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Abstract. Let @ be any algebraic structure and 2 the set of all total programs over { using the mstruction
st {ze—lLzex+p,zex—y 2z x+yz<x/y} (A program 1s total if no division by zero occurs
during any computation ) Let the equivalence problem for & be the problem of deciding for two given
programs in & whether or not they compute the same function The followimng results are proved:

(1) If @ is an infinsie field (e.g, the rational numbers or the complex numbers), then the equivalence
problem for 15 probabilisucally decidable in polynonual time. The result also holds for programs
with no division instructions and @ an infimte wntegral domawm (e.g., the mntegers).

(2) If Q 1s a finite field, or if Q is a finite set of miegers of cardmality =2, then the equivalence problem
is NP-hard.

The case when the field @ is finite but its cardinality 15 a function of the size of the instance to the
equivalence problem is also considered An example 1s shown for which a sharp boundary between the
classes NP-hard and probabilistically decidable exists (provided they are not identical classes),
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I. Introduction

Consider the following seemingly simple problem: Given two straight-line programs
Fi and F; using only constructs z «— 1,z «~x + y, z <~ X — , Z <~ x * y, devise an
algorithm to determine whether or not F; and F; are equivalent. An algorithm clearly
exists: For each program, derive polynomial expressions for the output variables in
terms of the input variables. Then F, and F, are equivalent if and only if the
corresponding expressions (in standard form, i.e., sums of products) are identical.
However, in the worst case the process is exponential in the sum of the sizes of the
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programs. At present we know of no polynomial-time algorithm for solving this
problem.

The equivalence problem for straight-line programs is important because of its
relation to a number of decision problems that have recently been studied in the
literature. In [4], for example, the equivalence problem for free Boolean graphs was
shown to be probabilistically decidable in polynomial time by essentially reducing
the problem to the equivalence problem for a restricted class of straight-line programs.
In [16], probabilistic algorithms for verifying some polynomial identities were pre-
sented. One can easily check that many of the problems discussed in [16] can be
reduced to the zero-equivalence problem (i.e., does a program output zero for all
inputs?) for straight-line programs. Some important problems involving matrices can
also be reduced in polynomial time to the zero-equivalence problem for straight-line
programs. For example, we showed in [11] that the problem of deciding for a given
positive integer r and a matrix 4 with polynomial entries (where the polynomials are
represented by arithmetic expressions with arbitrary parenthesization using addition,
subtraction, multiplication, and exponentiation to a positive integer constant) whether
A has rank =r is polynomial-time reducible to the zero-equivalence problem for
straight-line programs. In [19] (see also [18]) a restricted version of the rank problem
for matrices with polynomial entries was shown to be probabilistically decidable.

The main results of this paper are the following:

(1) If @ is an infinite field (e.g., the field of rational numbers or the field of complex
numbers), then the zero-equivalence problem for {z «— 1,z —x + y, z —x — 3,
z « x * y)-programs over 0 is probabilistically decidable in polynomial time'
(Section 2). The result also holds when @ is an infinite integral domain (e.g., the
integers). Thus the problems mentioned above (free Boolean graphs, polynomial
identities, rank of matrices with polynomial entries) are probabilistically decid-
able in polynomial time.

(2) If Q is a finite field, or if Q is a finite set of integers (of cardinality =2), then the
zero-equivalence problem for {z < 1,z < x + y, 2 +x — y, z «x * y }-programs
over  is NP-hard (Section 3). The proofs of these results provide answers to
some open problems in the literature {13, 18].

(3) If Q is finite but its cardinality is a function of the size of the instance (i.e., input
programy) to the zero-equivalence problem, then we can prove a “gap” theorem
(Section 4): If the function (which maps the length of the program to the
cardinality of the field) grows fast, then the zero-equivalence problem is proba-
bilistically decidable in polynomial time. If the function grows slowly, then the
problem is NP-hard.

