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In many optimization problems a solution is a subset of optimum number of
elements satisfying some desired property. An element is redundant if it does not
belong to any solution of the problem. An element is essential if it belongs to every
solution of the problem. We consider the complexity of indentifying redundant and
essential elements in a sample of NP-Hard optimization problems, It is shown that
these identification problems are also NP-Hard. The proofs are based on an
analysis of the original reductions of Cook [The complexity of theorem proving
procedures, in “Proceedings, Third Annual Assoc. Comput. Mach. Symposium on
Theory of Computing,” pp. 151158, Assoc. Comput. Mach., New York, 1971] and
Karp [Reducibility among combinational problems, in “Complexity of Computer
Computations” (R. E. Miller and J. W. Thatcher, Eds.), pp. 85-104, Plenum, New
York, 1972}

1. INTRODUCTION

In many optimization problems a solution is a subset of optimum
number of elements satisfying desired property. Two examples are the
minimum set cover problem and the maximum clique problem [4]
(formal definitions are given in the next section). In the minimum set cover
problem the subsets S,,S,,...,S, of a set A are the elements of the
problem, and in the maximum clique problem the vertices of a graph
G = (V,E) are the elements of the problem. These two optimization
problems, as many others, are NP-Hard, since the corresponding decision
problems are NP-Complete [4].

A possible approach in treating such a difficult problem is reducing the
given problem to a problem of fewer elements. An element is redundant if
it does not belong to any solution of the problem. An element is essential if
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it belongs to every solution of the problem. Clearly such an optimization
problem can be reduced by eliminating the redundant elements. The
problem can be further reduced, using the information about the essential
elements. If, for example, S; C A4 is an essential subset in a minimum set
cover problem then the reduced problem is finding a minimum cover of
A-S; by the subsets S,,j # i. Or if a vertex v is an essential vertex in a
maximum clique problem then the reduced problem is finding a maximum
clique in the induced subgraph of the neighbors of v.

Such an approach is used in Switching Theory in minimization of
switching functions by the Quine—McCluskey method [6]. Our work was
motivated by a recent work of Choueka and Goldberg [2]. They apply the
minimum set cover problem in automatic text analysis [7] to identify the
relevant meanings of the words in the text out of the possible meanings of
a word given in a dictionary.

In this work we consider the complexity of identifying redundant and
essential elements in a sample of NP-Hard optimization problems. Note
that it is easy to see that the problem of determining the number of the
redundant elements for a solution containing k-elements is NP-Hard. For
example for the set k-cover problem it implies from the equivalence of this
problem to the problem: Is the number of redundant subsets for a k-cover
smaller than n? That 1s, there exists a nonredundant subset for a k£ cover.
However, the complexity analysis of the problem of identifying the number
of redundant subsets for a minimum set cover is much more difficult.

The problems of identifying the redundant and essential elements for an
optimization problem of n given elements can be presented in either a
“constructive” manner or an “existential” manner, as follows:

The constructive problem: “Given an integer i, 1 <i < n, is the ith
element redundant (essential)?”

The existential problem: “Given an integer i, 1 < i < n, are there i
redundant (essential) elements?” Note that it is not clear whether these
problems are in NP. Thus we shall only prove that these problems are
NP-Hard. For this purpose it is enough to prove that the existential

problems are NP-Hard, since this clearly implies that the constructive
problems are NP-Hard too. However, we shall prove the NP-Hardness of
both the constructive and the existential problems, for a sample of NP-
Complete optimization problems, since the proof for the constructive
problems serves as an introduction to the proof for the existential problem.

The technique we apply for proving the NP-Hardness of the above
problems is embedding the problems of identifying the redundant and
essential elements in the original reductions of Cook [3] and Karp [4]. Our
proofs show that the properties of redundancy and essentiality of elements
are actually conserved by Cook’s and Karp’s reductions. Thus adding to
the extra properties conserved by those reductions, as investigated in [5, 8].
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The conclusion of our result is that the problem of reducing some
NP-Hard optimization problems to a smaller problem, using redundant
and essential elements, is in general NP-Hard by itself.

Section 2 contains preliminary definitions. NP-Hardness of the construc-
tive problems and the existantial problems is shown in Section 3 and 4,
respectively.

