
Bit Complexity of Breaking and Achieving

Symmetry in Chains and Rings ∗

Yefim Dinitz† Shlomo Moran‡ Sergio Rajsbaum§

December 10, 2007

Abstract
We consider a failure-free, asynchronous message passing network

with n links, where the processors are arranged on a ring or a chain.
The processors are identically programmed but have distinct identities,
taken from {0, 1, . . . ,M − 1}. We investigate the communication costs
of three well studied tasks: Consensus, Leader, and MaxF (finding the
maximum identity). We show that in chain and ring topologies, the
message complexities of all three tasks are the same. Hence, we study
a finer measure of complexity: the number of transmitted bits required
to solve a task T , denoted BitC(T ).

We prove several new lower bounds (and some simple upper bounds)
that imply the following results: For the two processors case, BitC(Consensus) =
2 and BitC(Leader) = BitC(MaxF) = 2 log2 M ± O(1), where the
gap between the lower and upper bounds is almost always 1. For a
chain, BitC(Consensus) = Θ(n), BitC(Leader) = Θ(n + log M), and
BitC(MaxF) = Θ(n log M). For the ring topology, we prove the lower
bound of Ω(n log M) for Leader, and (hence) MaxF.

We consider also a chain where the intermediate processors have
no identities. We prove that BitC(Leader) = Θ(n log M), which is
equal to n times the bit complexity of the problem for two processors.
For the specific case when the chain length is even, we prove that
BitC(Leader) = Θ(n), for both above settings. In addition, we show
that for any algorithm solving MaxF, there exists an input, for which
every execution has the bit complexity Ω(n log M) (this is not the case
for Leader).

In our proofs, we use both methods of distributed computing and of
communication complexity theory, establishing new links between the
two areas.

∗A preliminary version of this paper appeared in [7].
†Department of Computer Science, Ben-Gurion University of the Negev, POB 653,

Beer-Sheva 84105 Israel. Part of the work was done while this author was on leave
from the Technion, Haifa, Israel at Instituto de Matemáticas, UNAM, México. Email:
dinitz@cs.bgu.ac.il.

‡Department of Computer Science, The Technion, Haifa, 32000 Israel. This work has
been supported in part by the Bernard Elkin Chair for Computer Science. Part of the
work was done while this author was at the University of Arizona, supported by US-Israel
BSF grant 95-00238, while he was visiting the Instituto de Matemáticas, UNAM, México,
and while he was visiting the Institute of Information Sciences, Academia Sinica, at Taipei.
Email: moran@cs.technion.ac.il.

§Instituto de Matemáticas, UNAM, Ciudad Universitaria, D.F. 04510, México. Par-
tially supported by DGAPA-UNAM Projects. Email: rajsbaum@math.unam.mx.

1



1 Introduction

1.1 Motivation from Communication Complexity

The basic problem in the area of communication complexity was in-
troduced by Yao in 1979 [22]. This problem asks what is the number
of bits that two processors, A and B, have to communicate to each
other in order to compute a function f(x, y) of their respective private
inputs: x and y. The model assumes that they send bits one at a time,
starting with some bits sent by A, then some bits sent by B, and so
on. At the end of the computation, both processors know the value
of f(x, y). For example, if f(x, y) = max(x, y) and x, y are integers
in ZM = {0, 1, · · · ,M − 1}, then it is known that the communica-
tion complexity of f is exactly dlog Me; i.e., this number of bits must
be transmitted to solve the problem in the worst case. There exist
generalizations of this problem to networks containing more than two
processors. Traditionally, in this model, it is assumed that each of the
processors in the network has a complete knowledge of the topology of
the network and of the identities of all other processors. This justifies
the assumption, for the basic problem, that a certain processor starts
the computation, and that at any moment there is a transmission in
only one direction of the link. Many results exist on Yao’s basic prob-
lem and variants of it (e.g., [21, 14, 5]). An introduction to the area
can be found in [16].

Consider now a seemingly slight modification of the problem of
computing max(x, y), which belongs to the distributed computing area
([1, 17, 20]). This time, the two parties are two identical (unnamed)
processors, each one provided with a value in ZM—its identity (id);
the two processors have to find the larger identity. Note that in this
scenario one cannot fix, ahead of time, a processor that will send the
first bit in the communication. This makes the problem more com-
plex. Indeed, our results imply that at least 2blog Mc − 3 bits must
be transmitted to solve the problem in this setting. This introduces
a new parameter to the problem, namely, the information on the net-
work known to processors. In more general networks, we may also
assume that processors do not know the structure of the entire net-
work and/or the number of processors in the network. These are the
usual assumptions in the distributed computing literature. Moreover,
in this literature, it is common that the problem which has to be solved
is not necessarily a function of the processor inputs, but is specified by
a task: an input-output relation (several outputs are allowed for the
same input, see [19]), where the output is not required to be the same
for all processors. The inputs usually include the processor identities
which are distinct and are not mutually known. When considering
tasks, the difference in power between the two models can become
quite dramatic: the Leader problem is solvable in the communication
complexity model with 0 bits (A outputs 1, B outputs 0), while in the
distributed computing model it requires at least 2blog Mc − 3 bits.

1.2 The problem and related work

The two most studied tasks in the distributed computing literature are
probably Consensus and Leader. A large number of results on these

2



tasks exist, including algorithms, lower bounds and applications, in
a variety of distributed computing models. However, almost always,
Consensus is studied in the shared memory setting, mainly from the
fault tolerance point of view, while Leader is studied in the message
passing setting, emphasizing message complexity bounds. We view
these tasks as duals in the sense that in Consensus all processors have
to agree on the same value, while in Leader one processor has to output
a different value from the rest of processors. In this sense, Consensus is
about achieving symmetry, while Leader is about breaking symmetry.
In this paper we study the communication cost of these two tasks and
of the variant of Leader, called MaxF, in which the elected processor
must have the largest id in the system.

In the distributed computing area, the usual communication cost
measure is message complexity. Under this measure, Leader has been
extensively studied in an asynchronous, failure-free, message passing
distributed system. It is known that, in general, Θ(m + n log n) mes-
sages are necessary and sufficient for this task in a network with n
processors and m communication links (e.g., see [12] for an upper
bound and [4] for a lower bound), and this bound holds even when
it is given that the processors are arranged in a ring. Some other spe-
cial topologies have lower message complexities; e.g., trivially, Θ(n) is
the complexity for trees, and Θ(n log n) is the complexity in complete
graphs [15]. In all these cases, Leader and MaxF have the same message
complexity.

The message complexity of Consensus was not studied prior to the
conference version of this work [7]; it was studied by other authors later
(e.g. the research line of [11]), see discussion in the next paragraph. It is
easy to see that Consensus is not harder than Leader: in any topology,
once a leader has been elected it can broadcast the value to be decided.
Thus, only additional O(m) messages are needed to solve Consensus
(in some cases, like in a complete graph topology, only O(n) additional
messages are needed). We start by observing that the opposite is not
true: The message complexity (up to a constant factor) of Leader is
not reduced even if Consensus is given for free. In view of this, it may
be surprising that, as we show, the message complexity of Consensus
is the same as that of Leader. This motivates the use of the following
finer measure to distinguish between the communication costs of these
tasks: the number of bits sent, which we call bit complexity. With
respect to this measure, roughly speaking (below we describe more
precisely the results), we show that in chains, Consensus is easier than
Leader, which is easier than MaxF.

The bit complexity of tasks like Consensus and Leader in our dis-
tributed setting was not studied before. It was studied in some related
settings. The bit complexity measure of functions in a distributed set-
ting was studied earlier in [18, 3], where it was shown that computing
any non-trivial function on a ring of n processors requires Ω(n log n)
bits. The bit complexity of computing functions by two distinct and
mutually known players was studied extensively in the last few decades
(see e.g. [22, 21, 16]); some of the techniques developed there are ap-
plied in this paper. Besides, there is a line of research devoted to finding
efficient Consensus algorithms, in particular with low bit complexity.
Mostly synchronous models have been considered in this research, and
a complete graph topology where processors can fail is assumed (see

3



[11] for a recent publication in this line, and references herein).
By the reduction from Consensus to Leader mentioned above, in

chains and rings, a solution to Leader of complexity f(n) implies a
solution to Consensus of complexity O(f(n) + n), for both message
and bit complexity. This fact implies two challenges:

• for cases when the complexity of Leader is more than linear, to
show that the complexity of Consensus is strictly less than that
of Leader, and

• for cases when the complexity of Leader is linear, to clear up the
correct order of the complexities of Consensus and Leader.

This paper is concerned mostly with achieving the first goal, and deals
with asymptotic (“order of”) complexity measures. In the paper [8],
we concentrate on the second goal, for the tree (in particular, chain)
topology; there, exact complexity bounds are achieved. It is worth to
mention that among the settings considered in [8], all the three possible
cases: the complexity of Consensus exceeds that of Leader, the inverse
case, and the case of equal complexities, are encountered.

1.3 The results

The model we consider consists of a failure-free, asynchronous message
passing distributed system, with arbitrary but finite link delays and
negligible local computation times. We assume that processors have
distinct ids, and that processors are identical in the sense that they all
run the same program. However, the processors may behave differently,
because the program of a processor has access to its id and its number
of incident links. The topologies that we study are: a chain, with n
links and n + 1 processors, and a ring, with n links and n processors.
The ids are taken from the set ZM = {0, 1, . . . , M − 1}. For a task T ,
BitC(T ) is the number of bits needed to solve T in the worst case.

1.3.1 Message complexity

In Section 3, we prove two Ω(n log n) lower bounds on the message
complexity of Consensus in a ring; one for the case where n is unknown
to the processors, and a more complicated one for the case where n is
known to them. This lower bound implies that all three tasks have the
same message complexity on a ring, Θ(n log n). This is because there
exists an O(n log n) algorithm for MaxF, see [13]; thus, the same upper
bound holds for the other two problems. The matching lower bounds
for Leader and MaxF are given in [4] (for the case where n is unknown)
and in [2, 10] (for the case where n is known). We stress that the lower
bounds for Leader and MaxF hold even if Consensus is given for free
(see Section 2).

