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Abstract

We present a simple and e�cient method for constructing sparse decompositions of networks.
This method is used to construct the sparse decompositions needed for variants of the synchro-
nizers in [2, 15] in O(|V |) time and O(|E| + |V | log |V |) communication complexities, while
maintaining constant messages size and constant memory per edge. Using these decomposi-
tions, we present simple and e�cient variants of the synchronizers in the above papers. For
example, our constructions enable to perform Breadth First Search in an asynchronous net-
work, in which no preprocessing had been done, in communication and time complexities of
O(K |V |D+ |E|+ |V | log |V |) and O(D logK |V |+ |V |); respectively, where K¿2 is a parameter,
and D is the diameter of the network. We also present an e�cient cover-coarsening algorithm,
which uses a novel technique for e�cient merging of clusters, and improves previous coarsening
algorithms in several aspects. c© 2000 Elsevier Science B.V. All rights reserved
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1. Introduction

Communication networks are divided into two types: synchronous networks and
asynchronous networks. In the synchronous model all the nodes have access to a
global clock that generates pulses. At the time of a pulse, a node may perform local
computation and send messages to its neighbors. Messages which are sent in a given
pulse arrive at their destination before the next pulse.
In the asynchronous model there is no such a clock and message delay is arbitrary but

�nite. Algorithms that run on synchronous networks are called synchronous algorithms
and are simpler, more e�cient and more comprehensible. In order to run synchronous
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algorithms on asynchronous networks, there is a need to synchronize the network. This
is done by algorithms named synchronizers that simulate the synchronous algorithm
on the network.
Some synchronizers require a preprocessing phase in which the network is decom-

posed into connected components called clusters. This paper presents simple and ef-
�cient network decomposition algorithms; these algorithms are then used to construct
few variants of existing synchronizers, which are simpler and more e�cient than the
original synchronizers.
Once the network is decomposed into clusters, it is sometimes required to coarsen

the decomposition, by combining several neighboring clusters to a single cluster, so as
to decrease the overlapping between clusters, and at the same time to keep the diameter
of each cluster small. We present a new cover-coarsening algorithm, which improves
a previous one in several aspects.

1.1. De�nitions

A network is represented by a graph G=(V; E) where V represents the nodes in the
network, and E the links between them. All nodes have distinct identities. A cluster
C in a graph G is a set of nodes which induces a connected subgraph of G. Each
cluster has a leader node and a tree spanning it, rooted at the leader. A cover is a
set S of clusters such that

⋃
C∈S C =V . A partition is a cover in which the clusters

are mutually disjoint. Covers (partitions) are denoted by calligraphic letters (such as
S;T, etc.) and clusters by capital letters (such as A; B, etc.).
For vertices u and v in G, the distance between u and v in G, denoted distG(u; v) (or

just dist(u; v)), is the length of a shortest path between u and v in G. The m neighbor-
hood of a node v is de�ned by Nm(v)= {u | distG(u; v)6m}, and the m-neighborhood
of a cluster C is the union

⋃
v∈C Nm(v). The diameter of a cluster C, Diam(C), is

the diameter of the tree spanning C. For a node v and a cluster C, dist(v; C)=
min{distG(u; v) | u∈C}. For two clusters C and C′, dist(C; C′)=min{distG(u; v) | u∈C;
v∈C′}. We say that two clusters C and C′ are neighboring if dist(C; C′)61. Two
clusters C and C′ intersect if they have at least one common node. A cover T is said
to coarsen a cover S, if every cluster S ∈S is included in some cluster T ∈T. The
volume of a cover S, denoted as Vol(S), is the sum

∑
C∈S |C|, and the diameter of

S, Diam(S), is maxC∈SDiam(C). The degree of a node v in a cover S, DegS(v),
is the number of clusters in S which contain v; The degree of a cover S, �(S), is
maxv∈V degS(v).
A node in the network receives messages, processes them, performs local computa-

tions, and then changes its status and=or sends messages to its neighbors. These actions
are assumed to be performed in negligible time, i.e. computation time is not taken into
account. The messages are received in FIFO order, after a �nite but unknown delay.
The system is assumed to be error-free, i.e. no messages error or messages loss.
The following complexity measures are used to evaluate performances of an algo-

rithm operating in a network. Communication (bit) complexity: The worst-case number
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of messages (bits respectively) sent in the network during an execution of the algorithm.
Messages size: The worst-case length of a message sent in the network, measured in
bits. Time complexity: In a synchronous network – the worst-case number of pulses
from the start of the algorithm to its termination. In an asynchronous network – the
worst-case number of time units from the start of the algorithm to its termination,
assuming that a message delay is at most one time unit. Memory complexity: The
worst-case memory size required at a node in the network, measured in bits.

1.2. Previous results

The synchronizers studied in this paper are based on the approach introduced in
[2]. This approach can be described as follows. First, the synchronous algorithm is
modi�ed so that each message is acknowledged by its reciever. Second, a sparse de-
composition of the network is constructed. Finally, an algorithm which uses this de-
composition to enable each node to learn when it had received all the messages sent
to it, is introduced. In evaluating the complexity measures of the synchronizer, one
considers the complexity of the preprocessing phase, and the overhead per pulse of the
synchronizer. 1

The sparse decomposition used in [2] is a partition P of the network to (disjoint)
clusters, such that both Diam(P) and

∑
C∈P |N1(C)| are kept small. An alternative def-

inition of sparse decomposition, introduced and used in [7, 8, 14, 15], considers covers
S consisting of overlapping clusters, such that both Diam(S) and Vol(S) are kept
small. 2 [7, 8, 14] study the construction of sparse decompositions which are coarsening
of a given input cover. When the input cover is the set of the edges of the graph, one
get a decomposition similar to the partition used in [2]. Other applications of sparse
decompositions can be found in [1, 9].
Awerbuch [2] presents a distributed algorithm for constructing the sparse decompo-

sition used by his synchronizer. The bottleneck of this algorithm are procedures for
performing the next cluster’s leader election, and electing the preferred edges for inter-
cluster communication. [15] presents three synchronizers, named �1, �2 and �, which
are similar to ; �2 reduces the communication overhead by half, � reduces the time
overhead by half, and all of them eliminate the need to elect preferred edges. The
preprocessing phases required for these three synchronizers are performed in [15] by
a general distributed cover-coarsening algorithm, which improves upon the complexity
of the preprocessing in [2] by avoiding the need to elect preferred edges.
Awerbuch and Peleg [6] present a synchronizer which di�ers from the previous ones

in that it does not simulate the synchronous algorithm in a “pulse by pulse” manner,
and it requires that the originators of the simulated synchronous algorithm are known

1 Note that there is a potential overhead also in the acknowledgement messages which were added to the
synchronous algorithm; however, this overhead is typically negligible compared to the overhead introduced
by the synchronizer, and hence is ignored.
2 Another de�nition, which is not used by the constructions in this paper, requires that both Diam(S)

and �(S) are kept small.
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in advance. This synchronizer transforms a synchronous algorithm whose time and
communication complexities are t and m to an asynchronous algorithm whose time
and communication complexities are O(t log3 |V |) and O(m log3 |V |), respectively. In
certain cases, it outperforms the above synchronizers in communication complexity,
but not in time complexity. The amount of memory needed by this synchronizer may
be linear at |V | in some nodes, and its messages size is O(log |V |). This synchronizer
and its construction are considerably more complicated than the other synchronizers in
[2, 15] mentioned above.
Awerbuch and Peleg [7] present a centralized cover-coarsening algorithm which out-

puts a cover with relatively small diameter, which also has either small volume or small
degree. Awerbuch and Peleg [5] present a distributed algorithm for implementing the
algorithms of [7], in an asynchronous setting, by means of the synchronizer described
in [6].
A related decomposition, to be denoted block decomposition, was introduced and

applied in [4, 13]. In this decomposition the nodes of the graph are partitioned into
blocks, which do not necessarily induce connected subgraphs. It is required that both
the number of blocks and the diameters of the connected components induced by nodes
in the same block are small. Algorithms which construct good sparse decompositions
are used to construct good block decomposition (see e.g. [13]). It is not clear whether
the opposite is also true; i.e., whether constructions of good block decompositions
can provide the sparse decompositions needed for our synchronizers. Linial and Saks
[13] also present an elegant asynchronous randomized algorithm for constructing block
decomposition in O(log2 |V |) time and O(|E| log2 |V |) communication complexities.