2. PRELIMINARY DEFINITIONS

Let x,, x,,...,x, be Boolean variables. A literal o is either a variable x,
or its negation X;. Let L = C;-C,;- - - - - C; be a logical formula in Conjunc-
tive Normal Form (CNF), where each C, is a clause presented as a sum of
literals. |

A formula L is satisfiable (i-satisfiable) if there exists a truth assignment
for the variables of L satisfying all (at least i) of the clauses of L.

A literal ¢ in L is i-essential (i-redundant) if each truth assignment,
satisfying at least i clauses of L, assigns o the value 1 (0).

A literal o is L is essential (redundant) if each truth assignment, satisfy-
ing the maximum possible number of clauses of L, assigns o the value 1 (0).
Note that a literal o is essential (i-essential) if and only if its negation o is
redundant (i-redundant).

An occurrence of an essential (i-essential) literal ¢ in a clause C is an
essential occurrence (i-essential occurrence) if all other literals in C are
redundant (i-redundant). In particular, an occurrence of an essential literal
o in a clause C; is an essential occurrence in case o is the only literal
occurring in C,.

ExaMpPLE. Let L = (x + y)(x + y). Only x is an essential literal in L,
but none of its two occurrences is an essential occurrences.

Denote by e(L) (e;(L)) the number of essential occurrences (i-essential
occurrences) of literals in a formula (i-satisfiable formula ) L.

Note that for redundant literals there is no corresponding definition for
the term of essential occurrence of a literal. The necessity of the term of
essential occurrences of a literal for our proofs is demonstrated in connec-
tion with the proof of Corollary 1 in the next section. This fact explains
also the difference in the formulation of Theorems 1 and 2 in the next
section.

Let r(L) (r,(L)) denote the number of occurrences of redundant (i-
redundant) literals in a formula (i-satisfiable formula) L.

Let L’ be a subformula of a formula L. The definitions of L’-essential,
L’-redundant L’-essential occurrence, e(L") and r(L") are as the above
similar definitions for L.
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Let S,,S,,...,S, be subsets of a set 4. Let I C {1,2,...,n}. A family
{S;|i € I} of subsets is a set cover of A4 if U;¢,;S; = A. A minimum set cover
(set k-cover) is a set cover of minimum number of (k) subsets.

Let G = (V, E) be an undirected graph where V is the set of vertices and
E is the set of edges of G. A maximum clique in G is a complete subgraph
of G with the maximum number of vertices.

A minimum vertex cover in G is a subset ¥’ C V, of minimum number of
vertices, such that each edge in E is adjacent to at least one vertex of V".

3. T COMPLEXITY OF THE CONSTRUCTIVE PROBLEMS

In this section we prove that the constructive problem: “Is the ith
element redundant (essential) for a given optimization problem?” is NP-
Hard for a sample of problems.

The proofs are based on observations of the following reductions, the
first of which is due to Cook [3] and the others are slight modifications of
Karp’s [4] reductions.

R,. Input: (W, T, P) where W is a word over a given alphabet X, T is
(the encoding of) a nondeterministic Turing machine (NDTM) and P is
(the encoding of) a polynomial.
Output: A logical formula L is CNF, such that W is accepted by T in
time P(/(W)), where /(W) denotes the length of W, if and only if L is
satisfiable.

R,. Input: A logical formula L = C-G,- - - - - C, presented in CNF.
Output: A graph G = (V, E) such that V' = (¥, ;|0 is a literal occurring
in the clause G} E = {(V, ;. V;;)li #j,0 # {} such that for each integer i,
L is i-satisfiable if and only if G contains a clique of i vertices.
R;. Input: A graph G = (V,E)
Output: The complementary graph G = (V, E) such that for each integer
i, G contains a clique of i vertices if and only if G contains a vertex cover
of V| — i vertices.

R,. Input: A graph G = (V, E)
Output: Subsets S,S,,...,8|, of E defined as follows: ;= {ele € E

and is adjacent to V;}, such that for each integer i G contains a vertex
cover of i vertices if and only if E has a set cover of / subsets.

THEOREM 1. The problem of verifying whether a given occurrence of a
literal o, in a logical formula L given in CNF, is an essential occurrence, is
NP-Hard.

THEOREM 2. The problem of verifying whether a given literal o, in a
logical formula L given in CNF, is a redundant literal, is NP-Hard.
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Before presenting the proofs of these two theorems, we bring three
corollaries easily observed from the reductions R,, R, and R,.