One can easily extend the results above to hold for the equivalence problem (ie.,
deciding if two programs are equivalent) even when division z « x/y is allowed,
provided only total programs are considered. (A program is total if no division by
Zero occurs on any input.) When the programs are not guaranteed to be total and the
inputs are integers, the zero-equivalence problem is undecidable [10].

Remark. 'We could add the constructs z < & * x and z « x 1 & (i.e., multiplication
and exponentiation by a positive integer constant) to the instruction set of straight-
line programs. However, such instructions will not change the computing power

! This means that there is a polynormal-time algonithm which uses a random number generator to decide
if 2 program F computes the zero-function. If the algonthm outpuis “yes,” then I probably computes the
zero-function with probabiity of error =1/2. If the algorsthm outputs “no,” then F does not compute the
zero-function for sure Clearly, a probability of error <1/2* may be obtained by ranning the algorithm k
times.
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of straight-line programs, since it can easily be shownthat z < k+xandz «x 1t &
can be computed by straight-line programs over Z <« [, z <X+ p, 2 <« x — ¥,
z «x » y} of length O(log k).

We conclude this section by showing the connection between straight-line programs
with one outpui variable and polynomial expressions. For notational convenience we
only consider expressions over the integers.

Definition. A polynomial expression ( p.e.) is any expression which can be derived
using rules (1)~(4) below:

() lisape.

(2) Any variable is a p.e.

(3) If ais a p.e. and k is a positive integer, then k * a and « | k are p.e.’s

(4) If @ and B are pe’s, then so are a + 8, a — 8, and « * 8. (Parentheses may be
used to avoid ambiguity.)

By straightforward coding (see the remark above) we can easily prove the following
proposition.

ProrosiTION LY. We can construct for every p.e. E an equivalent straight-line
program Fover {z — 1,z <« x + y,2 «x — y, z « x » y} In fime polynomial in the
size (= length of representation) of E. (It follows that the size of F is polynomial in the
size of E.)

We can generate p.¢.’s from straight-line programs of size rn by direct substitutions
resulting in expressions of size at most O((V5 + 1)/2)). A polynomial bound seems
unlikely. Consider, for example, the following program, F (x and y are the input
variables, z is the output variable, and n = 2):

we{x+pyt2
zew+n13
Wwe(w+2)14
ze—(w+2z2)135

we(w+z) T (2n)
ze~(w+2)t(2n+ 1)

Clearly, F can be converted to a straight-line program " over {z « L.z &< x + y,
z & x — y, z + x * p} whose size is polynomial in the size of F. Now, by direct
substitutions, a p.c. £ denoting the value of z at the end of F can easily be obtained.
However, the length of E is exponential in the size of F. (See {9, 17] for related
topics.)

I')i"he brief discussion above shows that resulis {e.g., probabilistic algorithms) for
straight-line programs are applicable to polynomial expressions, byt the converse
may not be true.

2. The Zera-Equivalence Problem for Programs over Infinite Fields

In this section we show that the zero-equivalence problem for {z «— 1, z &« x + p,
Z +=Xx — ), z < x * y}-programs over infinite fields is probabilistically decidable in
polynomial time.

When we are dealing with zero-equivalence, we assume that the programs have
exactly one output variable. F{x,, . . ., x;) (or simply F) will denote a program with
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input variables x;, ..., x.. We also use F(xi, ..., x;) to denote the input—output
function computed by F. Length(F) is the number of instructions in F, while size(F)
is the length of the binary representation of F.

We begin with the following lemma.

LemMma 2.1.  Foreachprogram F(x,, . . ., x:) over afield Q there exists a polynomial
Pr(xy, ..., x0) such that Pr(xy, . .., x) = F(a, ..., x:). If length(F) = r, then deg(Pr)
= 22 If Q has characteristic p << «, then the coefficients of the polynomial are integers
between 0 and p — 1; otherwise, the coefficients are integers befween —x and +.