1.3. Our contribution

The contribution of this paper can be divided to three: �rst, we present a general
simple graph-decomposition methodology, which provides better complexity bounds
for the preprocessing phases of the algorithms discussed here. Second, we use this
technique for constructing two variants of the algorithms in [15]; our variants are based
on new constructions of sparse decompositions needed for these synchronizers, and are
more e�cient both in the preprocessing phase and in the memory and bit complexities
of the resulted synchronizers. Finally, we provide a cover-coarsening algorithm, called
�, which is improvement of the one in [15] (which is an improvement of a similar
algorithm in [7]). The input=output speci�cations of algorithm � are similar to those
of the coarsening algorithm of [15], and it improves upon this latter algorithm in two
ways: First, it employs a novel technique for merging old clusters into new ones,
and thus avoids certain “bad” scenarios in the algorithm of [15]; second, it obtains
better complexity measures, as indicated in Fig. 2 (the comparison of the complexity
measures holds also when the above mentioned bad scenarios are ignored).
The performances of our synchronizers in overhead per pulse are compared with

these of previous synchronizers in Fig. 1, and the complexity measures of the prepro-
cessing phases of these synchronizers are compared in Fig. 2 (MS97 in these �gures
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Synchronizer Communication Time Message Size Reference
 (2K + 2)|V | 4 logK |V | O(1) Awe85

� 2K |V | 2 logK |V | O(log |V |) SS94
1 2K |V | 2 logK |V | O(1) MS97

�2 (K + 2)|V | 4 logK |V | O(log |V |) SS94
2 (K + 2)|V | 4 logK |V | O(1) MS97

Fig. 1. Synchronizers overhead per pulse.

Synchr- Communication Time Bit complexity Space per Reference
onizer complexity complexity edge
 O(|V |2) O(|V | logK |V |) O(|V |2 log |V |) O(1) Awe85
�; �2 O(|V | logK |V |+|E|) O(|V | logK |V |) O((|E|+|V | logK |V |)·log |V |) O(log |V |) SS94
1; 2 O(|E|) O(|V |) O(|V | log |V |+ |E|) O(1) MS97
� O(|E|) O(|V |) O((|V | log |V |+|E|) log |V |) O(log |V |) MS97

Fig. 2. Preprocessing complexities.

refers to this paper). We note that the complexity measures in Fig. 2 are valid regard-
less of whether the network has a leader or not.

1.4. An overview

In Section 2 we review the synchronizers of [2] and [15]; in Section 3 we present a
general method for network decomposition, and use it to construct an e�cient prepro-
cessing phase of a variant of synchronizer  of [2]. In Section 4 we use this method for
presenting two synchronizers, 1 and 2, which are improved variants of synchronizers
� and �2 of [15]. Finally, in Section 5 we present our cover coarsening algorithm.

2. Reviewing previous synchronizers

In this section we review synchronizer  of [2] and two of its variants – called �
and �2 – introduced in [15].
The messages sent by  and its variants can be divided to two sets: original messages,

which correspond to messages sent by the simulated synchronous algorithm (including
acknowledgements), and control messages (or synchronization messages), which are
additional messages sent by the synchronizer to guarantee synchronization. To each
original message there corresponds a pulse number, which is the pulse in which it is
supposedly sent in the synchronous execution.

De�nition 1. A node is safe for a pulse p if it has received acknowledgments for all
original messages sent by it in this pulse.
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Note that in order for a synchronizer to be correct, it is su�cient to ensure that a
node v sends messages of the next pulse only after all its neighbors became safe in
the current pulse. If the FIFO discipline is not assumed, then it is also necessary that
the node itself is safe in the current pulse.
Synchronizer  and its variants can be viewed as a combination of two synchronizers

– � and � [2]. In synchronizer �, each node, upon becoming safe at pulse p, sends a
SAFE message to all its neighbors. A node, upon receiving SAFE messages from all its
neighbors, produces the next pulse of the original algorithm. Communication and time
overhead of the synchronizer per pulse are O(|E|) and O(1), respectively.
In synchronizer �, a tree spanning the network is constructed in a preprocessing

phase. Each node, upon becoming safe at pulse p and receiving SAFE messages from
all its children, sends a SAFE message to its parent in the tree. When the leader has
received SAFE messages from all its children, it sends GOAHEAD messages to all its
children. A node, upon receiving the GOAHEAD message, passes it on to its children
in the tree and produces the (messages of the) next pulse of the original algorithm.
Communication and time complexities of the synchronizer per pulse are both O(|V |).

2.1. Synchronizer 

In synchronizer , the network is �rst partitioned into disjoint clusters, and speci�c
edges, called preferred edges, are selected to connect neighboring clusters. Each clus-
ter is constructed by �rst electing a cluster leader, and then constructing a BFS tree
around that leader. The tree is constructed layer by layer, where each layer consists
of neighbors of nodes in the previous layer which do not belong to any cluster yet.
A new layer joins the cluster as long as its magnitude is at least K − 1 times the
magnitude of the already existing cluster, where K¿1 is a parameter. This rule, which
will be denoted Fast Growth Rule is kept by all the variants of  discussed in this
paper. The use of the Fast Growth Rule in the preprocessing phase of  guarantees
that the depth (height) of each cluster is bounded by logK |V |, and that the number of
preferred edges used for inter cluster communication is bounded by (K − 1)|V |.
The preprocessing stage of  is composed of four tasks with the following complex-

ities:
1. Electing a leader in the network. This requires communication and time complexities
of O(|V | log |V |+ |E|) and O(|V |), respectively [3, 11]. We note that the preprocess-
ing phase in [2] used for this task the earlier algorithm of [12], whose communication
and time complexities are O(|V | log |V |+ |E|) and O(|V | log |V |), respectively. 3

2. Clusters creation, with overall communication and time complexities of
O(|V | logK |V |+ |E|) and O(|V |); respectively.

3. Finding the next cluster’s leader, with overall communication and time complexities
of O(|V |2) and O(|V | logK |V |), respectively.

3 This does not a�ect the complexity measures of the algorithm in [2], which are dominated by the task
of electing preferred edges
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4. Electing preferred edges, with communication and time complexities of O(|V |2) and
O(|V | logK |V |); respectively.

A simulation of pulse p by synchronizer  is done as follows:
1. A node that becomes safe and receives SAFE messages from all its children, sends
a SAFE message to its parent. This process, called CONVERGECAST, is initiated by the
leaves and terminates at the root. It requires logK |V | time and |V | communication
complexity.

2. After receiving SAFE messages from all its children, and becoming safe itself, the root
broadcasts a CLUSTER SAFE message to all its cluster. This message is forwarded also
over the preferred edges. This requires logK |V | time and (2K−1)|V | communication
complexity.

3. When a leaf receives a CLUSTER SAFE message from its parent and over all adjacent
preferred edges, it initiates a convergecast of READY messages. A node sends a
READY message to its parent after it receives READY messages from all its children,
and CLUSTER SAFE messages over all its preferred edges. This phase has logK |V | time
and |V | communication complexity.