For the chain topology, it is easy to see that all three tasks have
Θ(n) message complexity.

1.3.2 Bit complexity

The rest of the results are on bit complexity. The proofs for Consensus
are simple. Most of the paper is devoted to Leader and MaxF.

4



Achieving Symmetry in a Chain. Simple arguments show that
in a chain BitC(Consensus) = Θ(n). See Section 4.1 for the case of
n = 2, and Section 5 for the general case.
Breaking Symmetry for Two Processors. In Section 4.2, we show
that MaxF (and thus Leader) can be solved with 2 dlog Me−2 bits, and
every Leader algorithm (and thus every MaxF algorithm) requires at
least 2 blog Mc − 3 bits.1 Notice that this is twice larger than the
communication complexity of any function f(x, y), x, y ∈ {1, · · · , M}
(Proposition 1.3 in [16]); i.e., when the processor names are mutually
known.
Breaking Symmetry in a Chain. These results are in Section 5.
First, we show that when the chain is of even length, then BitC(Leader) =
Θ(n).

The case of odd length is more interesting. We present an O(n +
log M) bits algorithm for the general case. By proving a matching
Ω(n + log M) lower bound for Leader in the odd length case, we show
that in this case (and thus, in the general case) Leader is harder than
Consensus.
Breaking Symmetry in a Chain: Two-Inputs Case. The most
interesting setting for Leader is when ids are given only to the two
terminals of a chain, while the remaining processors have no inputs (and
thus are completely identical). The same question has been considered
in the communication complexity literature [21, 14, 5]. It was proved
in [5] that the communication complexity of a function f(x, y) of two
inputs located at the end processors of a chain of length n equals n times
the communication complexity of f(x, y) on a chain of two processors
(up to a multiplicative factor). Our main theorem is in Section 6, where
we show that an analogue of this result holds for Leader in a chain of
odd length, i.e., BitC(Leader) = Θ(n log M). Such a result does not
hold in a chain of even length, since the Θ(n) algorithm mentioned
above works also in this two-inputs setting.
Breaking Symmetry in a Chain: the MaxF task. A trivial algo-
rithm shows that BitC(MaxF) = O(n log M). It follows from [21] that
the communication complexity of finding the largest input in a chain
is n log M − O(1). Hence, BitC(MaxF) = Θ(n log M) also for the dis-
tributed computing two-inputs model. We show in Section 6.3 that for
the two-inputs case, BitC(MaxF) = Ω(n log M) even for the variant of
the complexity definition, where the best possible, instead of the worst
possible execution, for any algorithm on any input, is considered. The
proof of this statement works, with minor changes, also if all proces-
sors are given inputs (this observation is joint with Noam Solomon).
As a consequence, also for this regular distributed computing setting,
BitC(MaxF) is Ω(n log M). Therefore, MaxF is harder than Leader, in
a chain.
Rings. For the ring topology, the best known upper bound for Leader,
MaxF and Consensus is implied by the algorithm of [13], which has bit
complexity O(n log n log M). As for lower bounds, all these three tasks
have the Ω(n log n) bits lower bound implied by the bound Ω(n log n)
on their message complexity [4, 2, 10]. For Leader, and hence also for
MaxF, we (slightly) improve this lower bound to Ω(n log M), in Sec-

1The first author and N. Solomon [9] closed the gap between these bounds, by suggesting
an optimal algorithm, for this problem, and proving its optimality.

5



tion 7.

1.4 About our techniques

Here we describe the three lower bound techniques of this paper. The
second and third ones relate for the first time two areas: distributed
computing and communication complexity.

Our first technique is used for proving lower bounds on breaking
symmetry in a two-processor chain and in a ring, in Sections 4.2 and 7,
respectively. It consists of finding long symmetric synchronous execu-
tions. A lower bound is obtained because no symmetric execution can
break symmetry.

Our second technique is presented in Section 6. It is developed for
proving a Cut-and-Paste property, analogous to that used for achieving
the lower bound in [5]. In contrast to the model of [5], in our case we
need to choose a specific scheduler, which produces a unique execution,
for any algorithm and any given input. We then consider executions
under this scheduler only, since to prove a lower bound it is sufficient
to prove it over a subset of all executions. However, fixing a scheduler
induces a delicate problem when proving the Cut-and-Paste property
(Lemma 6.1): it must be shown that the “pasted” execution is indeed
the execution under this particular scheduler.

Our third technique is a modification of the partition-into-rectangl-
es technique of [22, 21, 5] (see also [16]) for a chain of two processors;
it is described in Section 4.3. We need to adapt this technique to our
case, where processors always have distinct inputs, since the technique
as applied in communication complexity assumes that processors can
get all combinations of inputs from a set of values. Also in contrast
to our model, in communication complexity the algorithm computes a
function, and all executions of the algorithm on a given input produce
the same history on each communication link. To establish these two
properties in our model, we consider executions of a leader election
algorithm under a fixed, specific scheduler, and show that these exe-
cutions compute some anti-symmetric function. Then, we show that
such a function implies a partition of the matrix into a large number
of so called “semi-rectangles.”

2 Model Definition and Preliminaries

Many notions presented in this section are standard and appear in more
detail in textbooks such as [1, 17, 20].

We assume the usual asynchronous, failure-free message passing
distributed model consisting of a network of processors, some of which
are pairwise connected by links. We consider two network topologies
in this paper: a chain and a ring. Message transmission delays are
arbitrary but finite. Also, links are FIFO; that is, for any link and any
direction on it, messages are delivered to a processor in the order in
which they were sent. The number of links is denoted by n, so that in
the ring there are n and in the chain n + 1 processors. The processors
have distinct identities (ids) from the set ZM = {0, 1, . . . , M − 1}, so
M must be at least n or n + 1 (although in Section 6 we consider a

6



chain with ids only at the terminals).
A distributed algorithm consists of a set of identical sequential, de-

terministic algorithms, one for each processor. The algorithms of the
processors are identical in the sense that they depend only on the pro-
cessor input and number of incident links. In this paper, the processor
input consists of its id only, if any.2 The configuration of the system
at a given time specifies the local states of the processors and the mes-
sages in transit at the links. In the initial configuration all processors
are asleep and in the same initial state, except for the id and number of
incident links information. When a processor wakes up, spontaneously,
or when it receives a message on an incident link, it is activated. Then,
according to its algorithm and local information, it decides what mes-
sages to send on its incident links (it may send zero or more messages
on each link), and changes its state. Messages are sent by a proces-
sor only when it wakes up or as an immediate response to receiving a
message; that is, internal computation time is negligible.

A scheduler is a formal device that specifies the order in which
processors wake up and messages are delivered. An execution of an
algorithm is defined by a given scheduler in the obvious way: the next
configuration is determined by the current configuration, the set of
sleeping processors waken up (if any), and the messages in-transit de-
livered to their destinations (if any). In this paper, we consider only
deterministic schedulers, hence, any scheduler produces a unique ex-
ecution for each given initial configuration. In a chain topology, we
assume that the terminals eventually wake up spontaneously, if not
activated previously by a message.

We consider the following tasks:

1. Consensus: all processors must output the same bit. If all the ids
are odd they must output 1, if all ids are even they must output
0.

2. Leader: one processor outputs 1, the rest output 0.

3. MaxF: the same as Leader, except that the processor to output 1
must be the one with the maximal id.

It is said that a distributed algorithm solves a task if for any initial
configuration, where processors get distinct ids from ZM , and at any
execution (i.e., for any scheduler), every processor eventually outputs
a bit, and these outputs satisfy the task specification.

The hardness of a task is evaluated according to the following com-
plexity measures:

• Message Complexity : the number of messages needed to send, in
order to solve the task, and

• Bit Complexity : the number of bits needed to send, in order to
solve the task.

For a fixed execution solving the task, the meaning of such a com-
plexity is obvious. For a fixed algorithm solving the task, in this paper,
we study its worst case complexity. That is, we refer to the worst case,

2In some models, like the one used in communication complexity, it is assumed that
the identities(=names) are fixed and mutually known, while each processor has a private
input, in addition, which is known only to itself.

7



over all possible inputs and all possible schedulers. Hence, in order to
obtain, for a given algorithm, some lower bound L, it is sufficient to fix
a certain scheduler S and to prove existence of some input I, s.t. the
algorithm sends at least L messages/bits, totally, upon I and under S.

The complexity of a task is defined as the best algorithm complex-
ity, over all algorithms solving it. Accordingly, the complexity of any
algorithm solving some task is an upper bound for the complexity of
that task. On the other hand, in order to prove a lower bound for
the complexity of some task, we should prove that lower bound for all
algorithms solving it.

Let us introduce now some additional observations and assump-
tions, which we use in this paper.
1. In Section 6.3, we consider the best scheduler complexity, defined
as follows. The greatest number of bits sent by an algorithm, over all
inputs, is considered for every scheduler, and this measure is minimized
over all schedulers. Proving a high lower bound for the best scheduler
complexity shows that even a free choice of a scheduler does not help
to reduce the number of bits sent.
2. Notice that we do not use the concept of time, in defining dis-
tributed computing; instead, our systems are event driven. Sometimes,
in our analysis, we introduce a formal clock, for constructing a specific
scheduler, as follows: the initial configuration corresponds to time 0,
while passing to each next configuration increments the time by one.
Also, sometimes we give names to processors, for convenience of algo-
rithm analysis. However, those clock and names are not available to
processors, and are in no sense related to algorithms.
3. In some of our proofs, we extend an algorithm so that the last bit
sent by a processor is its output value. Such an algorithm is called
reporting. Any algorithm can be extended in this way, at the cost of
the number of extra bits required to send.
4. When we want to compute an exact bound on the bit complexity
of a task, we assume that any message is a single bit. Thus, though
a processor can send more than one bit as a response to a message,
those bits are not guaranteed to be received at the same time. This
avoids the situation where the same sequence of bits can be sent and
received in more than one way, by segmenting it into different message
sequences (note that there are 2k−1 ways to split a k bits sequence into
consecutive messages).

