7, 10, 111 for a more detailed exposition and 
for examples of such problems). In this section we shall show that the PMR is 
not fully approximable unless P = NP. Some general results characterizing NP- 
hard problems that are not fully approximable (provided P # NP) appear in [5, 
10, 111. Interestingly, Theorem 4.1 below does not follow directly from these 
general results, and it requires a different proof. 

Let (A, Q, P, B) be an input to the PMR, let. 6 be an optimal solution to it, 
and let b be a different solution. Then the relative error of b is the ratio (w(b) - 
dwJ(b. 

THEOREM 4.1 If P # NP then the PMR is not fully upproximuble. 

PROOF. Assume that there is an algorithm Ap which finds for each input (A, 
Q, P, B) for the- PMR and for each t > 0 a function b such that (w(b) - 
w(&))/,(b) < t, (6 de‘liotes an optimal solution), and that the running time of 
Ap is polynomial in both -the size of the input and l/t. We shall derive a 
contradiction by showing that Ap can be used to provide a polynomial time 
algorithm for the 3HS problem (which would imply that P = NP.) 

Let (A, Q) be an input to the 3HS problem. Define an input (A, Q, P, B) to 
the PMR where P and B are as defined in the proof of Theorem 3.1 (pi = 1/3n, 
B = n). From Theorem 3.1 we know that (A, Q) is in 3HS if and only if there is 
an optimal solution 6 to (A, Q, P, B) such that w(s) = .5. The theorem will now 
follow from 

ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983 



548 ’ S. Moran 

Claim 1. If (A, Q) is not in 3HS, then the weight of an optimal solution to (A, 
Q, P, B) is at least .5(1 + 1/6n). 

Proof of Claim 1. Atsume (A, Q) t 3HS, and let 6 be?n optimal solution to (A, 
Q, P, B). Since Cf=l b(ci) = B = n, the set H = {a ] b(a) > 0) is of cardinality 
I n. Since (A, Q) is not in 3HS, there is no H G A such that ] H ] 51 n and ] H rl 
Sj ] > 0 for all j in (1,. . . , 3rzj. Combining these two facts, we have that there 
must be a j, such that ] H n SjO ] = 0, which means that b(SjO) = 0. Without loss 
of generality, assume that j, = 3n. Then we get 

(i) w(b) = 1/3n(C~Z;‘2-“~’ + 1) and 
(ii) cjZyl 6(Sj) = 3n. 

Since 6(Sj) is an integer for allj, it is not hard to show that the minimal possible 
value for w(s) under the constraint (ii) above is obtained when 6(S,) = 2, S(Sj) 
=lforj=2,..., 3n - 1, and that this value is l/4 + (3n - 2)/2 + 1/3n = l/2 
+ 1/12n = .5(1 + 1/6n). Cl 

To show that the theorem follows from the claim, let-t = 1/6n. Use Ap to 
obtain a solution b to (A, Q, P, B) such that (w(b) - w(b))/w(b) < 1/6n. This 
can be done in time which is a polynomial in both the size of the problem and 
l/e = 6n, and hence is a polynomial in the size of the problem. It follows from 
Claim 1 that (A, Q) t 3HS if and only if w(b) < .5(1 + 1/6n) (which means that 
w(b) = .5.) cl 

5. HEURISTIC ALGORITHMS 

By the previous two sections, no efficient algorithm can solve the PMR (unless 
P = NP), neither can an arbitrarily good approximation to PMR be obtained at 
a relatively low cost (unless P = NP). An alternative way to attack this problem 
is to use heuristic algorithms, based on some simple and/or local searching 
arguments. Such an approach has been proved useful for some other NP-hard 
optimization problems, such as the traveling salesman and the bin packing 
problems [3, 8, 131. 

In this section we shall describe two such algorithms for the PMR. Both are 
natural generalizations of algorithms which yield optimal solutions in those 
special cases of the PMR that are known to have efficient solutions [l, 14, 151. 
The first of these, called BALANCE, is based on the algorithm in [14] and 
involves a step-by-step distribution of the B bits among the t fields. Initially, all 
the fields are assigned 0 bits, and at each step the number of bits of a field which 
has a maximal “weight” is increased by one. The second algorithm, called 
ROUND, is based on the technique in [l, 21 and involves computing an optimal 
solution to the continuous PMR (which, by [2], can be done efficiently), and 
then rounding up the results to integers according to certain rules. We shall also 
compare the performances of these algorithms on two specific examples. 

Definition 5.1. Let b:A -+ R+ be a given function, and let aieA. Then the 
weight of ~i with respect to b, w(b, ai), is given by w(b, Q) = CJ=l 6ijpj2-b”‘e 

Our first heuristic algorithm, BALANCE, is based on the following observation: 
ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983 



Designing Optimal Partial Match Retrieval Systems l 549 

Let b:A + Z’ be a partial assignment of bits to the fields, such that x:=lb(ai) < 
B. Let b’ be defined by: For some i,, b’(aio) = b(nJ + 1, and b’(ai) = b(ni) for i 
# i,. Then w(b’) = w(b) - w(b, ai,)/ It follows that w(b’) is minimized when 
w(b, aio) is maximized. 