4. Finally, after receiving READY messages from its children and CLUSTER SAFE messages
over adjacent preferred edges, the root broadcasts GOAHEAD message to its cluster,
which initiates the next pulse simulation. this requires logK |V | time and |V | com-
munication complexity.

Thus, the overhead per pulse in this simulation is (2K + 2)|V | in communication and
4 logK |V | in time. Note that using  is worthwhile only when 2K |V |¡|E|, as otherwise
the simpler synchronizer � is more e�cient.

2.2. Synchronizers � and �2

In [15], Shabtay and Segall presented three modi�cations of synchronizer , called
�; �1 and �2, which avoid the need to use (and hence to elect) preferred edges. Instead,
the inter-cluster communication is obtained by having neighboring clusters share com-
mon nodes (i.e., the clusters used are not disjoint). Thus, communication on the edges
of the clusters’ spanning trees is su�cient.
The preprocessing phases of these synchronizers are based on a general cover-

coarsening technique, based on the constructions in [7, 14]; Shabtay and Segall [15]
also present an improved algorithm to construct sparse covers, which we will discuss
in details in Section 5.
Synchronizers � and �2 4 are conceptually simpler than , as they use only one

convergecast and one broadcast per pulse. Also, synchronizer � has communication
and time overheads per pulse of 2K |V | and 2 logK |V |; respectively, while in �2 these
overheads are (K + 2)|V | and 4 logK |V | + 1. However, due to the more complex
structure of the covers employed, the memory and bit complexities of both � and �2
are no longer constant, as the corresponding complexities of  are.

4 Synchronizer �1 is inferior to �2, and is not described here.
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3. The decomposition method

Constructions of sparse decompositions, needed for the synchronizers discussed in
this paper, are traditionally done in a “semi-sequential” manner, in which the clusters
are constructed one by one, while each individual cluster is constructed in parallel.
The constructions of the individual clusters depend on a parameter K¿1, such that
the diameters of the clusters are O(logK |V |) and the volume of the decomposition is
bounded by K |V |.
In this section we present a general, simple method for carrying out constructions

of this type. As we shall see, the di�erence between various decomposition algorithms
is in the way they maintain and select potential leaders, and the rules by which the
individual clusters are constructed. Our method treats the construction of an individual
cluster as a “black box”, and concentrates in the way the cluster leaders are selected.
For this sake, we introduce the notion of a potential leader, which is a node which
can start the construction of a new cluster. All the decomposition algorithms discussed
in this paper are performed (sometimes implicitly) according to the following scheme:
While there are potential leaders in the network do
1. Find a node v which is a potential leader.
2. Construct a cluster whose leader is v.
In [2, 15], a potential leader is elected in step 1 above from the last constructed

cluster or from the set of nodes that were rejected from that cluster. If no node can
be found in that last cluster, the next cluster’s leader is elected from the most recently
created cluster with a non empty set of potential leaders. This task in [2] requires com-
munication and time complexities of O(|V |2) and O(|V | logK |V |), respectively, while
in [15] communication and time complexities are both O(|V | logK |V |), but memory
requirement could be O(|V |) per node. Another method mentioned by [5] traverses
the last created cluster in a depth-�rst search (DFS) manner (cf. [10]), seeking for a
potential leader, and when this cluster is exhausted, it backtracks to the cluster from
which this one was created. The communication and time complexities of this method
are proportional to the volume of the output cover (which is O(K |V |)), since two
messages are sent on each edge of each spanning tree of each output cluster.
In this work we use the following simple method for �nding the next potential leader:

�rst, a spanning tree T of the whole network is constructed. If a leader is given, this
requires O(|E|) communication and O(|V |) time, else the communication and time
required, are O(|V | log |V |+ |E|) and O(|V |), respectively [3, 11]. All the nodes in T
are marked as potential leaders. Now, the �rst cluster is constructed, starting from the
root of T. A node that joins a cluster and satis�es a certain condition, which depends on
the speci�c decomposition, stops being a potential leader (for constructing the partition
needed for , every node that joins a cluster stops being a potential leader). When the
cluster construction is terminated, the leader of the cluster (which is the root) starts
a DFS traversal of T, searching for the next potential leader. Once such a node v is
found, the traversal is suspended, and a new cluster is constructed with v as its leader.
When this cluster is completed, the traversal is renewed until the next potential leader
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is found, and so on. This procedure continues until the traversal of the spanning tree
T is terminated at its root.
The overhead in communication of �nding the next cluster leader is O(|V |), and

since the clusters are constructed one by one, this is also the overhead in time. The
overhead in memory needed to maintain the spanning tree is O(1) bits per edge.
We complete this section by noting that in a network with a leader, the above

technique can be used to reduce the communication, bit and time complexities of the
preprocessing algorithm of synchronizer  in [2] from O(|V |2), O(|V |2 log |V |) and
O(|V | logK |V |) to O(|E|), O(|E|+ |V | log |V |) and O(|V |), respectively. If a leader is
not given, communication, bit and time complexities are reduced to O(|V | log |V |+|E|),
O((|V | log |V |+ |E|) log |V |) and O(|V |), respectively. This is done by �rst using this
technique to perform the next cluster leader election required by this algorithm (task 3
in Section 2.1), thus reducing the time and communication complexities of this task
to O(|V |). In addition, we eliminate the stage of electing preferred edges (task 4 in
Section 2.1) altogether; instead, whenever a node v is rejected from a cluster C which
is currently being built, v de�nes the edge which connects it to the node in C which had
sent him a rejection message as a preferred edge. The number of edges that are selected
this way is bounded by (K −1) times the number of nodes in the cluster, which is the
same bound achieved by the construction in [2]. (Note, however, that it is possible that
two neighboring clusters will be connected by more than one preferred edge.) Since
this change in the construction does not a�ect the structure of the clusters constructed
in the preprocessing phase, and it still guarantees that at least one preferred edge will
connect each pair of neighboring clusters, the correctness and worst-case complexity
of the synchronizer are una�ected by this change.
The reduction in bit complexity of our preprocessing algorithm to O(|E|+|V | log |V |)

follows from the fact that all the messages sent by it are of constant size, except
O(|V |) messages which are used to count the number of nodes in new layers that join
clusters; 5 each such message is of size at most log |V |.

4. Improved variants of synchronizers �; �2

In this section we present two synchronizers 1 and 2 which are improved variants
of synchronizers � and �2 of [15]. Synchronizers � and �2 use a sparse cover in which
the clusters may overlap, and thus save the need to use (and elect) preferred edges.
The preprocessing algorithms for our synchronizers are tailored to meet the topologi-
cal requirements of � and �2; however, they outperform the preprocessing algorithms
of � and �2 in all four complexity measures (see Fig. 2). Moreover, the resulting
decompositions are easier to maintain in terms of space and bit complexities. As a re-
sult, the resulting synchronizers outperform the corresponding synchronizers in [15] in

5 The fact that there are only O(|V |) such messages follows from an argument similar to the one given
in Section 4.3.2.
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memory requirements and=or in the size of the messages used, while maintaining the
same communication and time overheads (see Fig. 1). The preprocessing phases of both
1 and 2 are based on the method introduced in Section 3, where the construction of
the individual clusters is described in the following section.