Proor. By inductiononr. O

Lemma 2.2, Let @ be an infinite field, P(x\, ..., x:) a nonzero polynomial of
degree =d over Q, and A a subset of Q, |A| = k = d. Then there are at least (k — d)’
elements @ = (ay, . .., a;) in A* such that P(@) # 0.

Proor. The proof'is by induction on ¢. For ¢ = 1 the lemma follows from the fact
that a one-variable polynomial of degree 4 has at most 4 roots in Q.

Assume the lemma holds for ¢ = 1, and consider a nonzero polynomial
P(xi, . .., xi, xee1) of degree =d. Then there exists a 2 + 1 tuple (@, ..., a,0) such
that P(ay, . . ., ar, ¢) 7 0. Hence the polynomial P(x;, . . ., x;, ¢) = P(xy, ..., x:) isnot
a zero polynonual Clearly, deg(P) = d. Hence, by the mductlon hypothesm, there are
at least (k — d) r~tuples (ay, . . ., @) in A° such that P(al, o) =Pla, ..., 8,10
# 0. For each such tuple, the one-vanable polynomial P(x..) = P(ay, ..., as Xe+1)
is not a zero polynomial, and therefore there are at least &k — d elements a;+, in A4
such that P(ai+1) = P(ay, . . ., @, @:s1) # 0. The lemma follows. [

CoroLLary 2.1, Let P(xy, ..., x:), d, k, and A be as in Lemma 2.1. Let k = 24d,
andlet G =(ay, . . ., @) be a random element of A*. Then P(@) = P(ay, . . . , a)) # O with
probability =%.

PrOOF
Prob(P(a) # 0) = [{z]ain T;‘T(E) #= 0} |
T\ Kk 2t
1
=3 O

In the proof of the main result of this section we have to distinguish between two
cases. First, we deal with the case when the field F over which the programs are
defined is the rational numbers (this represents the case when F is any field of infinite
characteristic). Later we deal with the case when F is an infinite field with finite
characteristic. .

2.1 THE ZERO-EQUIVALENCE PROBLEM OVER THE RATIONALS

Prorosrtion 2.1. A program F = 0 (ie., computes the zero-function) over the
rationals if and only if I = O over the integers.

Proor. This follows from Lemma 2.1 O

Proposition 2.1 shows that deciding zero-equivalence for programs over the
rationals is equivalent to deciding zero-equivalence for programs over the integers.

% deg(Pr) denotes the degree of Pr = max{sum of powers of the varables in any term}.
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Hence we assume in the remainder of this subsection that the inputs to the programs
are integers.

Definition. Let Fbe a program and m a positive integer. Then Fix is the program
obtained from F by replacing each instruction by the equivalent instruction modulo
m. Thus z «— 1,z « x + y, z « x — y, and z « x * y are replaced by the instructions
z—1(mod m), z — x + y (mod m), z «— x — y (mod m), and z « x » y (mod m),
respectively.

The relationship between F and F, is given by the following lemma.

LemMa 2.3, Fxi, ..., x:) (mod m) = Fop(xy, . . ., Xt).

Proor. By induction on length(F#} and the fact that [x (mod m) § y (mod m)]
(modm)=x8y(modm)ford=+,—,+« O

The next lemma gives an upper bound on the size of F(xy, ..., x:).

LemMa 24. Let ay, ..., a be input integers such that |a,| < a, where a = 2. Then
|Fay, ..., a)| =d”, where r = length (F).

Proor. By inductiononr. O

Lemma 2.5. Let k be a given integer, 1 < |k| < 2%, and let m be an integer
chosen at random from the set M = (1,2, ..., 2*"}. Then for all sufficiently large n,
k # 0 (mod m) with probability =1/4n.