Let us see that the assumption that any message is a single bit is
not restricting, when bounds up to a constant factor are looked for.
Consider the general setting, where messages have different lengths.
First, we can introduce messages consisting of a single special symbol.
This can be implemented by the price of just a constant factor to the
total length, e.g., as follows: to encode 0 as 00 (i.e., two consequent
messages with 0), 1 as 01, and the special symbol by 1. In this way,
the general case can be reduced to the single bit per message setting,
by encoding each end-of-message by this special symbol. As a result,
there is no loss of information, in comparison to the general case, while
the price is a constant factor to the total length only.

Finally, we give an evidence on the natural hardness order of Consensus
as compared with Leader and MaxF. Let us show a simple reduction
of Leader and MaxF to a set of inputs in which a (legal) decision of

8



Consensus is given for free. For any instance of the original problem
P, that is for any assignment of ids to processors, let us form the new
ids by extending the old ones by bit 0 at the right. These ids, together
with the decision 0 for Consensus, form an instance for the second
version of the problem, P ′. Obviously, any algorithm A′ for the sec-
ond version run on such instances induces a general algorithm A for
the original problem P, of the same complexity. Moreover, the com-
plexity C(A, n, M) ≤ C(A′, n, 2M). Therefore, the complexity of P is
bounded as

C(P ′, n,M) ≤ C(P, n, M) ≤ C(P ′, n, 2M) .

That is, the complexities of P and P ′ are the same, if polynomial and if
considered up to a constant factor. In our considerations, complexities
are polynomial in n and log M . Hence, the asymptotic complexities
of P and P ′ are equal, even when multiplicative factors are taken into
account.

3 Message complexity of achieving sym-
metry

In this section we present a lower bound on the number of messages
needed to solve Consensus in a ring. This is the only section where
we study message complexity; in the rest of the paper we deal with bit
complexity only.

Any distributed algorithm for Leader in a ring can be modified to
solve Consensus using O(n) additional messages: first elect a leader,
and then the leader sends a message around the ring informing all pro-
cessors that the consensus decision value is the parity of its id. Since
there is an O(n log n) messages algorithm for Leader [13] (where proces-
sors do not need to know n), there is an O(n log n) messages algorithm
for Consensus, in a ring. We present two proofs for a matching lower
bound: one for the case where n is unknown to the processors, and
a more involved one for the case where n is known to the processors.
Therefore holds:

Theorem 3.1 The message complexity of Consensus in a ring is Θ(n log n).

3.1 Lower bound: unknown ring size

Theorem 3.2 The message complexity of Consensus in a ring where
n is unknown to the processors is Ω(n log n).

Proof: Consider any Consensus algorithm for a ring. An execution
is called open at an edge e if no message has been delivered on e, and
if all processors are quiescent (either waiting for a message or finished
the algorithm). A 0-ring (resp., 1-ring) is one where all processors have
even (resp., odd) ids.

Lemma 3.3 If there exists an open execution on i-ring, where some
processor has decided, then in every open execution on (1− i)-ring, no
processor has decided, for i = 0, 1.

9



Proof: Assume for contradiction that for i = 0, 1, there are i-rings Ci

with open execution αi at ei, such that in both rings some processor
has decided. Since no message has been delivered in e0 or e1, and
the ids in the two rings are different, we can paste the two rings into a
bigger ring C, and consider the execution α = α0, α1 consisting of both
open executions. In any infinite extension of α, all processors have to
decide, but since the decision values are irrevocable, at least one of the
processors that belonged to C0 decides 0 and at least one that belonged
to C1 decides 1, a contradiction.

Assume without loss of generality, that in every 0-ring, in every open
execution no processor has decided. The proof of Theorem 3.2 is com-
pleted using the idea of Burns [4]. We sketch it here for completeness.
We prove by induction on n that every 0-ring has an open execution
where no processor has decided and f(n) messages have been sent,
where f is a nondecreasing function satisfying f(n) ≥ 2f(bn/2c)+n/2.
Thus f(n) = Ω(n log n). Consider a 0-ring of size n, and two disjoint
segments of it, of sizes bn/2c and dn/2e. By induction hypothesis, there
are open executions on each segment, which send at least f(bn/2c)
messages. Pasting together the two executions, we obtain an execu-
tion, where at least 2f(bn/2c) messages are sent and all processors are
quiescent. If we extend this execution, by delivering messages along
the open edges, eventually all processors have to receive a message and
decide. Therefore, for at least one of the open edges, when we start de-
livering messages along it (while the other edge remains open), the two
waves to the two directions from it (one of them may be empty) spread
over at least n/2 of the processors. We extend this execution until all
processors are quiescent, without delivering any message on the other
edge. By Lemma 3.3, no processor can decide. In this way, we can
obtain an open execution, where at least 2f(bn/2c)+n/2 messages are
sent.

3.2 Lower bound: known ring size

In this subsection, we improve the message complexity lower bound to
the case where n is known:

Theorem 3.4 For a ring of n processors that know n, the message
complexity of Consensus is Ω(n log n).

The proof is based on the technique in [2]. Consider any Consensus
algorithm A for a ring of size n. Let I be a set of identities. We say that
A is active on I if the following holds: In any synchronous execution
of A on a ring, in which all the identities are taken from I, and for any
time t < n/4, at least one message is sent by some processor at time t.
The following theorem is implicit in [2]:

Theorem 3.5 ([2], Lemma 5.1, Theorem 5.8) Let |I| ≥ cn, for
c > 1. Then the average message complexity of any protocol which is
active on I, where the average is taken over the worst case complexity
over all rings with identities taken from I, is Ω(n log n).

Let I0 be the set of all even ids, and I1 be the set of all odd ids.
Theorem 3.4 follows from Theorem 3.5 and the following Lemma:

10



Lemma 3.6 Any consensus algorithm A is active either on I0, or on
I1.

Proof: (Outline) Otherwise, there exist two rings: R0 with inputs
from I0 and R1 with inputs from I1, in which all the processors are
quiescent at time n/4 − 1. Then, at time n/4 − 1 all processors in
R1 decide on 1, and all processors in R0 decide on 0. Consider now
a ring constructed by cutting and pasting half of the ring R0 to half
of R1. Let P (Q resp.) be a processor in R which is surrounded by
chains of n/4 − 1 processors from I0 (I1 resp.) on both sides. Since
in a synchronous execution of less than n/4 time P (Q resp.) cannot
distinguish between R and R0 (R1 resp.), in a synchronous execution
of A on R, P will decide on 0 and Q will decide on 1,—a contradiction.

4 Two-processor bit complexity

Here we consider a chain of two processors connected by one link, and
present exact or close to exact bit complexity bounds. Section 4.1
is devoted to achieving symmetry. In Section 4.2, we study breaking
symmetry; we use for the lower bound an extension of the technique
introduced in Section 4.1. In Section 4.3, we present a distributed
computing analogue of the partition-into-rectangles technique of com-
munication complexity [22, 21, 5], and use it to prove bit complexity
lower bounds for Leader and some other problems.

4.1 Achieving symmetry with two processors

We start with a simple proof, which introduces some of ideas used
later on in more sophisticated forms. These ideas are: consider specific
schedulers (e.g., both processors wake up spontaneously), “cut-and-
paste” two executions to produce a third one, and partitioning the set of
ids according to the first bit sent by a processor. Recall that any lower
bound on the complexity under any fixed scheduler is also a general
lower bound on the complexity of a distributed algorithm/problem.

Theorem 4.1 In chain of two processors with M ≥ 4, BitC(Consensus) =
2.

Proof: To solve Consensus sending two bits, each processor sends
the parity of its id to the other processor, and both decide on the (say)
OR of these bits.

To prove the lower bound, consider an arbitrary algorithm solv-
ing Consensus. Let us fix any scheduler which wakes both processors
spontaneously. Note that when a processor wakes up spontaneously,
the first bit it sends (if any) is a function of its input only. Partition the
set of ids into S0, S1, S⊥, according to the first bit sent by a processor
when it wakes up: 0, 1, or nothing. Assume for contradiction that the
bit complexity of Consensus is less than 2. Then |S0∪S1| ≤ 1. Indeed,
otherwise we can give two input ids from S0∪S1 to the processors, and
in any execution where both processors wake up spontaneously, at least
2 bits are sent.

11



Therefore, |S⊥| ≥ M − 1 ≥ 3 and hence, there are at least two
even ids in S⊥ or at least two odd ids in S⊥. Assume w.l.o.g. that
x0, y0 ∈ S⊥ are even, and x1, y1 are odd. Then, in any execution where
the inputs are 〈x0, y0〉, no bits are sent; so, both processors have to
decide 0 immediately, without waiting to receive any bits. Hence, in any
execution where the inputs are 〈x1, y0〉, also both have to decide 0, since
y0 decides so upon its wake-up. Moreover, x1 decides also immediately,
since the single bit, which may be sent, by our assumption, cannot be
sent by y0. Consider now the input pair 〈x1, y1〉. The decision must be
0, since x1 decides so upon its wake-up, but this decision is not legal.

4.2 Breaking symmetry with two processors

Let us define a scheduler, for a chain of two processors, which will be
used in some of our lower bound proofs. It is convenient to define the
scheduler using real-time (recall that processors have no access to it).
Synchronous scheduler:

• Both processors wake up at the same time, say 0.

• At any integral time, every processor receives the first undelivered
bit sent to it, if any.

The unique execution under the synchronous scheduler, implied for any
input configuration, is henceforth called the synchronous execution.

We refer to the processors as A and B (the names A and B are
not known to them). We represent any synchronous execution by its
synchronous history, consisting of a sequence a1b1a2b2...atbt of values
from {0, 1,⊥}. The bits received by A and B (if any), resp., at time i,
are ai, bi, resp.; and if ai or bi is equal to ⊥, no bit was received by A
or B, resp. Note that ai = bi = ⊥ is impossible for i ≤ t (at each step,
at least one bit is sent). We denote by h(x, y) the synchronous history
corresponding to inputs (x, y). For a sequence h, let Inputs(h) denote
the set of pairs (x, y) such that h is a prefix of h(x, y). We call a prefix
a1b1a2b2...arbr symmetric if ai = bi ∈ {0, 1}, i = 1, 2, . . . , r.