4.1. Clusters construction

In the preprocessing phases of both 1 and 2 each cluster C is constructed in
iterations, where the nodes added to C during iteration i are denoted as layer i of
C; the �rst layer of C, which includes the root, is layer 0. The leader of the cluster
initiates iteration i by broadcasting a message along the edge of the spanning tree of
C. Upon receiving this message, nodes in layer i−1 send messages to their neighbors,
asking them to join layer i of C. A node v which receives this message and wishes
to join the cluster, sends a positive acknowledgment to the �rst node, u, from which
it received this request, and makes u its parent in (the tree spanning) C. At the end
of iteration i, each node informs its parent in this tree how many descendants it has
in layer i. This enables the root to determine the number of nodes in layer i. If this
number ful�lls the Fast Growth Rule – i.e., is at least K − 1 times the current size
of cluster C – then the leader initiates the construction of layer i+1; else, it announces
the termination of the construction of the cluster. This announcement is acknowledged
by the leaves to the root, who then continues the DFS traversal in a search for the
leader of the next cluster. The last layer that joins cluster C, whose size violates the
Fast Growth Rule, is denoted as the last layer of C. Thus, every cluster contains a
last layer, which might be empty.
In the construction above, a node v is a tenant in a cluster C, if it belongs to C

but it is not in the last layer of C; v is a tenant if it is a tenant in some cluster C
(initially, all nodes are not tenants).

4.2. Variant 1: Synchronizer 1

4.2.1. Synchronizer 1: preprocessing
The preprocessing phase of 1 guarantees that for each edge e= {u; v} in G, there

is a cluster C which includes both u and v. We describe how this is achieved, us-
ing the construction in Section 4.1 above: First, a potential leader is de�ned to be
a node v which is not a tenant yet. The construction of a cluster C is initiated in
iteration 0, where the cluster leader becomes the root of C, which is also layer 0
of C. For i¿0, iteration i proceeds as follows: Each node v in layer i − 1 of C,
which receives an announcement to start iteration i, marks itself as a tenant of C, and
then adds to layer i of C all its neighbors which are not in C and are not tenants
in any other cluster. The root computes the number of nodes in layer i of C, as de-
scribed above. If this number satis�es the Fast Growth Rule, then it instructs the
nodes in layer i to initiate iteration i+1, otherwise it announces the termination of the
construction.
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Lemma 4.1. A node is a tenant in at most one cluster; and it is a leaf in any other
cluster it belongs to.

Proof. A node v can be added to a cluster C only if it is not a tenant yet. Thus, once
v becomes a tenant in some cluster C, it cannot join, let alone become a tenant, in
any other cluster. Clearly, v may have children in a cluster C only if it is a tenant
in C.

Lemma 4.2. The construction algorithm terminates; and when it terminates; any two
neighboring nodes u and v are members in a common cluster.

Proof. Termination: Since a cluster expansion is bounded by the network size, the
construction of each individual cluster must terminate. Since whenever a new cluster is
constructed, the cluster leader becomes a tenant of this cluster, the number of tenants
increases by at least one in each construction of a new cluster. Thus, eventually all
the nodes in the graph are tenants, and the traversal terminates at the root, terminating
the whole construction phase.
Correctness: By the discussion above, when the construction algorithm terminates,

all the nodes in the graph are tenants. Thus, it su�ces to show that if v is a tenant
then for each neighbor u of v there is a cluster which contains both u and v. We prove
this by induction on the number of times a layer is added to a cluster during the run
of the algorithm. Denote this number by l. The base l=0 is trivial – no node is a
tenant yet. Assume the claim is true for all j¡l, and let v be a node that becomes a
tenant in cluster C in the lth iteration. We have to show that every neighbor u of v
is in a common cluster with v. If u became a tenant before the lth iteration, then u; v
are in the same cluster by the induction hypothesis. Otherwise, u is added to C in the
lth iteration, if it was not added to C earlier. In both cases, after v became a tenant,
it shares a common cluster with u.

We note that the preprocessing phase of 1 is very similar to the improved version
of the preprocessing phase of synchronizer , as presented in Section 3. The main
di�erence is that in 1 the “last layers” are not rejected, but added to the constructed
cluster. Thus, the communication, bit and time complexities of the preprocessing phase
of 1 are the same as those of the improved version of the preprocessing phase of ,
described in Section 3.

4.2.2. Synchronizer 1: operation
The simulation of a pulse in 1 consists of two phases:

1. A node v which belongs to a cluster C, sends a SAFE message to its parent in the
tree spanning C after it becomes safe and it receives SAFE messages from all its
children in this tree.

2. When the root is safe and it receives SAFE messages from all its children, it broad-
casts a GOAHEAD message to its cluster.
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3. A root in a cluster C generates the next pulse after receiving a GOAHEAD from all
its parents and SAFE from all its children in C. A non-root node generates the next
pulse after receiving a GOAHEAD from all its parents.

4.2.3. Synchronizer 1: correctness
Theorem 4.3. A node v generates the next pulse of the original algorithm only after
all its neighbors are safe in the current pulse.

Proof. A non-root node v generates the next pulse upon receiving GOAHEAD messages
from all its parents in the clusters it belongs to. If v is a root of a cluster C, it has
also to receive SAFE from all its children in C. In both cases, any node which belongs
to one of the clusters that v belongs to is safe. Since, by Lemma 4.2, v has a common
cluster with each of its neighbors, all its neighbors are safe.

4.2.4. Synchronizer 1: overhead per pulse
Each node in a cluster C, except the root, sends one SAFE message and receives

one GOAHEAD message per pulse. Thus, the overhead in messages per pulse is less than
2
∑

C |C|, where the sum is taken over all clusters C. A cluster C with tC tenant
nodes and lC nodes in its last layer satis�es |C|= lC + tC and lC¡(K − 1) · tC (see
de�nition of the last layer in Section 4.1). Also, by Lemma 4.1, a node is a tenant
in at most one cluster. Thus we get that the sum of the sizes of the clusters satis-
�es:

∑
C |C|=

∑
C(tC + lC)¡

∑
C K · tC =K

∑
C tC6K |V |. Hence, the total number

of control messages per pulse is less than 2K |V |.
The overhead in time complexity in synchronizer 1 is at most 2 logK |V |, since the

maximum height of a cluster is bounded by logK |V |, and the SAFE messages are sent
from the leaves to the root, while the GOAHEAD messages are sent in opposite direction.
The memory requirement of 1 is O(1) per adjacent edge at a node. By Lemma 4.1

a node v can have children only in one cluster, say Cv. Hence, in order to maintain
correct communications along the trees spanning each cluster, a node v only needs to
distinguish three properties of adjacent nodes: v’s children in Cv, v’s parent in Cv, and
v’s parents in other clusters. This can be done by three bits per edge. Also, since a
node v may be a parent of a neighbor u in at most one cluster, there is no need to
send clusters identities with SAFE or GOAHEAD messages. Thus, constant message size is
su�cient.

4.3. Variant 2: Synchronizer 2

4.3.1. Synchronizer 2: preprocessing
In this variant, the preprocessing phase guarantees that for each node v there is a

cluster C which contains N1(v) (i.e. v and all its neighbors). To achieve this, we use
the construction described in Section 4.1, with the following modi�cations: During the
construction, a node v is marked as explored by cluster C when v and all its neighbors
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join cluster C; node v is unexplored if it is not explored by any cluster yet (initially
all nodes are unexplored). Potential leaders are unexplored nodes.
Using the above de�nitions, the construction of a cluster C is done as follows: In

iteration 0 the cluster leader, r, becomes the root of C, and then it initiates iteration 1.
For i¿1, iteration i is split to two sub-iterations, as follows: In the �rst sub-iteration
of iteration i, each node v in layer i − 1 of C performs the following:
1. marks itself as a tenant of C;
2. if it is unexplored yet, then v adds to layer i of C all its neighbors which are not
in C yet, and marks itself explored by C;

3. If it is already explored, then v adds to layer i of C all its unexplored neighbors.
Each node v which was added to C in the �rst sub-iteration and is unexplored yet,
performs the second sub-iteration, in which it does the following:
1. Adds to C all its neighbors which are not in C yet, and
2. marks itself explored by C;
Finally, the number of nodes which joined layer i of C is reported to the root in the
standard convergecast manner. If this number is at least K − 1 times the number of
nodes in all previous layers, then the root instructs the nodes in layer i to initiate
iteration i + 1; otherwise it announces the termination of the construction of C.
Note that in this construction, the tree spanning the cluster C is not necessarily a

BFS tree of the subgraph G(C) of G induced by the nodes of C, i.e. the length of the
tree path from the root r to a certain node v is not necessarily equal to distG(C)(r; v).