Algorithm BALANCE. Input: (A, Q, P, B). Output: b:A -+ Z+. 

1. // Initialization// set b(ai) + 0 for i = 1,. . . , t; N c 0 
2. // Terminate?// if N = B then stop and return b. 
3. L{ielect a field of maximum weight// find a*tA such that w(b, a*) 2 w(b, a) for all 

4. //Increase b(a*)// set b(a*) c b(a*) + 1, N c N + 1. 
5. Go to 2. 

Our second algorithm is based on the rounding technique of [l] (see also [ 151). 

Algorithm ROUND. Input and output: the same as for BALANCE. 
1. Compute an optimal solution b* to the continuous PMR. [For i = 1,. . . , t, let b*(a;) = 

Ni + fi, where NicZ+, 0 5 fi < l] 
2. Let D = C:=, fi(D must be an integer). 
3. Let fil 2 f,t, . . . , z fits Set b(ail) t Nil + 1,. . . , b(a,,) t Nio + 1, b(aiD+l) + 

NiD + L.. . . , b(ai,) t Nit. 

In order to analyze the performance of ROUND, we need some facts about the 
properties of optimal solutions to the continuous PMR. 

LEMMA 5.1 Let b* be an optimal solution to the continuous PMR and assume 
that b*(ai) > 0 for i = 1,. . . , t. Then for all i,j, w(b*, ui) = w(b*, aj). 

PROOF. Consider the problem 

minimize 

subject to 

w(b) = i pjZTb”j) 
j=l 

i 2b(n’) = 2B9 b(ai) E 0. 
i=l 

if b* = (b*(u,), . . . , b*(u,)) is an optimal solution, and (b(a*,), . . . , b*(at)) is an 
interior point of the constraint set, then, by the Lagrange multipliers theorem, 
there should exist a X such that for i = 1,. . . , t: 

d w(b*) + X i 2’*9 
i=l 1 

a(b*(oi)) = 
0. 

This can be shown to imply that for i = 1, . . . , t, w(b*, ai) = X2B, which implies 
the lemma. Cl 

We shall compare the performances of BALANCE and ROUND on two 
examples. On the first one, ROUND yields a better result. 

Example 1. Let (A, Q, P, B) be defined by 
A = (~1, ~2, ~3); Q = I&, SZ, &, S41, where 8 = k4, SZ = b~l, S3 = ial, ~31, s4 = 
la*, u31; Pl = Pz = l/4 - G p3 = p4 = l/4 + t for some l/48 > t > 0; B = 2. First, 

ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983 



550 ’ S. Moran 

we consider the performance of BALANCE on this input: Initially, b(ci) = 0 for 
1 5 i I 3. ul(b, a,) = w(b, u2) = l/2, w(b, u3) = l/2 + 2t. Hence, at the first stage 
we set b(ua) = 1. Now, w(b, al) = w(b, s) = 3/8 - t/2, w(b, u3) = l/4 + c. Hence 
at the second stage we set b(uJ = 1. The resulting b is b(ul) = b(u,) = 1, b(uJ = 
0. w(b) = 9/16 - 3~/4. 

To determine what the output of ROUND on the input above is, we first note 
that by Lemma 5.1 one can show that the optimal solution b* to the corresponding 
continuous PMR is given by b*(& = log2(( 1 + 4~)/(1 - 46)) < log2(13/11) g 
0.24. b*(ul) = b*(u2) = (2 - b*(us))/2 > (2 - log2(13/11))/2 g 0.88. Hence, the 
rounding will yield b(ul) = b(uz) = 1, b(u3) = 0. w(b) = .5, and one can check 
that 6 is the optimal solution. When c + 0, the relative error of the solution b, 
found by BALANCE, tends to l/8. 

On our second example, however, BALANCE performs much better than 
ROUND. 

Example 2. A = (al, . . . , uzn, $, . . . , (z,,) for some n. Q = {S,, . . . , S,,+,} where 
Si = (oi) for 1 5 i 5 2n, &+I = (~1, . , , , ~2~). P = (~1, , . . ,pzn+l) is defined by Pi 
= p for i = 1, . . . , 2n P~,,+~ = q, where 2np + q = 1 and q = p .2(2n-“‘2-~2n+“r for 
some 1/6n > t > 0; B = 2n. Again, using Lemma 5.1, one can check that the 
solution b* given by b*(tii) = .5 + t, b*(ui) = .5 - E (i = 1,. . . , 2n) is an optimal 
solution to the continuous PMR. Using ROUND, we obtain a solution b defined 
by b(ui) = 0, b(tii) = 1 (i = 1,. . . , 2n). w(b) = 2np.2-’ + 42-O = p(n + 
2”-.5-‘2n+1)r). When c + 0, w(b) +p(n + 2n-.5). 