PrROOF. By the prime number theorem [7], the number of primes smalier than 2**
tends to 2%"/In 2** and hence, for large n, is greater than 2*%/2n, Let p, . . ., ps be the
distinct prime divisors of k. Clearly, s < logok < 2n2". (If k = 1, then s = 0.) Hence,
for large enough # there are at least 2°*/2n — 212" primes smaller than 2** which do
not divide k. Since for # = 10, 22/2n — 2r2" > 2**/4n, the lemma follows. O

We are now ready to prove the main result of this subsection.

Lemma 2.6. The zero-equivalence problem for (z «— |, z e~ x + y, z <~ x — »,
Z «— x * y}-programs over the rationals is probabilistically decidable in polynomial
time.

Proor. Let F(xy, ..., x:} be a program of length . Let 4 = {1, 2, ..., 2¢2"} and
M=1{1,2,...,2"}, where n = r + ¢. The following algorithm probabilistically
decides if F(x, . . ., x,) computes the zero-function.

begin
fori=1to 8ndo
begin
choose a random elemeni (7, m) in 4° X M
compute Fiy(@)
if F(@) # O then [output (*no’); halt)
end
output (“yes’)
halt
end

Let G be the event Fi,,,)(X) #2 0 and H the event F(X) # 0. (By Lemma 2.3, Fi,y(X)
= F(X) (mod m), and hence G C fI.) If F = 0 (i.e., F computes the zero-function),
then the algorithm will oulput ‘yes’ no matter what random elements (@, m) are
chosen inside the for-loop. Now suppose that F # 0. In this case, since GN H = G,
we have that Prob(G) = Prob(H)Prob(G|H). By Corollary 2.1 and the fact that
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deg(Pr) = 2" (Lemma 2.1), Prob(f{) = }. Let X = (ay, . . ., a) be any element from
A" Then |a| =< 212" < 2%, and hence, by Lemma 2.4, | F(¥}] < 2*"". Hence, by
Lemma 2.5, if F(X) # 0, then Prob(F(x) 0 (mod m)) = 1/4n, where m is a random
element from M. Since Fi,,(¥) = F(X) (mod m), this means that Prob(G| H) = 1/4n,
and therefore Prob(G) = 1/8x. Now the algorithm will output ‘yes’ if and only if
Fin)(X) = 0 for all 8n random samplings of ¥ and m. The probability of this event
happening is (1 — 1/8#)*" < 4. Hence, if F # 0, the algorithm will output ‘no’ with
probability >4

Since the algorithm uses modulo m arithmetic for m < 2%, the time complexity of
the algorithm is polynomial in size(F). This completes the proof. (1

2.2. THE ZERO-EQUIVALENCE PROBLEM FOR INFINITE FIELDS WITH FINITE CHAR-
ACTERISTIC. A field @ has finite characteristic if there exists a positive integer »
such that aa = 0° for every element o in Q. The characteristic of  is then defined
to be the minimal positive integer n which has this property. Throughout the rest of
this subsection @ denotes an infinite field of finite characteristic, and p denotes the
characteristic of Q (p must be a prime number).

Definition. Forain Q, a # 0,order(a) =nifa"=land o™ # lford<m<n.
If o™ # 1 for all positive integer », then order{a) = . It is known that if order(a) =
p® — 1 for some d, then P(e) 5 0 for any polynomial P(x) with coefficients in GF(p)
of degree <d [3].

LemMa 2.7, For each integer n there is an « in Q such that order(c) > n.

Proor. Suppose the lemma is false. Then for some integer mo, nmy =
max{order(a)| « in Q}. Then it can easily be shown that order(a) divides n, for each
ain Q [3}. Hence, all the elements in Q are roots of the polynomial x™** — x, which
means that | Q| =< no + 1. This contradicts the infiniteness of @. [

We need the following definition for our next lemma.

Definition. Let GF(p) be the Galois field of integers moduto p. Then GF(p)[x]
is the ring of one-variable polynomials over GF(p), where addition and multiplication
are defined in the standard way. (The zero element of GF{p)[x] is the zero
polynomial.)

LemMa 2.8. F=0over Q if and only if F = 0 over GF(p)[x].