Lemma 4.4. The construction terminates; and when it terminates; for each node v∈V;
there is a cluster C such that v is explored by C; hence v and all its neighbors belong
to C.

Proof. The termination proof is identical to the proof of Lemma 4.2. The second part
follows from the fact that when the algorithm terminates all nodes are explored.

Before analyzing 2 construction, we prove some properties that will be needed later.

Lemma 4.5. Let v be a node which is explored by or a tenant in cluster C; but it is
not the root of C. Then v’s parent in C is a tenant of C.

Proof. If v became a tenant in or was explored by C during the �rst sub-iteration of
iteration i, then v’s parent is in layer j of C, for j6i − 1. If v was explored in the
second sub-iteration of iteration i, then its parent is in layer i− 1 of C. In both cases,
v’s parent is not in the last layer of C, and hence it is a tenant of C.

Claim 4.6. Assume that the construction of cluster C was terminated; and let v be a
tenant of C. Then v and all its neighbors are explored.

Proof. Assume that v is in layer i of C. Since v is a tenant of C, v initiated iteration
i + 1 during the construction of C. The �rst sub-iteration guarantees that v becomes
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explored, and that all its unexplored neighbors join C. The second sub-iteration guar-
antees that all these neighbors become explored.

Lemma 4.7. A node can be a tenant in at most one cluster.

Proof. Let C be the �rst cluster in which a node v becomes a tenant. It su�ces to
show that v does not join any cluster C′ which is constructed after C. Let C′ be such
a cluster, and let r be the root of C′. Then r is unexplored when construction of
C′ starts, hence r 6= v. We now prove that v does not join C′ in the ith iteration of
its construction, for i¿1. Since, by Claim 4.6, v and all its neighbors were explored
before C′ was constructed, v does not join C′ in the �rst sub-iteration of iteration i.
Finally, since all of v’s neighbors are already explored, v does not join C′ also in the
second sub-iteration of that iteration.

Lemma 4.8. For any cluster C, the height of the tree spanning C is at most 2 logK |V |.
Proof. At every iteration except the last, the number of nodes in the cluster is multi-
plied by at least K . Therefore, a cluster creation takes logK |V | iterations at the most.
At every iteration the tree height is increased by at most 2.

4.3.2. Synchronizer 2: preprocessing complexity
For each edge (u; v), u sends v one message when u is explored, and possibly another

message when u becomes a tenant. Each such message is acknowledged by v. This
gives us O(|E|) messages which are sent for adding vertices to clusters. In addition,
in each iteration, each node in C sends also O(1) messages along tree edges, in order
to count the number of nodes that joined C, to initiate the next sub-iteration, or to
announce termination. Since in each iteration except the last one, the number of nodes
in C is multiplied by a constant K larger than 1, the total number of such messages
sent during the construction of C is O(|C|), which gives total of O(∑C |C|) when
summing up over all the clusters. Since a node u can be a child of a node v in at most
two clusters – at most one cluster in which v is a tenant and one cluster in which v
was explored – we have that each edge can belong to at most four spanning trees of
clusters. 6 Hence, the volume

∑
C |C| is bounded by O(|E|). Thus, the communication

complexity of the preprocessing phase is O(|E|).
To bound the bit complexity of the preprocessing phase, we note that the only

messages that have more than a constant size are the messages that count the number
of nodes in a given layer. These messages are sent once by each node when it is
explored, and once in each iteration by tenants of the constructed cluster. Since the
number of tenant nodes in a cluster is multiplied in each iteration by a constant K¿1,
the sum of counting messages sent by tenants nodes during the construction of a cluster
C with tC tenant nodes is O(tC). By Lemma 4.7 the sum

∑
C tC =O(|V |). Thus, we

6 Using Claim 4.6, one can improve this somewhat, and show that for each edge (u; v)), the parent–child
relationship can exist at most twice in one direction and once in the other.
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have O(|V |) such messages, each of size O(log |V |). Hence, the bit complexity of the
preprocessing phase, assuming the network has a leader, is O(|E|+ |V | log |V |).
Constructing a cluster C with tC tenant nodes is done by at most logK tC + 1 iter-

ations. Each iteration takes at most 2(2 logk tC + 2) time units. Thus, constructing C
takes O(log2K tC) time units. By the fact that log

2
K tC =O(tC) and by Lemma 4.7, we

get that the number of time units for constructing all the clusters in the network, is
O(|V |). Using the method of Section 3, the time complexity of the next cluster leader
election is also O(|V |).
Thus, the communication, bit and time complexities of 2 construction in a network

with a leader are O(|E|);O(|E|+ |V | log |V |) and O(|V |), respectively.

4.3.3. Synchronizer 2: operation
The simulation of a pulse by 2 is done in two phases, as in 1, with the following

changes: the GOAHEAD messages are forwarded from a node u in a cluster C to its child
v in C, only if v is a tenant of C, or it is explored by C. Note that by Lemma 4.5, these
messages are sent only on the tree in which u is a tenant. A non-root node generates
the next pulse upon receiving the GOAHEAD message on the (single) cluster by which it
was explored; a root generates the next pulse upon receiving SAFE messages from all
its children.

4.3.4. Synchronizer 2: correctness
For 2 to be correct, it su�ces that each node v receives a GOAHEAD message i� all

its neighbors are safe. By Lemma 4.4 there is a cluster C in which v is explored, and
thus all v’s neighbors belong to C. It is easy to see that the root of C will receive
SAFE message from all its children i� all the nodes in C are safe, and in particular all
v’s neighbors are safe. Once the root receives SAFE messages from all its children, it
broadcasts a GOAHEAD message to its cluster, and this message is forwarded by every
node in C to all its children in C which are either tenants in C or explored by C.
Since, by Lemma 4.5, a node v which is not the root of C is a tenant or explored in
C only if its parent is a tenant in C, each node explored in C will receive a GOAHEAD
message from its parent in C.

4.3.5. Synchronizer 2: e�cient implementation
In this section we show that synchronizer 2 can be maintained using a constant

memory per edge and a constant message size.
For brevity, in the discussion below, we identify a cluster C with the tree spanning

it. Since a node v may participate in more than a constant number of clusters, v needs
to distinguish between the di�erent (trees spanning the) clusters it belongs to. Thus,
a straightforward implementation of the operation of 2, as described in Section 4.3.3,
may require 
(log |V |) bits per tree edge, in order to keep the identity of the cluster
(or clusters) which uses this edge, and each SAFE or GOAHEAD message should also carry
the identity of the cluster on which it is sent.
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In our construction, though, a node v can be a non-leaf node in at most two clusters:
The cluster in which v is explored, which we call CE(v), and the cluster in which v is
a tenant, called CT (v) (observe that both can be the same cluster). Thus, v only needs
to maintain the following information for each adjacent edge (v; u). First, whether this
edge is an outgoing edge (v→ u) in at least one tree, and if it is – to which of the
trees CE(v); CT (v); CE(u) and CT (u) it belongs. Similarly, if it is an incoming edge
(u→ v) in at least one tree, and if so – to which of the above four trees it belongs.
Altogether, eight bits per edge at a node are su�cient.
We now show that constant message size su�ces to implement 2. Using the above

structure, a SAFE message sent by a node v to its parent u needs to carry only the
information whether it is sent on CE(u) or CT (u) (in fact, this information should be
sent only in the case where both trees use the edge (u→ v)). This enables each vertex
u to forward a SAFE message to its parent in one of these two trees only when u and
all its children (if any) on that tree are safe. Similarly, since the information kept in
each node u enables u to identify its children in CT (u) which are either explored by or
tenants in CT (u), u needs no additional information in order to forward the GOAHEAD

messages it receives from its parent in CT (u) only to these nodes, as required.