Theorem 4.2 In chain of two processors, 2 blog2 Mc−3 ≤ BitC(Leader) ≤
2dlog2 Me − 2.

Proof: The following algorithm solves MaxF, and thus Leader, send-
ing 2dlog2 Me − 2 bits: the two processors exchange their identities
without their least significant bit; the larger abridged identity wins,
and if they are equal, the identity with the unsent bit 1 wins.

In the rest of the proof, we establish the lower bound. Fix any
reporting Leader algorithm, i.e. such that each processor sends its de-
cision in its last message; thus, our lower bound may be off by two
bits. We will show that there exists a synchronous history with
a long symmetric prefix. Clearly, this will suffice, since a reporting
Leader algorithm cannot terminate while the execution prefix is sym-
metric.

Let us refer to the processors as A and B. We construct a growing
symmetric synchronous history prefix hi = a1a1a2a2 . . . aiai, Inputs(hi) 6=
∅, i = 1, 2, . . . , as follows. Initially, h0 is empty, and Inputs(h0) =

12



. . .

1 1

1 1

0 0

0

A B

A B

1

0

2

. . .

1 1

1 1

0 0

0

A B

A B

Leader

0

1

2

t-1

t

t+1

t-1

t+1

t

Figure 1: Illustration to the proof of Theorem 4.2.

{(x, y)|x, y ∈ ZM , x 6= y}. For extending hk to hk+1, we restrict
Inputs(hk) so that for any input in the remaining part, the synchronous
i-step execution: (i) ends with at least one bit in transit in each direc-
tion of the link, and (ii) the first undelivered bit is the same in both
directions. Then, we extend hk into hk+1 by delivering the next (equal)
bits in the queues to both A and B.

As in the proof of Theorem 4.1, let us partition the set S0 = ZM of
all ids into S0

0 , S0
1 , S0

⊥, according to what the first bit sent by a proces-
sor, when it wakes up spontaneously, is: 0, 1 or nothing, respectively.
Notice that there is at most one input in S0

⊥. Indeed, if there are two
inputs in S0

⊥, we give one to A and the other to B, resulting in an
execution, in which no bits are sent; this contradicts the assumption
that the last bit sent is the decision.

Let S1 be the largest set of S0
0 , S0

1 , and let a1 be the corresponding
bit sent. In the case |S1| ≥ 2, we fix h1 = a1a1. Then, Inputs(h1) =
{(x, y)|x, y ∈ S1, x 6= y} 6= ∅. When A and B get a pair of (distinct) ids
from S1, then the length 2 execution prefix has a synchronous history
h1: the same bit a1 is delivered at time 1 to each of the processors.
Note that in any execution which starts with an input from S1, the
same first bit is sent (it is possible that some additional bits are sent
too).

The only new knowledge that each processor acquires up to the
end of h1, is that the input of the other processor belongs to the same
subset S1 as its own input. Hence, given that a synchronous history
begins with h1, the second bit sent by A or B depends only on its own
input. As before, there are three subsets of S1, denoted by S1

0 , S1
1 , S1

⊥,
according to the second bit sent (this bit could be sent either on wake
up or after receiving the first bit a1). Once more, |S1

⊥| ≤ 1. Let S2 be
the largest set of S1

0 , S1
1 , and let the corresponding bit sent be a2. Then

we set h2 = a1a1a2a2 (see Figure 1). We continue in this way, while
the next subset Sk contains at least two inputs; so long Inputs(hk) 6= ∅.

We have that |Sk| ≥ d(|Sk−1| − 1)/2e, while |S0| = M . It takes at
least blog Mc steps to get from an integer r = M to a number smaller
than 2, where in each step you replace r by d(r − 1)/2e. To see this,
note that one such step maps the integers in the interval [2k, 2k+1 − 1]
onto the integers in the interval [2k−1, 2k−1] (indeed,

⌈
(2k+1 − 1)/2

⌉
=

2k,
⌈
((2k+1 − 1)− 1)/2

⌉
= 2k−1, . . . ,

⌈
(2k − 1)/2

⌉
= 2k−1,

⌈
((2k − 1)− 1)/2

⌉
=

2k−1 − 1). Therefore, |Sblog2 Mc−1| ≥ 2.
Let us give to A and B some pair of ids from Sblog2 Mc−1, and

consider the synchronous execution for them. Since for each i =

13



1, 2, . . . , blog2 Mc − 1, two bits delivered to the processors are iden-
tical and since the last bits sent by the processors must be distinct,
for a reporting algorithm, at least one more bit must be sent. That is,
for the chosen input, at least 2 blog2 Mc − 1 bits are sent. We get the
lower bound 2 blog2 Mc − 1 for reporting algorithms, and hence, the
lower bound 2 blog2 Mc − 3 for the general case, as required.

Note that the gap between the upper and lower bounds given by
Theorem 4.2 equals 1, when M is a power of 2, and equals 3, otherwise.

4.3 Two processor communication complexity ap-
proach

In this section, we build a distributed computing technique similar
to the partition-into-rectangles technique of communication complex-
ity [22, 21, 5], and use it for the two processor breaking symmetry
problem. Instead of rectangles, we use “‘semi-rectangles”, since diag-
onal entries are undefined in the scenario we consider. As observed in
the introduction, one difficulty in applying communication complexity
lower bounds techniques like those of [22] to our model is that, unlike
the model of [22], our model does not guarantee that there is a unique
execution or even a unique output, for each given input vector. In
this section, we use the synchronous scheduler to get such a unique
execution.

4.3.1 Rectangle method for distributed computing

Recall that for any distributed algorithm A under a scheduler S, any
input I implies a unique execution E(I) = EA,S(I) and thus a unique
output function f(I) = fA,S(I), whose values are the ordered tuples of
the processors outputs. Consider the M×M matrix D = {(x, y)|x, y ∈
ZM}. We fill its non-diagonal part by the (vector) values of f(x, y),
where x is given to A and y to B.

A set R ⊆ D is called a semi-rectangle if there exist subsets X,Y ⊆
ZM , such that R = {(x, y)|x ∈ X, y ∈ Y and x 6= y}. It is easy to
derive the following:

Proposition 4.3 A set R is a semi-rectangle if and only if whenever
{(x1, y1), (x2, y2)} ⊆ R and x1 6= y2, also (x1, y2) ∈ R.

In the rest of Section 4.3, we consider the synchronous scheduler.
Let Inputs0(h) denote the set of pairs {(x, y)|h(x, y) = h}. We suggest
the following analogue of the rectangle partition statement of commu-
nication complexity (see [16, Section 1.2]):

Lemma 4.4 For every synchronous history h, Inputs0(h) is a semi-
rectangle.

Proof: By Proposition 4.3, it suffices to show, for arbitrary pairs
(x1, y1), (x2, y2), s.t. x1 6= y2, that if h(x1, y1) = h(x2, y2) = h, then
also h(x1, y2) = h. Let h = a1b1...atbt, and h(x1, y2) = c1d1c2d2...ctdt.
Consider the execution E(x1, y2). An easy induction shows that at
any moment, A sees the same as at E(x1, y1) and B sees the same as

14



at E(x2, y2)). Hence, ai = ci and bi = di for all 1 ≤ i ≤ t, and the
decisions and halting moments are the same as well.

Let us assume now that the algorithm is reporting (processors send
their decision at the end). This implies that processors A and B decide
the same values in all executions with any fixed synchronous history h.
So, the function f has the same value on the semi-rectangle Inputs0(h)
of Lemma 4.4.

We say that a semi-rectangle R is f -monochromatic if f has the
same value on all of R. Given a function f , let Df (M) be the minimum
number of f -monochromatic semi-rectangles needed to partition the
non-diagonal elements of D. We conclude from Lemma 4.4:

Corollary 4.5 The number of distinct synchronous-histories, for a re-
porting algorithm, is bounded from below by Df (M).

Theorem 4.6 The bit complexity of any distributed algorithm for two
processors, which under the syncronous scheduler computes a function
f , is bounded from below by 1

3 log2 Df (M)− 2.

Proof: Given an algorithm, consider its extended reporting version.
Each step in a synchronous history of this algorithm is represented by
a pair (ai, bi), where (ai, bi) is one out of the eight pairs in {0, 1,⊥}2 \
{(⊥,⊥)}. Hence, since by Corollary 4.5 there are at least Df (M)
synchronous-histories, there must be a synchronous history h with at
least log8 Df (M) = 1

3 log2 Df (M) steps. The theorem follows since at
each step at least one bit is sent, and only the two last decision bits
sent by A and B are extra (reporting), as compared with the original
algorithm.

4.3.2 Alternative lower bound proof for Leader

As an application of Theorem 4.6, we give a different proof of the
Ω(log M) lower bound on the bit complexity of breaking symmetry
stated in Theorem 4.2. We say that a scheduler is anonymous if it
is independent of the processor names; notice that the synchronous
scheduler is anonymous. The following property is immediate:

Proposition 4.7 (mirroring) For any anonymous scheduler and any
pair of ids x, y ∈ ZM , x 6= y:
(i) E(y, x) is the execution obtained from E(x, y) by permuting the
names A and B everywhere, and
(ii) if f(x, y) = (x′, y′), then f(y, x) = (y′, x′).

Consider the synchronous executions of any reporting Leader algo-
rithm. By Proposition 4.7 and the specification of the Leader task, the
output function f for Leader defined in Section 4.3.1 is anti-symmetric:
f(x, y) 6= f(y, x), for all legal inputs (x, y).

Theorem 4.8 For an arbitrary anti-symmetric function f defined by
the synchronous scheduler, Df (M) ≥ M/2.