Proor. Let F(xy, ..., x;) be a program and r = length(F). Let d be the smallest
integer satisfying p® > 2r2". Define a set A C GF(p)[x] by 4 = {a(x)|a(x) in
GF(p)lx], deg{a(x)) < d}. Note that | 4| = p%. Let « in Q be such that order(a) >
p¥% (Such an « exists by Lemma 2.7.) Let 4, C Q be the set 4, = {a(a)|a(x)
in 4}. We claim that | 4| = | 4,|. (Otherwise, a:1{a) = az(«) for some a,(x), ax(x) such
that deg(ai(x)) < d, deg(ax(x)) < d. Then « is a root of the polynomial a1(x) — az(x)
whose degree < 4. This is impossible, since order(a) > p®) It follows, by Lemma 2.2,
that F = 0 over @ if and only if F = 0 over A4,. By a similar argument, F = 0 over
GF(p)[x] if and only if F = 0 over A.

Suppose now that F'= 0 over GF(p)[x]. Then F(ay(x), . .., afx)) = O for all a;(x),

-+ adx) in A. In particular, F(ai(a), . .., ada)) = 0 for all a,(a), .. ., ada) in A4,
which implies that F = 0 over Q. On the other hand, if F# 0 over GF(p)[x],

Sho= o+ «+s + o (n times)
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then F# 0 over A. Hence, for some ayx), ..., afx) in A4, the polynomial
Pra(x), ..., a(x)) = Fm(x), ..., afx)) is a nonzero polynomial. Call this
polynomial d(x). Now deg(d(x)) < 2'd, and since order(a) > p*%, d(a) =
Flai(a), . .., afa)) # 0. It follows that F # 0 over Q. [

We have shown that deciding zero-equivalence for programs over  is equivalent
to deciding zero-equivalence for programs over GF(p)[x]. We shall assume, there-
fore, that the inputs to the program F are elements of GF(p)[x]. (Note that a
peolynomial of degree d over GF(p) can be represented by its coefficients in O(d)
space.) One can easily verify that Corollary 2.1 still holds if { is replaced by the ring

GF(p)lx):

CoROLLARY 2.1". Lef P(xi, ..., x;) be a nonzero polynomial of degree =d over
GF(p)x]. Let A be a subset of GF(p)[x] such that |A| = 2td. Let d = (ay, ..., a:) be
a random element of A*. Then P(a) # 0 with probability =%,

Definiton. For a polynomial ¢g(x) in GP(p)[x], F, is the program obtained by
replacing all instructions in F by the equivalent instructions modulo ¢(x}.

The proof of the following lemma is similar to that of Lemma 2.3 and is omitted.

Lemma 29, Let F be a program with t input variables, and let g(x) be in
GF(p)[x]. Then Fai(x), ..., akx)) = Flai(x), ..., a(x)) (mod g(x)) for all ai(x),
.., adx) in GF(p)[x].

Lemma 2.10. Let d(x) in GF(p)[x] be given such that deg(d(x)) < 29, where
d = 2. Then there are at least p**/8d monic polynomials of degree 2d over GF( p) which
do not divide @(x). (Note that there are exactly p* monic polynomials of degree 2d.)

Proor. Clearly, there are at most 2%/2d distinct monic irreducible polynomials
of degree 2d which divide d(x). By [3, Eq. 3.37] there are more than p**/4d monic
irreducible polynomials of degree 2d (d = 2). The result follows from the fact that for
d =2, p**/8d = 27/2d for all primes p. O

‘We can now prove the following,

LemMa 2.11.  The zero-equivalence problem for {z «— 1,z «—x + y,z «—x — y,
z «— x * yY-programs over Q is probabilistically decidable in polynomial time.