4.3.6. Synchronizer 2: overhead per pulse
Since, by Lemma 4.8, the height of each cluster is at most 2 logK |V |, the overhead

in time per pulse is at the most 4 logK |V |. In each cluster C, all nodes except the
root send one SAFE message, which gives total of

∑
C |C|6K |V | messages per pulse.

In addition, each node receives one GOAHEAD message in the cluster in which it is
explored, and possibly another such messages in the cluster in which it is tenant (if
any). This gives additional less than 2|V | messages. Thus, the total communication
overhead per pulse is less than (K + 2)|V |.
As mentioned in Section 4.3.5, the memory requirement of 2 is O(1) per adjacent

edge at a node, and the size of the synchronization messages is also bounded by a
constant.

5. A cover-coarsening algorithm

The preprocessing algorithms discussed in Section 4 can be viewed as special cases
of the cover-coarsening algorithm, speci�ed as follows:
Input: A number K¿1, and a source cover S= {S1; S2; : : : ; Sm} of a graph G=

(V; E), where each cluster Si ∈S is given by a tree which spans its nodes, rooted at
the cluster’s leader. The diameter of the tree is bounded by some global constant dS.
Output: A target cover T= {T1; T2; : : : ; Tl}, where each cluster Ti is represented

by a tree spanning it, satisfying: (a) each cluster S ∈S is included in some cluster
T ∈T, (b) Vol(T)6K |V |, and (c) the diameter of each cluster Ti ∈T is bounded
by dT=(2 logK (|V |) + 1)dS.
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We present here a cover-coarsening algorithm, named �. Assuming that the net-
work has a leader, the communication and time complexities of � are O(Vol(S))
and O(min(Vol(S); dS · |V |), respectively. Our algorithm improves a similar algorithm
given in [15] in several aspects: It introduces a novel technique for merging clusters,
thus avoid possible bad scenarios in the algorithm presented there, as described in Sec-
tion 5.2, and it is simpler and more e�cient in its complexity measures. Algorithms
related to � are also studied in [5, 14]: Peleg [14] presents a centralized cover-coarsening
algorithm. In [5], some algorithms for the related task of coarsening a cover compris-
ing of the m neighborhoods of every v∈V for 16m6 log |V | are given. Speci�cally,
it presents two synchronous algorithms, called SYNC-AV-COVER and SYNC-MAX-
COVER, and one asynchronous algorithm, called ASYNC-MAX-COVER. Our algo-
rithm � is related to an asynchronous version of SYNC-AV-COVER, which is not
presented there formally (though it is used implicitly in the construction of ASYNC-
MAX-COVER). This algorithm di�ers from ours in several points: The input cover
there is the set of m-neighborhoods of all vertices, the output cover guarantees that the
spanning tree of each cluster is a BFS tree on the induced subgraph, and the height of
such a tree may be 4 logk |V |; its communication, time, bit and memory complexities
are O(|E|+ |V | log3K |V | log |V |), O(K |V | log3K |V | log |V |), O(K |V | log |V | and O(|V |),
respectively.
Note that � can serve as a preprocessing algorithm for 1, by letting the input cover

S be the set of all edges in E (thus Vol(S)= 2|E| and dS=1), and for 2, by
letting S include for each node v the cluster composed of v and its neighbors (thus
Vol(S)=

∑
v∈V (d(v) + 1)= |V | + 2|E| and dS=2). We note, however, that the bit

complexity of � is higher than that of the preprocessing algorithms for 1 and 2
presented in Section 4, since it sends cluster identities in its messages. Also, � does
not imply synchronizers which have constant messages size and constant memory per
edge, like 1 and 2.

5.1. Description of the algorithm

Algorithm � has the structure described in Section 3, only that now S-clusters are
treated as nodes, as we describe below.
A target cluster T is constructed in iterations, where the nodes added to T in iteration

i are denoted as layer i of T . We denote by T [i] the cluster T constructed during the
�rst i iterations. When there is no ambiguity, we will identify T [i] with its spanning
tree. In iteration 0, some cluster S ∈S is eliminated from S and becomes layer 0 of
T . In iteration i¿0, each cluster S ∈S which intersects T [i−1] is eliminated from S

and merged into T [i− 1] to form T [i]. The tree spanning T [i− 1] is extended to span
T [i] in a way that guarantees that its height is increased by at most dS. At the end
of iteration i, the nodes at layer i are counted, and if their number is at least K − 1
times larger than the number of nodes in T [i − 1], iteration i + 1 starts; otherwise the
construction of T is terminated. By arguments similar to the ones given in Section 4,
we show that a node can be a tenant in at most one cluster, and (hence) the sum of
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the cardinalities of the last layers of the clusters in T is less than (K − 1)|V |. Thus,
Vol(T)6K |V |. Similarly, it can be shown that the number of iterations is bounded by
logK |V |, and we prove later that the height of the tree spanning every output cluster
T is bounded by dS logK |V |.
The construction of a target cluster T starts in iteration 0, when a cluster S ∈S is

eliminated from S and becomes layer 0 of T , and its root becomes the root of T .
For i¿0, iteration i starts when the root of T [i − 1] broadcasts a message on (the
tree spanning) T [i− 1], to announce the initiation of iteration i. A node v in T [i− 1]
which receives this message becomes a tenant of T . If v belongs to one or more source
clusters, it sends S-T expansion messages to all its neighbors in each such cluster S,
in order to merge S into T . During this merging process, the original parent–child
relation in cluster S is ignored, and a new parent–child relation is created, as follows.
A node v in S\T [i − 1] which receives an S-T expansion message for the �rst time,
marks the sender of this message as its new parent in S. In addition, each such node
v also establishes a parent in T . Thus, the following structures are maintained during
iteration i.
• For each source cluster S which intersects T [i− 1], a digraph S̃ induced by the set
of edges E(S̃)= {(u; v) | u marked v as its parent in S during iteration i}.

• A digraph T̃ induced by the set of edges E(T̃ )= {(u; v) | v is the last node which u
established as its parent in T during iteration i}.
Each S-T expansion message carries the identities of the source cluster S and the

target cluster T , and a variable d, initiated to zero, that indicates the distance of the
sender from T [i−1]. For each node v in layer i of T there is a unique source cluster S
s.t. v is explored in T by S. Each S-T expansion message received by a node v from
its neighbor u is eventually acknowledged by an S-T acknowledgment message. This
message contains a count �eld c that indicates the number of nodes explored in T by
S in the sub-tree of S̃ rooted at v, and a bit f which is set to 1 if v establishes u as
its parent in T . v may later replace its parent in T by another node, as we describe
below.
A node v which receives from a neighbor u an S-T expansion message with distance
�eld d acts as follows:
Case 1: v was not yet explored in T . In this case v will:

1. mark itself “explored in T by S”,
2. mark u as its parent in T ,
3. mark u as its parent in S,
4. increment d by one,
5. set d(T ), its distance from T [i − 1], to d,
6. send S-T expansion messages to all its other neighbors in S.
Case 2: v =∈T [i − 1], and is already explored in T :

• If this is the �rst S-T expansion message received by v, then v will
1. mark u as its parent in S,
2. increment d by one,
3. If d¡d(T ) then it marks u as its parent in T , and sets d(T ) to d,
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4. If d¿d(T ) then it sets d to d(T ),
5. send S-T expansion messages to all its other neighbors in S.