Proof: Let us consider a partition of D into Df (M) f -monochromatic
semi-rectangles. Replace each semi-rectangle by the corresponding

15



rectangle (i.e., include the missing diagonal elements). Let C be the
resulting covering of D by rectangles. Then the rectangles in C cover
all non-diagonal entries, and, in addition, also certain k diagonal en-
tries, for some 0 ≤ k ≤ M .

Case 1: k = M (C covers all the elements in D = {dij}). No rectangle
in C can contain two distinct diagonal elements dii, djj , since
f(dij) 6= f(dji). Thus, in this case Df (M) ≥ M .

Case 2: k = 0 (C does not cover any diagonal entry, and hence,
is non-intersecting). We use a variant of the rank method ([16,
Section 1.4]). For each rectangle R in C, let AR be the matrix in
which the entries of R are 1 and the other entries are 0. Then∑

AR = J−I, where J is the all-ones matrix and I is the identity
matrix. Since rank(J − I) is M , but rank(AR) is one, there are
at least M matrices AR. Hence, also in this case Df (M) ≥ M .

Case 3: 0 < k < M . If k ≥ M/2, use the result of Case 1 on the
principal submatrix corresponding to these k indices. Otherwise,
use Case 2 on the principal submatrix of the remaining M − k
indices. This implies Df ≥ M/2.

It follows from this theorem and Theorem 4.6, that BitC(Leader) ≥
1
3 log2(M/2)− 2 = Ω(log M), as required.

Later we will use the following statement, which is implied by The-
orem 4.8 and Corollary 4.5.

Lemma 4.9 The number of distinct synchronous-histories of any re-
porting Leader algorithm for two processors is at least M/2.

5 Easy cases for a chain

We now consider the chain topology, with n+1 processors and n links.
Most of the related exact bounds are developed in the sibling paper
[8]. Sections 5.1 and 5.2 present main insights and results from there,
while Section 5.3 adds one more result. We thus isolate the interesting
hard cases to be treated in Section 6.

5.1 Consensus

A 2n algorithm for Consensus is simple: If an intermediate processor
wakes up spontaneously, it sends nothing. When a terminal wakes up,
it broadcasts its parity. Any processor decides on OR of the two bits
it has received, in its id and/or messages.

One would expect that both BitC(Consensus) and BitC(Leader)
are at least n, because if less than n bits are sent, the chain would be
divided into two parts with no information exchange between them.
The exact bound for Consensus is 2n, by the following statement:

Theorem 5.1 ([8], Theorem 3.2) For a chain with n links, the mes-
sage complexity of Consensus is at least 2n. This bound holds when
M ≥ 4, if inputs are given to the terminals only, and when M ≥ 2n+2,
if inputs are given to all processors. These bounds for M are tight.

16



A B
Leader

1 1 1

0 0 0 00

1

Figure 2: Execution of the algorithm for Leader in a chain.

5.2 Leader: even length chain

Recall that the chain length is defined as the number of links in it. In
the case when the chain length is known to be even, a 2n algorithm
(which does not use ids!) is as follows. If an intermediate processor
wakes up spontaneously, it sends nothing. When a terminal wakes
up, it propagates the sequence 0101 . . . . If the two waves with these
sequences meet at some processor, it is the leader. If they meet on an
edge e, necessarily one bit sent on e is 1 and the bit sent in the opposite
direction is 0; the processor that has transmitted 1 and received 0 is the
leader. Also, 1 is broadcasted to all other processors to indicate that
they are not leaders. Another algorithm, with bit complexity 1.5n, is
given in [8].

These algorithms, together with the above common sense observa-
tion, imply that for an even chain, BitC(Leader) = Θ(n). The exact
bound is 1.5n, as is implied by the two following results:

Theorem 5.2 ([8], Theorem 5.2) For a chain with n links, if n is
known to be even (but otherwise unknown), then BitC(Leader) ≥ 1.5n.
This bound holds when M ≥ 5, if inputs are given to the terminals only,
and when M ≥ 5n, if inputs are given to all processors.

Theorem 5.3 ([9], Theorem 2) For M ≥ 6, BitC (Leader) in an
even length chain is 0 if n = 2, 4 if n = 4, 8 if n = 6, and 1.5n if
n ≥ 8, if inputs are given to the terminals only and even if the value
of n is known to the processors. Moreover, for n ≥ 10, the algorithm
given in [8] is the single optimal algorithm.

5.3 Leader: general chain

A 2(n + log M − 1) algorithm is as follows. Similarly to the even case,
two 000 . . . sequences are propagated from the terminals. If the two
waves with these sequences meet at some processor, it is the leader. If
the waves meet on an edge e, then the two processors at the endpoints
of e solve Leader with their identities as inputs. Also, 1 is broadcasted
from the meeting place to inform the rest of processors that they are
not leaders (for illustration see Figure 2).

Let us show the lower bound Ω(log(M/n)) for an odd length case
(and thus, for the general one). Call a super-input the tuple of (n+1)/2
ids in the chain from a terminal processor inward; thus, each instance of
Leader has two super-inputs, from the sides of the two terminals. Let
M̃ denote b2M/(n + 1)c. We restrict the problem to the super-inputs
i0 = (1, 2, . . . , (n + 1)/2), i1 = ((n + 1)/2 + 1, (n + 1)/2 + 2, . . . , n + 1),
. . ., iM̃−1 = ((M̃−1)(n+1)/2+1, (M̃−1)(n+1)/2+2, . . . , M̃(n+1)/2).
Let us, given an algorithm A, replace each half-chain by a single super-
processor, which given input q ∈ [0..(M̃ − 1)], simulates in its local

17



memory the computation of A in this half-chain, where the processors
are given the respective components of iq as their inputs. In particular,
it decides “leader” if some processor in its half-chain decides “leader”
according to A, and decides “non-leader” if all processors in its half-
chain decide so according to A. Thus we obtain a two-processor Leader
algorithm, A′, over the middle edge. Observe that any pair of distinct
super-inputs corresponds to a set of distinct original inputs in the entire
chain, and thus to a legal instance of the original problem. Therefore,
A decides “leader” at exactly one processor, which implies that A′
decides properly. Thus, A′ is a valid two-processor Leader algorithm,
with M̃ = b2M/(n + 1)c possible inputs. By Theorems 4.2 and 4.6, its
bit complexity, and thus the bit complexity of A, is Ω(log(M/n)), as
required.

Together with the bound Ω(n), of our common sense observation
and of [8, Theorem 5.2], this bound implies: BitC(Leader) = Ω(n +
log(M/n)) = Ω(n + log M − log n) = Ω(n + log M). Summarizing, we
obtain:

Theorem 5.4 For the chain topology, BitC(Leader) = Θ(n+log M).

6 Breaking Symmetry in an Odd Length
Two-Input Chain

As we have seen in the previous section, the easy cases for Leader in
a chain are when there is a middle processor, or when every processor
has a distinct input. In the following two subsections, we consider the
case when the length of the chain is odd and only the two terminals
have inputs. We assume that the terminal processors, and only them
wake up spontaneously. This scenario is analogous to the linear array
problem studied in the context of communication complexity [5, 14, 21].

An obvious O(n log(M)) bit complexity algorithm for Leader, and
moreover, for MaxF, is as follows: Both terminals relay their ids through
the chain; each processor learns on the placement of the maximal id
when both waves reach it. To prove the matching lower bound of
Ω(n log(M)), we use a variant of Dietzfelbinger’s [5] proof strategy for
the communication complexity model. In Section 6.1, we describe and
analyze our main tool, the outside precedence scheduler; it is applied
to Leader in Section 6.2. In Section 6.3, we show that for MaxF, there
is no scheduler that can reduce the bit complexity below Ω(n log(M)).

6.1 Outside-Precedence Scheduler

We denote the middle link by ẽ, and the terminal processors by A and
B. The part of the chain between A and ẽ is called the left part of the
chain, and its part between ẽ and B is called the right part of the chain
(see Figure 3). We say that a part of the chain is quiescent, at some
time, if none of the links in this part has messages in transit.

We proceed to define the Outside-Precedence Scheduler (OPS). For
a distributed algorithm, its execution defined by OPS is composed of
consecutive rounds. Each round begins with a right phase, where bits
are delivered on the links in the right half of the chain, until this area

18



BA

left part

e e
P Q

~
L(e) R(e)

middle edge
right part

Figure 3: Illustration to notation for the odd length two-input chain.

becomes quiescent. Then, there is the left phase, defined similarly for
the left half of the chain. At the end of the round, when both halves
are quiescent, the middle phase is executed, where the (single) first bit
in transit, if any, is delivered along each one of the directions on ẽ.
It should be noted that over the middle edge, the OPS-execution is
similar to the synchronous execution defined in Section 4.2, and hence
the synchronous history (or s-history, for short) of ẽ can be defined by
the same notation. The first right (left) phase starts by waking up the
right (left) terminal. At each step of a right or left phase, a single bit
is delivered, hence a single processor becomes active. OPS decides on
the link and direction on it, where the first bit will be delivered next,
by the following “outside preference” rules:

• Links farther away from ẽ are preferred to links closer to it.

• For each link, the direction away from ẽ is preferred to the direc-
tion towards ẽ.

In what follows, up to the end of Section 6.2, let an arbitrary dis-
tributed algorithm, A, be fixed. For any input, OPS defines a unique
execution, for it; we denote the OPS-execution with inputs x and y
given to A and B, respectively, by OPS(x, y).

Let e = (P, Q) 6= ẽ, be a link, where P is its left end-node and
Q is its right end-node. We define the (plain) history he(x, y) of e
during OPS(x, y), as the sequence of all sending and delivering events
on it, in the chronological order. Let L(e) and R(e) denote the sets
of processors to the left and to the right of e, respectively. We de-
note by OPSL(e)(x, y) (resp., OPSR(e)(x, y)) the subsequence of steps
in OPS(x, y) where processors in L(e) (resp., R(e)) are active. This
subsequence contains all activity on the links to the left (resp., right)
of e, and also sending messages on e by P (resp., Q) and delivering
messages on e to P (resp., Q).

The following property is crucial for our lower bound proof pre-
sented in the next section. We use the notion of PQ-queue (resp.,
QP -queue) as the messages in transit on e = (P, Q) from P to Q
(resp., from Q to P ).