Proor. Let F(x,, ..., x.) be a program of length r. By Lemma 2.8, it is sufficient
to decwde if F # 0 over GF(p)[x]. Let d be the smallest integer satisfying p¢ > 2¢2".
(Note that d = O{r), and d can be found in time polynomial in r.) Let 4 =
{a(x)| a(x) in GF(p)[x], degla(x)) < d}. Let M = {4|q is a monic polynomial of
degree 2(d + r) over GF(p)}. The algorithm below probabilistically decides if
F(xy, ..., x;) computes the zero-function. The complexity and probabilisiic anal-
ysis of this algorithm are similar to that of the algorithm given in the proof of
Lemma 2.6, knowing that the following hold for random (a(x), ..., a/{x)) in 4°
and g{x) in M:

(i) deg(Pria:(x), ..., alx)) = d2". (This follows from Lemma 2.1.)
(ii) If F # 0, then Prob(F(ai(x), . . ., a(fx)) # 0) = } (by Corollary 2.1’).
(i) If Kaw(x), ... ., adx)) » 0, then Prob(Fla(x), . .., afx)) # 0 (mod g(x))) =
1/8(d + r) (by Lemma 2.10, (i), and the inequality d2” < 2**" for d = 1).

The details are omrtted.
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begin
fori=1to 16(d + r) do
begin
choose a random element ((a1(x), . . ., @(x)), g(x)) in A* x M
compute Fy(ax), ..., adx))
if Fy(adx), ..., a{x)) # 0 then [output(‘no’); halt)
end
output(‘yes’)
halt
end O

Combining Lemma 2.6 and 2.11, we obtain the main result of this section.

THEOREM 2.1. The zero-equivalence problem for {z «= 1,z «=x + p, 2 < x — },
z <~ x * y)-programs over any infinite field F is probabilistically decidable in polynomial
time.

Proor. If Fis of inifinite characteristic, then F contains an isomorphic image of
the rational numbers, and hence the theorem follows from Lemma 2.6. If F is of
finite characteristic, then the theorem holds by Lemma 2.11. [

Remark. The proof of Theorem 2.1 can be easily modified to show that the zero-
equivalence problem for (z « 1,z « x + y, z < x — », z « x * y}-programs over
any infinite integral domain (i.e., infinite commutative ring with no zero divisors)
which contains the unit element is probabilistically decidable in polymomial time.

3. NP-Hard Zero-Equivalence Problems

In this section we show that the zero-equivalence problem for straight-line programs
becomes NP-hard when we restrict the input domain to be a finite set. We shall
consider two cases: (a) when the input domain is a finite set of integers, and (b) when
the input domain is a finite field.

THEOREM 3.1. Let D be any finite set of integers with at least two elements. Then
the zero-equivalence problem for {z «— 1,z «—x + y,z «— x — y, z < X * y}-programs
over D is NP-hard.

Proor. We shall reduce the satisfiability problem for Boolean formulas in
conjunctive normal form (CNF) to our problem. So let L = C, - .- C,, be a Boolean
formula in CNF over variables x,, ..., x.. Assume that each C, contains exactly
three literals, (A literal is a variable or its negation.) We shall construct a program F
such that Ma, ..., a.) = 0 for all 4, in D if and only if Z is not satisfiable. £ has
input variables X, ..., X., output variable z, and auxiliary variables which include
X, ..., X 21, ..., Zm, ctc. Assume that D = {a1, ..., as)}, where k = 2 and o <

- < ap The relationship between the logical formula L and the program F
constructed below is as follows: For each truth assignment to the variables x,, ...,
x» there corresponds one or more input assignments to the variables X3, . . ., X, such
that the truth assignment satisfies L if and only if each of the corresponding input
assignments produces a nonzero output. The correspondence between the assign-
ments is the following: If x, is assigned ‘false,’ then X, is assigned ;. If x, is assigned
‘true,” then X, is assigned «, for some j > 1. The program F is the following:

Segment 1. Fori=1,2 ..., n, write the code to perform the following task:
XeX—a
(If the input is (a1, . ., a,) in D", then after segment 1, X, = 0 if a, = a;; otherwise, X, > 0.)
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Segment 2. Fori=1,2,..., n, writ¢ the code to perform the following task:
Ko (oo — o) = X)((oo — @) = X2) -+ ((@n — a1} — Xo)

(If X, =0, then ¥, > 0;if X,> 0, then X, = ()

Segment 3. Fori=1,2,..., m, write the code to perform the following task:
2, < sum of the variables representing the literals of C,

(If C, is satisfied, then z, > 0; if C, is not satisfied, then z, = 0.)