• Else, v will send back to u an S-T acknowledgment with c=0 and f=0.
Case 3: v∈T [i − 1]: v sends u an S-T acknowledgment with c=0 and f=0.
A node v which has sent or received S-T expansion messages during iteration i,

waits until it receives S-T acknowledgments for all the S-T expansion messages it
sent. At this point, it stops being a member of cluster S. If it has a parent in S, say
u, then it also sends an S-T acknowledgment message to u. The count �eld c and the
parent indicator bit f of this message are determined as follows:
1. c is �rst set to be the sum of the c �elds in all S-T acknowledgments messages
received.

2. If v was explored in T by S, c is incremented by 1.
3. If u is marked as v’s parent in T , then the f bit is set to 1, else it is set to 0.
If the f-bit sent by v was set to 1, meaning that v establishes u as its parent in T . It
might be the case that v had previously established a di�erent parent in T , say w. In
this case, v has to send w a delete parent message announcing that it is no longer its
parent in T .
The number of nodes in layer i is computed by the nodes in T [i − 1] as follows.

A node v which is a leaf in T [i − 1], sends a report(c) message to its parent in T
after receiving acknowledgments for all the expansion messages it sent (if any); the
value of c is the sum of the c �elds in all the acknowledgment messages received.
These report messages are forwarded towards the root by internal nodes of T [i − 1]
which receive report messages from all their children in T [i− 1] and acknowledgment
messages for all expansion messages sent by them. Each such node updates the count
c to be the sum of the c values it received. The sum of the c values received by the
root is the number of nodes in layer i.

5.2. An example

Some of the main ingredients of Algorithm � are illustrated by the scenario described
below, and depicted in Fig. 3.
Suppose that nodes u1 and u2 were added to the target cluster T in iteration i − 1.

Assume also that u1 and u2 belong to source clusters S1 and S2, respectively (see
Fig. 3). Now let the ith iteration start, and let u1 initiate an S1-T expansion message;
this message eventually reaches v. v now sets d(T ) to 5, sets w to be its parent in
T (and in S1), increments d by one and sends the message to x, which is a leaf
in S1. x now sets d(T ) to 6, marks v as its parent in T , and then sends an S1-T
acknowledgment message to v. In this message, x sets c to 1, since x was explored
in T by S1, and v is x’s parent in S1; x also sets the f bit to 1, to establish v as its
parent in T . When v receives this S1-T acknowledgment message, it sets the c �eld to
2 (since the sum of all c �elds received by v is 1, v was explored in T by S1, and w
is v’s parent in S1) and the f bit to 1 (since w is marked as v’s parent in T ). Then,
v forwards this message to w, its parent in S1.
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Fig. 3. An illustration of the cover-coarsening algorithm.

Later on, v receives an S2-T expansion message from u2. It then updates d to 1, and
marks u2 as its parent in T . Then it forwards this message on the tree spanning S2.
This message eventually arrives z, who then sends back an S2-T acknowledgment. This
message will eventually arrives v, with c=3 (which is the number of descendants of v
on the path ending in z). At this point, v sends u2 an S2-T acknowledgment message
with c=3 (i.e., v does not increase c) and f=1, thus establishing u2 as its parent
in T . v will also send a delete parent message to w, informing w that it is no longer
its parent in T . The tree edges that were added to T during this process are all the
edges in S1 and S2, except the edge (w→ u).
There are two important points that this example illustrates: �rst, that the change

of parent is essential in order to keep the incremental addition to the diameter of T
bounded by dS. Second, that while counting the nodes added to T in iteration i, each
node is reported on the S cluster in which it was explored, which guarantees that it
is counted exactly once (in the example above: v was counted by w, its parent in the
S1-cluster). It appears that these two properties are not maintained by the algorithm in
[15]; speci�cally, in the scenario described above, this algorithm will fail to count the
three descendants of v in S2, and will leave w as the parent of v in T , thus setting the
distance of z from T [i− 1] to 8 – larger than the diameters of both S1 and S2; in fact,
this example can be expanded to show that this algorithm may increase the diameter
of T by �(|V |) during a single phase.
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5.3. Correctness proof

In this section we prove that at the end of iteration i, T [i] is a tree that spans all the
nodes in source clusters that intersects T [i − 1], its height is incremented by at most
dS, and the root of T computes correctly the number of nodes that were added to T
in this iteration.

Claim 5.1. Let v be a node not in T [i−1]. Then if v belongs to some source cluster S
which intersects T [i− 1]; v will receive an S-T expansion message during iteration i.

Proof. Let v be in a cluster S as in the statement of the claim, and consider a path
(u; u1; : : : ; uk−1; v) in the cluster S which connects a vertex u∈ S ∩T [i − 1] and v.
When u receives a message announcing the initiation of iteration i, it will send an
S-T expansion message to u1. Also, for 16j6k − 1, uj forwards the �rst S-T expan-
sion message it receives to uj+1. Thus, by an elementary induction, an S-T expansion
message reaches v.

Lemma 5.2. A node v not in T [i − 1] will be explored in T during iteration i i� it
belongs to some source cluster S which intersects T [i − 1].

Proof. Let S be a source cluster intersecting T [i − 1] which contains v. Then by
Claim 5.1, v receives an S-T expansion message. If v was not explored before receiving
this message, it will be explored upon receiving it. From the fact that S-T expansion
messages are initiated only by nodes in source clusters which intersect T [i−1], and are
forwarded only on edges of these clusters, nodes which do not belong to such clusters
will not receive expansion messages during iteration i, and hence are not explored
during this iteration.

Claim 5.3. For each cluster S which intersects T [i − 1]; the graph S̃ is a directed
forest; whose roots are the nodes in S ∩T [i − 1].

Proof. Each node v∈ S̃ which is not in T [i−1] has exactly one parent in S – the �rst
node from which v received an S-T expansion message; thus such a node v cannot be
a root. Each node v∈ S ∩T [i−1] has no parent in S, thus such a node must be a root.
Finally, u is the parent of v in S̃ only if it is a root or it received an S-T expansion
message before v did. Thus, S̃ contains no cycles. The claim follows.

We de�ne a string of messages (m0; m1; : : : ; mk) as a sequence of messages, generated
at nodes (u0; u1; : : : ; uk), respectively, where for 16i6k, message mi generated at a
node ui as a consequence of receiving message mi−1 from a node ui−1.

Claim 5.4. A string of S-T expansion messages is �nite.
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Proof. Since S-T expansion messages are sent only to nodes in S, and |S| is �nite,
a string of S-T expansion messages eventually arrives at a node uk , where either uk
already received an S-T expansion message, or uk ∈T [i − 1], or uk is a leaf of S.
In all these cases uk does not forward the S-T expansion message, and acknowledges
immediately.

Lemma 5.5. Iteration i terminates; and when it terminates; T [i] is a directed tree.

Proof. As proved in Claim 5.4, all strings of S-T expansion messages are �nite, and
the last node in each such string acknowledges immediately. The other nodes in the
string of S-T expansion messages form a path in the directed forest S̃, on which the
S-T acknowledgments converge to the originators of these messages in the standard
convergecast process.
The second part of the lemma is proved by induction on the number of iterations.