Lemma 6.1 (Cut-and-Paste Property) Let e be a link distinct from
ẽ, and (x, y) and (x′, y′) be two input pairs. If the histories he(x, y)
and he(x′, y′) coincide, then:

1. he(x, y′) = he(x, y) = he(x′, y′),

2. OPSL(e)(x, y′) = OPSL(e)(x, y),

3. OPSR(e)(x, y′) = OPSR(e)(x′, y′).

Proof: Consider first the case when e lies in the left half of the chain.

19



In this case, the entire L(e), together with e, is contained in the left
half of the chain. Let e be (P, Q).

Consider an arbitrary OPS-execution. Divide the sequence of its
execution steps into the interleaving intervals of continuous activity
in R(e) and in L(e), called henceforth the righte and lefte intervals,
respectively. By the phase structure and outside preference of an OPS-
execution, the first interval starts from waking up B and delivering
the first bit sent by B, if any, continues in the right half of the chain,
and finishes when the entire right half becomes quiescent. The second
interval starts from waking up A and delivering the first bit sent by
A, if any, continues in L(e), and finishes when the entire L(e) becomes
quiescent. Notice that at its finishing moment the QP -queue is empty,
since Q has not been active yet. Clearly, the contents of the considered
intervals are mutually independent.

Claim 6.2

(a) An OPS-execution is active in R(e) if and only if all queues in
L(e) and the QP -queue are quiescent, except for maybe the first
righte interval.

(b) The transition from any non-first righte interval to the next lefte
interval happens when and only when Q is active and at least one
message is in transit from it to P ; then, at the next step, the first
one of such messages is delivered to P .

(c) The execution at any righte interval, I, including its finishing mo-
ment, depends only on the prefix of OPSR(e) before I and on the
state of the PQ-queue at the beginning of I.

(d) The execution at any lefte interval, J , including its finishing mo-
ment, depends only on the prefix of OPSL(e) before J and on the
state of the QP -queue at the beginning of J .

Proof:
(a) Denote the set of queues mentioned in (a) by L. Obviously, if all
queues in L are quiescent, then the coming execution step belongs to
a righte interval. The other direction: Assume that at least one of the
queues in L is non-empty. By the phase structure of OPS, this can
happen only in a left phase, except for maybe the first righte interval.
By the outside preference, during any left phase, OPS continues to
deliver in L(e), while there is something to deliver.
(b) When Q is active, it is a left phase and a right interval, by defini-
tion. Immediately after any step where Q sends to P , by the outside
preference of OPS in a left phase, the first such message sent is deliv-
ered to P , and thus the next lefte interval starts. For the “only when”
direction, observe that, by (a), during any non-first righte interval, all
queues in L are quiescent. The only way to violate this property is to
send a message from Q to P .
(c) During any righte interval I, L(e) is quiescent. Hence, the only ex-
ternal influence w.r.t. R(e), during I, is delivering from the PQ-queue.
Besides, during a right interval, the PQ-queue is not appended. The
finishing moment is either sending from Q to P , which is an internally
defined event, or the end of execution. The latter event happens when
R(e) becomes quiescent, which is also an internally defined event.

20



(d) During any lefte interval, while there are non-empty queues in L,
the behavior of OPS depends only on these queues, by the outside
preference rules of OPS. Moreover, no external information w.r.t. L(e)
can influence this part of the execution, except for delivering from
the QP -queue. Besides, during a left interval, the QP -queue is not
appended. The interval finishes when all queues in L become empty,
which is an internally defined event.

Fix some inputs t, w, and denote by he the history of e, he(t, w),
for short. We analyze now how the above partition of OPS(t, w) into
intervals determines a similar partition of the events in he.

Claim 6.3 The partition of he induced by the righte and lefte intervals
is defined uniquely by he.

Proof: Notice first that the first righte interval contributes nothing
to he. The events on he which correspond to the first lefte interval
(started by waking up A) consist of a (possibly empty) sequence of
PQ-sending events which precede the first QP -sending event on he.

We show now that to each non-first lefte interval, there corre-
sponds a non-empty subsequence of events in he of a certain type.
By Claim 6.2(b), each lefte interval, except the first one, starts with a
QP -delivering of a single bit which is preceded by a QP -sending of one
or more bits, and vice versa: each QP -delivering of a single bit which
is preceded by QP -sending of one or more bits, is the first event of a
lefte interval. Moreover, the subsequence of he which corresponds to
each such lefte interval is the maximal (by inclusion) subsequence of
he which starts with a QP -delivering of the abovementioned type and
includes only QP -deliverings and PQ-sendings. Note that all pieces of
he described above are well defined given he only.

Finally, observe that the non-empty subsequences of he which cor-
respond to the lefte intervals, split the remaining events in he into
non-empty subsequences corresponding to non-first righte intervals, in
a natural way.

Corollary 6.4 For any number i, the state of the QP - and PQ-queues
after finishing of the ith righte or ith lefte interval is defined uniquely
by he.

Indeed, any such queue state can be computed on the basis of the
corresponding prefix of he, while this prefix, in its turn, is defined
uniquely by he, by Claim 6.3.

Now, we are ready to proceed to the proof of the lemma, i.e., of
the Cut-and-Paste property. For any i, we assign to the prefix of i
first righte intervals at OPSL(e)(x, y′) the prefix of i first righte in-
tervals at OPSL(e)(x′, y′), and similarly for the prefixes of i first lefte

intervals at OPSL(e)(x, y′) and OPSL(e)(x, y). We will prove that the
corresponding prefixes coincide, by induction on i.

Basis: Since the first righte interval and the first lefte interval
depend on the inputs only, the first righte intervals are the same at
OPS(x, y′) and at OPS(x′, y′), and the first lefte intervals are the
same at OPS(x, y′) and at OPS(x, y). That is, the statement of the
lemma holds for the execution prefix covered by them. As a result, the
corresponding prefixes of the history of e are the same.

21



Assumption: We assume that for some prefix of the sequence of
intervals at OPS(x, y′), the statement of the lemma holds for any of
its sub-prefix of righte or lefte intervals.

Induction Step: We now consider the next interval. Let it be the
righte one. Consider its beginning. The states of all processors in R(e),
as well as of all queues between them are the same at OPS(x, y′) and
OPS(x′, y′), since they are defined by the same preceding execution,
by the induction hypothesis for righte intervals. The state of the QP -
and PQ-queues is the same by the induction hypothesis and Corol-
lary 6.4. By Claim 6.2(c), the executions in the next righte intervals
at OPS(x, y′) and OPS(x′, y′) go in the same way and finish after
the same step. This implies the same continuation of he(x, y′) as in
he(x′, y′) = he(x, y), as required. The case when the next interval is
the lefte one is analyzed similarly, using Claim 6.2(d).

This is the end of the proof of Lemma 6.1, for the case when e is to
the left of ẽ. The proof for the case when e is at the right chain half,
is similar.

Let e1, e2 be edges belonging to different half-chains, and let h1, h2

be their respective histories in a given execution. Then the bracket
history of (e1, e2) is the ordered pair (h1, h2). The following analogue
of the Bracket Lemma [5, Lemma 2.5] holds:

Lemma 6.5 (Bracket Lemma) If two OPS-executions of A have
distinct s-histories on ẽ, then the bracket histories of (e1, e2) in these
executions are also distinct.

Proof: Assume for a contradiction that OPS(x, y) and the OPS(x′, y′)
have different s-histories h, h′ in ẽ, respectively, but both executions
have the same bracket history (h1, h2) on (e1, e2). Assume, w.l.o.g.,
that e1 is closer to the terminal given input x. Then, by Lemma 6.1
applied to edge e1, OPS(x, y′) has the same bracket history (h1, h2) on
(e1, e2), as well as the same s-history h′ on ẽ, as OPS(x′, y′). Repeating
for inputs (x, y′) and (x, y), and edge e2, we arrive at an OPS-execution
of A for inputs (x, y) which also has the s-history h′ on ẽ. Thus we
get two different executions for (x, y), one where ẽ has s-history h and
the other where it has s-history h′, contradicting uniqueness of the
OPS-execution.

6.2 Bit complexity of Leader in the two-inputs case

Consider a chain of an odd length where inputs are given only at the
terminal processors. Here we use results of the previous section in order
to prove that BitC(Leader) = Ω(n log M).

Consider the notion of a reporting algorithm (see Section 2), for
the setting where only terminal processors decide: we require that the
terminals relay their decisions one to the other, along the chain. Fix
an arbitrary Leader algorithm, A, for an odd length chain with inputs
at the terminals, and consider its reporting extension, A′. The extra
cost of A′, w.r.t. A, is 2n bits.

Lemma 6.6 The number of distinct s-histories of A′ under OPS on
the middle link ẽ, over all pairs of inputs, is at least M/2.

22



Proof: Similarly to Section 5.3, replace each half-chain by a single
super-processor which simulates in its local memory the computation
of A′ under OPS in this half-chain. Thus, one computation step of
a super-processor corresponds to one phase of a computation in the
corresponding half chain, which starts when the (quiescent) half chain
receives a message from outside, and terminates when it becomes qui-
escent again. We get a reporting two-processors Leader algorithm, B′,
over ẽ, and its execution under the synchronous scheduler (defined in
Section 4.2), such that for each input (x, y), the messages exchanged
on ẽ are the same as in the (unique) outside-precedence execution of
A′ on this input. Note that this transformation is possible since the
chain is of odd length, and hence the network is split into two symmet-
ric parts, preserving the requirement that the two processors can be
distinguished only by their identities. The result follows by Lemma
4.9.

Theorem 6.7 In an odd length chain with inputs only at the termi-
nals, BitC(Leader) = Θ(n log M).