COROLLARY 1. The problems of verifying whether a vertex in a graph G is
an essential (redundant) vertex for the maximum clique problem, is NP-Hard.,

Proof. The proof for essential vertices implies from Theorem 1 and the
following observation concerning the reduction Rz The vertex V, ; is an
essential vertex for the maximum clique problem in G if and only if the
occurrence of the literal o in the clause C; of the logical formula L given in
CNF is an essential occurrence.

The proof for redundant vertices implies from Theorem 2 and the
following observation concerning the reduction R,: The vertex V, ; is a
redundant vertex for the maximum clique problem in G if and only 1f gisa
redundant literal in L. []

In order to demonstrate the necessity of using the term of essential
occurrence of a literal in the proof of Corollary 1 consider the logical
formula L = (x + y)(x + y). The graph G constructed by the reduction
R, is given in Fig. 1.

Only x is an essential literal in L but none of its two occurrences is an
essential occurrence. In the corresponding graph G there are three maxi-
mum cliques of two vertices each, but no vertex is essential for the

maximum clique problem in G.

COROLLARY 2. The problems of verifying whether a vertex in a graph G is
an essential (redundant) vertex for the minimum vertex cover problem, is
NP-Hard.

Proof. Implies from Corollary 1 and the following observation concern-
ing the reduction R;: A vertex V is an essential (redundant) vertex for the
minimum vertex cover problem in G= (V,E) if and only if V is a
redundant (essential) vertex for the maximum clique problem in the
complementary graph G = (V, E). [J

Note that the reduction R, transfers essential vertices to redundant
vertices and vice versa.
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COROLLARY 3. The problems of verifying whether a subset is an essential
(redundant) subset for the minimum set cover problem is NP-Hard.

Proof. Implies from Corollary 2 and the following observation concern-
ing the reduction R,: A vertex ¥} in a graph G is an essential (redundant)
vertex for the minimum vertex cover problem if and only if the corre-
sponding subset S, is an essential (redundant) subset for the minimum set
cover problem defined in the reduction R,. ]

Similar results can be shown for more problems, for example, the
feedback vertex set and feedback edge set problems [4].

Proof of Theorem 1. The proof is based on an analysis of Cook’s
reduction R,. We refer to the presentation in [1 pp. 379-383). Let (W, T, P)
and L, be the input and output for the reduction R, respectively. Let the
logical formula L, given in CNF contain k clauses. For each computation
of T on input W, there corresponds a truth assignment for the variables of
L,, (described in [1]) satisfying the followings:

At least & — 1 out of the k& clauses of L, are satisfied. The only clause
which is probably not satisfied is the “accepting” clause G (see [1])
containing a single literal o which is satisfied if and only if at the end of
the computation 7 is in the “accepting state.”

Thus if T accepts W in time P(/(W)) then the occurrence of the literal o
in the clause G is an essential occurrence since each truth assignment
satisfying all k clauses of L assigns o the value 1. On the other hand if T
does not accept W in time P(/(W)) then no truth assignment satisfies all &
clauses of L, but there are truth assignments satisfying k — 1 clauses of L,
which assign o the value 0. Thus, in this case the literal ¢ is not essential.
Hence, the occurrence of o is an essential occurrence if and only if T
accepts W in time P(/(W)). Therefore the problem of verifying whether a
given occurrence of a literal, in a logical formula L given in CNF, is an
essential occurrence is NP-Hard. []

Proof of Theorem 2. As for Theorem 1 the proof is based on an analysis
of Cook’s reduction R,. First we note that given a set 4 in NP, there exists
a NDTM T’ accepting A in polynomial time P having the following
property: T’ has a certain nonaccepting state g, such that there is a legal
computation of 7" on each W &€ 3* for which T" enters the state g, at the
beginning of the computation and stays at g, indefinitely.

Let (W,T',P) and L,, be the input and output for the reduction R,,
respectively. Let L, contains k clauses. The formula L, contains a literal o
which is satisfied if and only if 7" is in the state g, at the end of the
computation.

There exists a truth assignment satisfying & — 1 out of the k clauses of
L,, (excluding the accepting clause G) assigning o the value 1, since there
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exist a legal computation of 7" on w in which 7" enters the state g, and
stays at this state. If 7" does not accept W, then L is (k — l)-satisfiable
but not k-satisfiable and o is not a redundant literal. On the other hand, if
T accepts W, then there exists a truth assignment satisfying all k clauses of
L.,. Any such truth assignment assigns o the value O since at the end of the
computation 7" is not at the state g, but at the accepting state, and thus o
is a redundant literal.