The base i=0 is clear since T [0] is a source cluster S, which by the assumption is
given by its rooted spanning tree.
We now assume that the lemma holds for T [i − 1] and prove it for T [i]. For this,

observe that T [i] is the graph induced by the set of directed edges E′= {(u; v) | v is
the established parent of u in T at the end of iteration i}. Recall that T̃ is the digraph
induced by the set of edges E(T̃ )= {(u; v) | v is the last node which u established as its
parent in T during iteration i}. Then T [i] is obtained by adding to T [i− 1] the edges
in T̃ at the end of iteration i. Hence, it is enough to show that at the end of iteration
i, T̃ is a directed forest whose roots are nodes in T [i − 1], and all its other nodes
are in T [i]\T [i − 1]. The proof is similar to that of Claim 5.3, using the following
observations:
1. Every node in T [i]\T [i − 1] has exactly one established parent in T̃ .
2. Every node in T̃ ∩T [i − 1] has no established parent in T̃ .
3. Let du denote the value of the �eld d(T ) at node u at the end of iteration i. Then
for every u and v s.t. (u; v)∈ T̃ , du¿dv, thus there are no circuits in T̃ .

Lemma 5.6. At each iteration; the height of T is increased by at most dS.

Proof. By Lemma 5.5, T [i] is a tree. Thus, we have to show that for each node v
in layer i of T , the length lv of the shortest path in T [i] connecting v to some node
u ∈ T [i − 1] is bounded by dS. Let dv(T ) denote the value of the variable d(T ) at
node v, and let dv be the value of dv(T ) at the end of iteration i. We prove that
lv6dv6dS.
Let S be a source cluster by which v was explored. Let p=(u0; u1; : : : ; uk−1; v) be

the path in S along which a string of S-T expansion messages that explored v was sent
(note that p is a path in S, hence k6dS). For 06i¡K , when a node ui forwards an
expansion message to ui+1, it sets the d �eld in this message to dui(T )+1. Hence, when
ui+1 receives this message it sets the value of dui+1(T ) to min(dui(T ) + 1; dui+1(T )).
Moreover, the value of du(T ), once set, can only decrease. Hence, when v is explored,
dv(T ) is at most k6dS, and hence dv6k6dS.
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Next we prove by induction on lv that for each node v, lv6dv. If lv=1, then v
has a neighbor u in T [i − 1] such that (u; v) is an edge in a source cluster S, and
hence dv=1. Assume the claim holds for lv¡m and we prove for lv=m. Let w be
the parent of v in T . Then lw =m− 1, and w is the last node which v establishes as a
parent in T during iteration i. When v marked w as its parent in T , upon receiving an
S-T expansion message from w, it set dv(T ) to the value d in that message, which was
previously set to dw(T )+1. Denote this value by d?. Since v did not establish a di�er-
ent parent later, the �nal value of dv(T ), dv, is equal to d?. Since the value of dw(T )
could only decrease, we have that at the end of iteration i; dv=d?¿dw+1¿lw+1=
lv.

Corollary 5.7. For all T ∈T the height of T is at most dS logK |V |.

Lemma 5.8. At the end of iteration i; the root computes the number of nodes at
layer i.

Proof. First we prove that the c �eld in an S-T acknowledgment message sent by a
node v to its parent in S̃ contains exactly the number of nodes explored by S in the
subtree of S̃ rooted at v. We prove this by induction on h, the height of this subtree.
For h=0, v is a leaf; if v was explored in T by S then the c �eld is set to 1, oth-
erwise it is set to 0. We now assume that the claim holds for k¡h and prove it for
a node v which is a root of a subtree of S̃ of height h: v sends an S-T acknowledg-
ment after it receives acknowledgment messages for all the S-T expansion messages
it sent. The c �elds in the acknowledgment messages from nodes which are not its
children in S̃ is 0. The sum of the c �elds in the acknowledgment messages from its
children in S̃, by the induction assumption, equals the number of nodes explored in
T by S in the subtree of S̃ rooted at v, excluding v itself. If v was explored by S,
it increases this sum by one, otherwise, it leaves it as is. Hence, the claim holds also
for v.
By the said above, each node v in T [i−1] eventually receives for each S-T message

it sent to a neighbor u, the number of nodes explored in T by S in the sub-tree of
S̃ rooted at u. Since S̃ is a forest, and since each node in layer i is explored exactly
once, the sum of these numbers taken over all expansion messages sent in iteration i,
is the number of nodes in layer i. These numbers are now summed up and forwarded
towards the root of T [i−1] in a standard way, and hence the root of T will eventually
compute their sum.

5.4. Complexity analysis

Claim 5.9. A node can be a tenant in at most one target cluster T .

Proof. A node v which becomes a tenant in T during iteration i, sends in this iteration
an S-T expansion messages for each source cluster S it belongs to. By Lemma 5.5, the
iteration terminates, meaning that all expansion messages sent by v were acknowledged.
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This means that v stopped being a member in all source clusters it belonged to, and
hence will not join any other target cluster.

The messages sent by algorithm � are divided into four classes:
• expansion and acknowledgments messages are sent only on tree edges of source
clusters, and at most once in each direction of such an edge. Hence, there are
O(Vol(S)) such messages.

• delete parent messages are sent at most once by each node for each source cluster
it belongs to. Thus, the number of these messages is O(Vol(S)).

• counting and start iteration messages are sent during iteration i only on tree edges
of T [i − 1], and only once in each direction. In particular, these messages are sent
and received only by tenant nodes. nodes. By the fact that cluster T ’s cardinality
is multiplied in each iteration by at least K¿2, the number of such messages sent
during construction of a cluster T with tT tenant nodes is O(tT ). Summing up for
the whole network, and by claim 5.9 we get O(|V |) such messages.

• searching for new cluster leader messages, as explained in Section 3 is done by
O(|V |) messages.

In total, we get communication complexity of O(Vol(S)). In case the graph does not
have a leader, then constructing a spanning tree of the graph will add O(|V | log |V |+
|E|) to the total communication complexity.
The time-consuming parts in � are the broadcast and convergecast messages sent at

the beginning and the end of each iteration of the clusters construction. By arguments
similar to these in the complexity analysis of 2 preprocessing phase in Section 4.3.2,
and by Claim 5.9, we get that the time complexity of � is O(|V | · dS).
Note that in the case where dS is constant and Vol(S)=O(|E|), as is the case for

the preprocessing needed for 1; 2, the resulting communication and time complexities
of �, assuming the network has a leader, are O(|E|) and O(|V |), respectively.

6. Concluding remarks

This paper presented a simple and e�cient technique for constructing sparse decom-
positions of graphs, which are useful for synchronizing distributed networks. Speci�c
implementation of this technique were used to construct synchronizers 1 and 2, which
are simple and e�cient variants of existing synchronizers. Synchronizers 1 and 2 and
their preprocessing algorithms enable the performing of a Breadth First Search in an
asynchronous network, with no pre-established synchronizer, in total communication
and time complexities of O(K |V |D + |E| + |V | log |V |) and O(|V | + D logK |V |), re-
spectively, instead of O(|V |2 + K |V |D) and O(|V | logK |V |) by [2] (Where D is the
diameter of the network) with constant memory per edge and constant messages size.
In [2], the construction phase dominates the communication and time complexities of
the whole algorithm, while due to the e�ciency of our preprocessing phase, in our
algorithm the total complexity is dominated by simulating the synchronous algorithm
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itself. Thus, the complexity measures above are implied by the facts that a synchronous
BFS in a network with diameter D requires at most D pulses, and that the communica-
tion and time overhead per pulse of our synchronizers are O(K |V |) and O(| logK |V |),
respectively. time complexity networks
An interesting question related to our construction is whether there are truly parallel

constructions of the sparse covers needed for our synchronizers, i.e. constructions which
require polylogarithmic, or even just sub-linear, time. In particular, is there a (possibly
randomized) algorithm similar to the one presented in [13] for constructing such covers.
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