Proof: For an arbitrary algorithm A solving the problem, consider
first its reporting extension A′. As a consequence of Lemma 6.6,
there are w, w ≥ M/2, different inputs that lead to w different s-
histories of A′ on ẽ. Let the inputs be (x1, y1), . . . , (xw, yw), and the
s-histories on ẽ be h̃(x1, y1), . . . , h̃(xw, yw). By Lemma 6.5, these w
inputs lead to different bracket histories at any pair of symmetric links
(i.e., links at the same distance k from the terminals). Let the bracket
history at some symmetric distance k, when the input is (xi, yi), be
(hk, hn−k+1)(xi, yi). An s-history over ẽ is a word over the 8 letters al-
phabet {0, 1,⊥}2 \ {(⊥,⊥)}, whose length is at most twice the number
of bits sent in it. Also, a bracket history is represented by a word over
the 5 letters alphabet ({0, 1} × {L,R}) ∪ {, }, whose length is greater
by 1 than the number of bits sent in it. Hence, any lower bound of
the kind O(·) on the sum of history lengths would imply the same O(·)
lower bound on the number of bits sent. The details are as follows.

The total number of bits sent in the execution on input (xi, yi) is
at least:

1
2
|h̃(xi, yi)|+

∑

1≤j≤(n−1)/2

(|(hj , hn−j+1)(xi, yi)| − 1) .

The maximum value of the above sum is at least its average over the
w such histories:

1
2
· 1
w

∑

1≤i≤w

|h̃(xi, yi)|+
∑

1≤j≤(n−1)/2

(
1
w

∑

1≤i≤w

|(hj , hn−j+1)(xi, yi)|−1) .

The average length of w ≥ M/2 distinct words over size c alphabet,
for c = 8 or c = 5, is at least logc w−const1 ≥ logc M−const2. Hence,
BitC(A′) ≥ Ω( 1

2 (log8 M − const2) + (n−1)
2 (log5 M − const2 − 1)) =

Ω(n log M). The additional cost of the reporting 2n bits does not
affect this asymptotic growth, so BitC(A) = Ω(n log M) as well. By
the obvious algorithm for Leader described at the beginning of the
section, BitC(Leader) = O(n log M), and the Theorem follows.

23



6.3 Best scheduler complexity of MaxF

There exist Leader algorithms for a chain of odd length with inputs
only at the terminal processors which have low bit complexity in some
executions. Consider an arbitrary valid Leader algorithm A, and add
to it the following preprocessing stage. When a terminal wakes up
spontaneously, it sends bit 1 to the other terminal and waits for a
response. If a terminal is waken up by a message, it decides that it is
not the leader, sends 0 to the other terminal, and stops. In any case,
all intermediate processors relay the first bit in either direction. If a
terminal receives 0 as the response to the first bit sent, it decides to be
the leader and stops. If a terminal receives 1 as the response, it begins
to behave according to algorithm A. It is easy to see that the extended
algorithm solves Leader. Moreover, its complexity under any scheduler
that wakes up spontaneously only one of the terminals is 2n. This is
less than the worst case lower bound of Θ(n log M) in Theorem 6.7.

In this section, we show that this is not the case for MaxF. Specifi-
cally, we show that for any reporting algorithm A for MaxF in a chain,
there exists an input, such that in any execution of A with this input,
Ω(n log M) bits are sent. That is, no “benevolent” scheduler can re-
duce the bit complexity of this algorithm on this specific input below
the worst case complexity of MaxF. As a consequence, no scheduler can
reduce the Ω(n log M) bit complexity of MaxF.

Working with functions (instead of tasks) allows to strengthen Lemma 4.4,
as in Lemma 6.8 below. We begin with giving some definitions and
notation. Let us call A and B the end processors of a chain, which
compute a function f(x, y). Assume that f(x, y) is a boolean value
to be decided by A, when A has input x and B has input y; B can
either decide the same value or its complement. For MaxF, f(x, y) is 1
if x > y, and 0 if x < y.

Consider an arbitrary reporting algorithm A, which computes a
function f(x, y) of inputs (x, y), with x 6= y. Let us fill the non-
diagonal entries of the output matrix D (of dimension M ×M) with
the values of f . To facilitate the analysis, assume that in each execution
of A, at most one bit is delivered on any link at any given moment.
Then, the history of a link e can be represented by the bit sequence
d1b1d2b2 . . . dtbt, where di is L(eft) or R(ight), and bi is a bit, with
the obvious meaning: bi is the i-th bit delivered on e, and di is the
direction to which bi was delivered. Let Inputs(e, h) be defined as the
set of all inputs (x, y), s.t. there exists an execution of A on input
(x, y) where the history at e is h. Recall that a semi-rectangle is called
f -monochromatic if all its entries in D are the same.

Lemma 6.8 Let h be a history on a link e. Then, Inputs(e, h) is an
f -monochromatic semi-rectangle.

Proof: To show that Inputs(e, h) is a semi-rectangle we prove that
if (x1, y1), (x2, y2) ∈ Inputs(e, h), then also (x1, y2) ∈ Inputs(e, h). Let
E1 and E2 be two executions of A on inputs (x1, y1), (x2, y2), resp., for
which the history at e is h. The construction of the third execution,
E, for (x1, y2), is done by the standard cut-and-paste technique, which
simulates E1 (on input (x1, y1)) on the left side of e, and the execution
E2 (on input (x2, y2)) on the right side of e, and both of them on e.
Then, in E, the processors to the left (resp., right) of e will not see any

24



difference from working in E1 (resp., in E2), so their state sequences
will agree with the algorithm. In other words, E will be an execution
of A on (x1, y2), with history h on e, as required (notice that we even
did not use that two given inputs are distinct).

Since the algorithm is reporting, the last bits in h sent in each
direction on e are the decisions of terminals, i.e., the function value is
fixed by h. Hence, the rectangle Inputs(e, h) is f -monochromatic.

Remark : Even if E1 and E2 are defined by the same scheduler, say
S, E may be not defined by S.

For an input (x, y) and a link e, we denote by h∗x,y(e) the shortest
possible history on e produced by any execution of A on input (x, y)
(ties are broken in an arbitrary manner). Clearly,

∑
e |h∗x,y(e)| is a lower

bound on the sum of the lengths of link-histories of any execution of A
on input (x, y).

A subset I of non-diagonal elements of the output matrix D will
be called an f -fooling set (as in [16]), if no f -monochromatic semi-
rectangle contains two elements from I.

Lemma 6.9 Let I be a fooling set and e be any link. Then the average
length of h∗x,y(e), taken over all input pairs (x, y) in the fooling set I,
is at least blog |I|c − 1.

Proof: By Lemma 6.8, for each history h, Inputs(e, h) is an f -mono-
chromatic rectangle, and hence it contains at most one element from
I. Thus the considered histories {h∗x,y(e)|(x, y) ∈ I} are pairwise dis-
tinct. The corollary follows since the average length of ` distinct binary
sequences is at least blog `c − 1.

Let fool(f) denote the maximal cardinality of a fooling set for f ,
and let I be a fooling set of this cardinality. Note that the number
of bits sent in a computation is half the length of the history of this
computation, at any link. Hence for any link e, by Lemma 6.9, the
average of the number of bits in h∗x,y(e) taken over the inputs from I,
is at least (blog fool(f)c − 1)/2. Summing over all links, we get that
the average, over all inputs in I, of the total number of bits sent over
all the n links, in any execution of A on such an input, is at least n
times that number. This gives the following result:

Theorem 6.10 For any algorithm A computing a function f , there
exists an input (x, y), such that in any execution of A on this input, at
least n(blog fool(f)c − 1)/2 bits are sent.

We now turn to the function corresponding to MaxF. It equals 1
below the diagonal of the output matrix D and 0 above it. Hence,
each rectangle Inputs(e, h) is either entirely not below the diagonal or
entirely not above it. It can be easily checked that the set of bM/2c sub-
diagonal elements {D[2i, 2i− 1]|1 ≤ i ≤ M/2} of D is a fooling set for
MaxF (see Figure 4). Indeed, for any pair of matrix elements from this
set, the 2× 2 rectangle defined by them contains three elements under
the diagonal and one above it; hence, such a pair cannot be contained in
an f -monochromatic semi-rectangle. Therefore, fool(MaxF) is at least
bM/2c, and Theorem 6.10 implies:

25



Figure 4: Fooling set for MaxF.

Corollary 6.11 For any algorithm A for MaxF, there exists a legal
input (x, y) (i.e., x 6= y), such that in any execution of A on this
input, at least n(blog Mc − 2)/2 bits are sent.

As a consequence, the best scheduler complexity of MaxF is Ω(n log M)
(see Section 2 for the definition). [In fact, the statement of Corollary
6.11 is equivalent to this consequence. At the first glance, the state-
ment: for each algorithm there exists an input s.t. each execution sends
many bits, looks stronger than the statement: for each algorithm and
each fixed scheduler there exists an input s.t. the corresponding execu-
tion sends many bits, since the “worst” inputs for different schedulers
must not be the same. However, since we do not restrict the knowledge
of a scheduler, there exists the totally best scheduler, over all inputs.
Indeed, such a scheduler is able to check, what is the input given, and
simulate the scheduler which is the best w.r.t. this input.]

In fact, the above proofs work also in the setting where all proces-
sors are given inputs (this observation is joint with Noam Solomon), as
follows:

Corollary 6.12 The best scheduler bit complexity of MaxF is Ω(n log M),
in the setting when all processors are given inputs and if n ≤ (1 −
c)M , for a constant c > 0. Therefore, in this case, BitC(MaxF) =
Θ(n log M).

Proof: Let us give to all n − 1 intermediate processors fixed dis-
tinct inputs from the range [1, n − 1], and to the terminals, various
inputs from the range [n,M ]. Thus we define a problem similar to
the considered above in this section, where the two terminals are given
inputs from the set ZM ′ + n − 1 = {i + n − 1 : i ∈ ZM ′}, where
M ′ = M − n + 1 = Ω(M). It is easy to see that fixed inputs at the
intermediate processors and assuming inputs from ZM ′ + n− 1 rather
than ZM ′ do not prevent the above proofs to be valid. This implies the
Ω(n log M ′) = Ω(n log M) bound, as required.