Thus o is a redundant literal if and only if 7" does not accept W in time
P(I(W)). Hence, the problem of verifying whether a given literal, in a
logical formula given in CNF, is a redundant literal, is NP-Hard. []

4. THE COMPLEXITY OF THE EXISTENTIAL PROBLEMS

In this section we show that not only the constructive problems, but
even the simple existential problems: “Given an integer i,1 < i < n, are
there i essential (redundant) element?” are NP-Hard for a sample of
optimization problems.

Let L’ be a subformula of a formula L. Let L — L’ denote the formula
obtained by deleting the subformula L’ from L.

LEMMA 1. Let (W, T, P) and L,, be input and output of the reduction R,,
where T accepts the set A C 2* in polynomial time P. Let G be the accepting
clause of the formula L, containing k clauses. Then

(@) f We Athene(L,) > e(L,— G).
(b) For each W € Z,*e(L,— G) 2 e;_(L,)

Proof. (a) The formula L, is satisfiable since W € 4. Thus for each
essential occurrence of a literal in L, — G there exists an essential occur-
rence of the same literal in L. On the other hand L, contains one
essential occurrence of the unique literal ¢ in the “accepting” clause G
which does not appear in L, — G. Hence e(L,) > e(L,— G).

(b) Let { be an essential literal for the satisfiability of any &k — 1 clauses
out of the k clauses of L, . The set of truth assignments satisfying any
k — 1 clauses of L contains the set of truth assignments satisfying the
k — 1 clauses of L,— G. Thus { is also an essential literal for the
satisfiability of L, — G. This implies that e(L, — G) > e, _,(L,). O

THEOREM 3. The following problem is NP-Hard: “Given a logical formula
L in CNF and an integer i, does L contain i essential occurrences of literals?”

Proof. Let A be a set in NP accepted by a NDTM in time P. The proof
implies from the following reduction from the NP-Complete problem of
recognizing A to the problem of finding the number of essential occur-
rences of literals in a formula L given in CNF, which is polynomially
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equivalent to the decision problem of verifying, for a given integer i,
whether L contains i essential occurrences of literals.

Let (W, T, P) and L, be input and output for the reduction R,. Denote
by s and ¢ the number of essential occurrences of literals in L, and
L, — G, respectively, where G is the accepting clause of L. If W € A then
s=¢(L,) and if W & A then s =¢,_,(L,). Thus by Lemma 1 s > ¢ if
and only if W € A, since if W € A4 then by (a) s > t and if W & A4 then by
b)s <t

Hence, the problem of verifying whether W € A is reduced to the
problem of finding the numbers s and ¢ of essential occurrences of literals
in two formulas given in CNF. []

LEMMA 2. Let (W, T, P) and L, be the input and output of the reduction
R,, where the NDTM T’ accepting the set A € T* is a special NDTM as
described in the proof of Theorem 2. Let G be the accepting clause of the
fJormula L, containing k clauses. Then

@) If WeAthenr(L,) > r(L,— G).

(b) For each W € Z* r(L,— G) 2 r,_(L,)

Proof. (a) Each redundant literal of L — G is also a redundant literal
of L. Thus r(L,) > r(L,— G).

As in the proof of Theorem 2, L,, contains a literal ¢ which is satisfied if
and only if 7" is at the state g, in the end of the computation. This literal o
is a redundant literal of L, but not a redundant literal of L, — G. Hence
r(L,) > r(L,— G).

(b) A redundant literal for the satisfiability of & — 1 clauses out of the &
clauses of L, is also a redundant literal of the formula L, — G containing
k — 1 clauses. Hence r(L,— G) 2 r,_,(L,). O

Similar to the proof of Theorem 3 one can apply Lemma 2 to prove the
next Theorem.

THEOREM 4. The following problem is NP-Hard: “Given a logical formula
L in CNF and an integer i, does L contain i occurrences of redundant literals
in L7

Theorems 3 and 4 can be applied now to prove the following corollary
similarly to the proofs of Corollaries 1, 2, and 3.

COROLLARY 4. The existential problems for the maximum clique problem
the minimum vertex cover problem and the minimum set cover problem are

NP-Hard.
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