When BALANCE is applied to the same input, we note that initially w(b, cii) 
= p, w(b, oi) = q = p .2(2”-1)‘2-‘2n+1)r, for i = 1, . . . , 2n. The algorithm thus sets 
b(ui) t 1 for some i, and one can check that during the first n stages BALANCE 
sets at each stage b(uj ) t b(uj) + 1 for some j. After the nth stage, we have w(b, 
Czi) = p, w(b, ai) = p .2-.5-(2n+1)’ < p (i = 1, . . . , 2n). Hence, during the last n 
stages, BALANCE will set b(&) + b(tii) + 1 for n different CEis. The resulting 
function b’, although not optimal, satisfies w(b’) = np + np.2-l + q2-” = 
p(3n/2 + 2-.5-(2n+lk ). When t + 0, w(b’) ---) (3n/2 + 2--5)p, compared with the 
(n + 2”-.5)p weight of the solution yielded by ROUND. 

A detailed analysis of the performances of BALANCE and ROUND is probably 
not easy, and is beyond the scope of this paper. However, the examples above 
indicate that neither algorithm is strictly better than the other. A possible 
strategy, therefore, for a heuristic solution to the PMR, is to apply both of them 
on the given input, and then to choose the better result. 

6. CONCLUDING REMARKS 

We have shown that the PMR problem is NP-hard and, in fact, not even fully 
approximable, unless P = NP. Moreover, these results hold even in the case 
where all the query specifications that can be used in a given system are assumed 
to be equiprobable. Two heuristic algorithms for that problem were also pre- 
sented, and were shown to be incomparable, in the sense that neither of them is 
strictly better than the other. It was also shown that one of these algorithms, 
namely ROUND, may produce arbitrarily large relative errors (Example 2 in 
ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983 



Designing Optimal Partial Match Retrieval Systems 551 

Section 5). An interesting question is: What is the worst-case relative error of 
BALANCE? If it is bounded by some small constant (which is not unlikely), 
then, from a practical point of view, the PMR can be considered to have a 
reasonably good algorithm. 

ACKNOWLEDGMENT 

The author wishes to thank the referees for many valuable suggestions. 

REFERENCES 

1. AHO, A., AND ULLMAN, J.D. Optimal partial match retrieval when fields are independently 
specified. ACM Trans. Database Syst. 4 (1979), 168-179. 

2. BOLOUR, A. Optimality properties of multiple-key hashing functions. J. ACM26,2 (April 1979), 
196-210. 

3. CHRISTOFIDES, N. Worst-case analysis of a new heuristic for the traveling salesman problem. 
Tech. Rep., Carnegie-Mellon Univ., 1976. 

4. GAREY, M.R., AND JOHNSON, D.S. Computers and Intmctability-A Guide to the Theory of NP 
Completeness. Freeman, San Francisco, 1979. 

5. GAREY, M.R., AND JOHNSON, D.S. Strong NP completeness results: motivation, examples, and 
implications. J. ACM 25, 3 (July 1978), 499-508. 

6. HOROWITZ, E., AND SAHNI, S. Exact and approximate alogrithms for scheduling nonidentical 
processors. J. ACM 23,2 (April 1976), 317-327. 

7. IBARRA, O.H., AND KIM, C.E. Fast approximation algorithms for the knapsack and sum of 
subsets problems. J. ACM 22,4 (Oct. 1975), 463-468. 

8. JOHNSON, D., DEMERS, A., ULLMAN, J.D., GAREY, M.R., AND GRAHAM, R. Worst-case per- 
formance bounds for simple one dimensional packing algorithms. SIAM J. Comput. 3 (1974), 
299-325. 

9. KARP, R. Reducibility among combinatorial problems. In Complexity of Computer Computations, 
R. Miller and W. Thatcher, Eds., Plenum Press, New York, 1972, pp. 85-103. 

10. MORAN, S. General approximation algorithms for some arithmetical combinatorial problems. 
Thor. Comput. Sci. 14 (1981), 289-303. 

11. PAZ, A., AND MORAN, S. Nondeterministic polynomial optimization problems and their ap- 
proximation. Theor. Comput. Sci. 15 (1981), 251-277. 

12. RIVEST, R. Partial match retrieval algorithms. SIAM J. Comput. 5 (1976), 19-50. 
13. ROSENKRANTZ, D., STEARNS, R., AND LEWIS, P. An analysis of several heuristics for the 

traveling salesman problem. SIAM J. Comput. 6 (1977), 563-581. 
14. ROTHNIE, J., AND LOZANO, T. Attribute based file organization in a paged memory environment. 

Commun. ACM 17,2 (Feb. 1974), 63-69. 
15. ULLMAN, J.D. Principles of Database Systems, Computer Science Press, Potomac, Md., 1980. 

Received December 1981; revised February 1983; accepted March 1983 

ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983 