The following observation is worth to mention. We call a binary
function f(x, y) anti-symmetric if for every x 6= y, f(x, y) = 1−f(y, x).
Note that MaxF is a special case of an anti-symmetric function if com-
pleted for the diagonal elements in an arbitrary way. Consider the tra-
ditional communication complexity model in which the processors have

26



distinct identities A and B which are mutually known, and all inputs
from ZM ×ZM are allowed. For this model, our lower bound of Corol-
lary 6.11 for MaxF can be generalized (with a slightly sharper bound)
to hold for any anti-symmetric function f(x, y), as follows. Since in
this model the inputs can be identical, the M diagonal elements of D
are legal inputs, which, by the definition, form a fooling set for any
anti-symmetric function. Thus, by using this fooling set in the above
proof, our lower bound extends to any anti-symmetric function, in this
model. An interesting open problem is whether a similar lower bound
for an arbitrary anti-symmetric function applies also to our model, in
which the diagonal elements are not a fooling set (since identical inputs
are not allowed).

7 Rings

Theorem 7.1 In a ring, BitC(Leader) = Ω(n log M).

Proof: The proof is similar to the one of Theorem 4.2; we do not
describe once more some details presented there.

Consider an arbitrary reporting algorithm for Leader in a ring (i.e.,
such that the last bit sent by any processor, at any outcoming link, is its
decision), and its synchronous executions. For the theorem statement,
it does not matter that the lower bound for reporting algorithms may
be off by 2n bits as compared with the general bound. In the proof
of the lower bound, we assume that the processors are arranged on
the ring in a symmetric way, so that the first link at each processor is
oriented clockwise. Let us analyze the algorithm steps.

First step: When a processor wakes up, at time 0, there are 5
possibilities for the first sending operation: Either no bit is sent (⊥),
or the first sent bit is 0 or 1, clockwise or counter-clockwise (though
the algorithm is aware of local link numbering only, our assumption
allows us to state so). Thus the input set ZM is partitioned into the
five corresponding subsets. We choose the largest one; denote it by S1.
Provided its size is at least n, we give inputs from S1 to all processors.

Observe that the size of the subset corresponding to ⊥ must be less
than n. Indeed, otherwise we can give inputs from this subset to all the
processors, and then the algorithm terminates before processors sent
their decisions bits, contradicting the reporting property.

Second step: Since all the inputs are from S1, each processor re-
ceives, at time 1, the same bit from the same side, and that bit is the
same as it sent. Hence, its state depends on its input only. We choose
a subset S2 in a similar way.

We continue with such a construction as long as |Sk| ≥ n.
Thus, for any k ≥ 2, |Sk| ≥ d(|Sk−1| − n + 1)/4e, where |S0| = M .

We get that there are Ω(log(M/n)) steps, and thus Ω(n log(M/n))
bits are sent. Combining this with the known Ω(n log n) lower bound
(implied by the message complexity result of [4]) we get the required
bound: Ω(n log(M/n)) + Ω(n log(n)) = Ω(n log M).

27



8 Conclusions and Discussion

We have considered three fundamental distributed computing prob-
lems: Consensus, Leader and MaxF, and shown that they have the
same message complexity in chains and rings. However, we showed
that while a solution to Leader can be very useful to solve Consensus,
the opposite is not true. Finding similar relations between other pairs
of distributed tasks can be interesting in general.

Then, we proceeded to study the problems under a finer measure of
complexity: the number of bits sent. Our study uncovered interesting
relations between communication complexity and distributed comput-
ing, two areas that were studied independently in the past.

In particular, the symmetric execution method can be viewed as
a dual of the partition-into-rectangles technique. It shows that cer-
tain short symmetric executions define each a square S × S, for some
large set S ⊆ ZM , s.t. all pairs of distinct inputs from S × S have
the same history. It is worth to mention that we enhance, by this
method, the rectangle method of communication complexity: we show
that a monochromatic rectangle is a symmetric square, in certain cir-
cumstances.

Generally speaking, our bit complexity results imply that MaxF is
harder than Leader, which is harder than Consensus. However, we
realized that the complexity of Leader can vary widely depending on
the symmetry of the chain and the knowledge of this that the processors
may have; which is not the case for Consensus or MaxF. In particular,
it is possible to solve Leader, when n is known to be even, sending less
than one bit per link in each direction; this is impossible for Consensus.

In what concerns upper bounds in a chain, we assumed that a sched-
uler eventually always wakes up the terminals, if not waken up by
a message. This assumption is essential for the bounds of the kind
c · n ± O(1). In this context, it would be interesting to consider other
assumptions on the wake up requirements, for a scheduler.

Our main technical result is an analogue of the result of [5] for com-
munication complexity. We proved that the bit complexity of Leader in
an odd length chain with inputs only at the terminals is equal to n times
the bit complexity of the problem in a two processor chain. In commu-
nication complexity, this kind of property holds for every problem (i.e.,
function), while in the distributed computing setting, we showed that
this is not the case: for example, while BitC(Leader) = Θ(log M) in
a two processor chain, in an even length chain BitC(Leader) = Θ(n).

Note that in the ring case, there is a gap between our lower bound
of Ω(n log M) and the known upper bound of O(n log n log M). One
can distinguish two different techniques for proving lower bounds for
the ring topology: the technique of [4, 2, 10], which exploits the fact
that in some executions the ring must be traversed by a long chain of
messages, and the technique used here, which shows that many bits
must be sent by each processor. It is possible that none of the above
two techniques by itself could close the above gap, e.g., by proving an
Ω(n log n log M) lower bound on the bit complexity of MaxF in the ring
(improving the lower bounds for Leader and Consensus could be even
harder). Improving these lower bounds, if at all possible, may require a
new technique, which could be a combination of these two techniques.

28



Acknowledgments

We are grateful to Martin Dietzfelbinger for helpful and enlightening
discussions, at the early stages of this research, to Shay Solomon and an
anonimous referee for pointing out local gaps in the submitted version
of the paper, and to Shay Solomon for his comments on improving the
text.

References

[1] Hagit Attiya and Jennifer Welch, Distributed Computing: Funda-
mentals, Simulations and Advanced Topics, McGraw–Hill, Eng-
land, 1998.

[2] Hans L. Bodlaender, “New lower bound techniques for distributed
leader finding and other problems on rings of processors,” Theor.
Comput. Sci. 81 (1991), 237–256.

[3] Hans L. Bodlaender, Shlomo Moran, Manfred K. Warmuth, “The
distributed bit complexity of the ring: From the anonymous to
the non-anonymous case”, Information and Computation 114 (2),
pp. 34–50, 1994.

[4] James E. Burns, “A formal model for message passing systems,”
Technical Report TR-91, Computer Science Dept., Indiana Uni-
versity, Bloomington, September 1980.

[5] Martin Dietzfelbinger, “The linear-array problem in communica-
tion complexity resolved,” in Proceedings of the 29th ACM Sym-
posium on Theory of Computing, pages 373–382, 1997.

[6] M. Dietzfelbinger, J. Hromkovic, G. Schnitger, “A comparison of
two lower-bound methods for communication complexity,” Theo-
retical Computer Science 168 (1996), 39-51.

[7] Y. Dinitz, S. Moran and S. Rajsbaum. Bit complexity of breaking
and achieving symmetry in paths and rings. In: Proc. of the 31th
Symposium on Theory of Computing, STOC’99, 265–274.

[8] Y. Dinitz, S. Moran and S. Rajsbaum. Exact Communication
Costs for Consensus and Leader in a Tree. J. of Discrete Algo-
rithms 1 (2003), 167–183.

[9] Y. Dinitz and N. Solomon. Two Absolute Bounds for Distributed
Bit Complexity. Theoretical Computer Science 384 (2007), 168-
183.

[10] Pavol Duris and Zvi Galil, “Two lower bounds in asynchronous
distributed computation,” J. of Computer and System Sciences,
42(3), pp. 254–266, June 1991.

[11] Matthias Fitzi and Juan Garay, “Efficient Player-Optimal Proto-
cols for Strong and Differential Consensus.” Proc. 22nd ACM Sym-
posium on the Principles of Distributed Computing (PODC’03),
pp. 211–220, Boston, MA, July 2003.

[12] Robert G. Gallager, Pier A. Humblet, Philip M. Spira, “A dis-
tributed algorithm for minimum-weight spanning trees,” ACM
Trans. Prog. Lang. Syst., 5(1):66–77, Jan. 1983.

[13] Daniel S. Hirschberg, J.B. Sinclair, “Decentralized extrema-
finding in circular configurations of processes,” Commun. ACM
23 (11), pp. 627–628, 1980.

29



[14] Eyal Kushilevitz, Nathan Lineal, Rafail Ostrovsky, “The linear-
array conjecture in communication complexity is false,” Combina-
torica, 19 (2), pp. 241–254, 1999.

[15] Ephraim Korach, Shlomo Moran, Shmuel Zaks, “Tight upper and
lower bounds for some distributed algorithms for a complete net-
work of processors,” Proc. of the 3th Annual ACM Symp. Princ.
Dist. Comp. (1984), pp. 199–207.

[16] Eyal Kushilevitz, Noam Nisan, Communication Complexity, Cam-
bridge University Press, 1997.

[17] Nancy A. Lynch, Distributed Algorithms, Morgan Kaufmann Pub-
lishers, Inc. 1996.

[18] Shlomo Moran, Manfred K. Warmuth, “Gap Theorem in Dis-
tributed Computing”, SIAM Journal of Computing 22:2 (1993),
379–394.

[19] Shlomo Moran, Yaron Wolfsthal, “An extended impossibility re-
sult for asynchronous complete networks”, Information Processing
Letters, 26, pp. 141–151, 1987.

[20] Gerard Tel, Introduction to Distributed Algorithms, Cambridge
University Press, 1994.

[21] Prasoon Tiwari, “Lower bounds on communication complexity
in distributed computer networks,” J. Assoc. Comput. Mach. 34
(1987), 921–938.

[22] Andrew C. Yao, “Some complexity questions related to distributed
computing,” Proc. of the 11th ACM Symp. on Theory of Comp.
(1979), pp. 209–213.

30