Segmeni 4

z«1
Z—Z%

Z— 2%y

Clearly, we can construct the program F in time polynomial in the size of L. (Note
that an instruction of the form z « ¢, where ¢ > 1, can be coded over {z « 1,
z«x+ ),z x—y z<« x*y} using at most O(log¢) instructions.) Moreover, ¥
computes the zero-function if and only if L is not satisfiable. The result now follows,
since the satisfiability problem is NP-hard [5]. O

Note. The proof of Theorem 3.1 above implies that the inequivalence problem
for polynomial expressions over a finite set of integers [13] is NP-complete, thus
settling an open problem in [13].

Remark. One can easily verify that when D has exactly one element, then the
zero-equivalence problem is probabilistically decidable in polynomial time. (Simply
evaluate the program for the given value in D using modular arithmetic, where the
modulus is chosen randomly.)

TuroruM 3.2. Let Q be any finite field. Then the zero-equivalence problem for
{ze—lzex+y 2 x—y 2z x+y}-programs over Q is NP-hard.

ProOF. Since every finite field is isomorphic to GF(p®) for some prime p and
positive integer s, we may assume that Q = GF(p®). Let L = C; . .+ Cix be a Boolean

formula in CNF over variables x;, ..., x», where each C; contains exactly three
literals. We shall construct a program F such that F(a, ..., @:) = 0 for all 4; in Q if
and only if L is not satisfiable. F has input variables x;, ..., Xx», output variable z,
and auxiliary variables which include X3, ..., ¥n, 21, . . ., Zm, etc. The description of
F follows:

Segment 1. Fori= 1,2, ..., n, write the code to perform the following task:

X, e x7t

(Clearly, the code can be wniten to have at most O(logp®) = O(s) instructions. If the input is
(g, ..., an) in @7, then after the segment, x, = 0 if a, = 0; otherwise x, = 1. This follows from
the fact that in GF(p®),a* ' =1 for all @ # 0.)

Segment 2. Fori=1,2,...,n, write the code to perform the following task:

X, 1 —x,

(Ifx,=0,then %, = |; if x, = 1, then X, = 0.)

Segment3. Fori=12,...,mif C=) +1,+ 1, eachl, in {xs, Xy, . .., X, Xp}, then write
the code to perform the following task:

(1 -L)A = W) —1L)
Z2; «— l -

(If C, is satisfied, i.e,, one of },, [,, or [, is |, then z, = |; if C, is nof satisfied, then z, = 0.)
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Segment 4

ze—1
Z ez %z

Z =T ¥ 7Inp

It is straightforward to verify that F computes the zero-function if and only if L is
not satisfiable. Moreover, F can be constructed in polynomial time. [l

Note. The proof of Theorem 3.2 above implies that the nonzero-equivalence
problem for polynomial expressions over finite fields is NP-complete. This settles
(positively) an open problem in [18].

4. A Boundary Between Probabilistically Decidable Problems and NP-Hard
Problems

We have shown that the zero-equivalence problem for (z « 1,z «— x + y, 2z «
X =~ y, £ « x * y}-programs over infinite fields is probabilistically decidable in
polynomial time (Section 2). On the other hand, over finite fields the problem is NP-
hard (Section 3). In this section we look at what happens when the size of the field
(over which the zero-equivalence of programs is to be decided) is a function of the
length of the program. A special instance of this problem was considered implicitly
in [4], where equivalence of free Boolean graphs was shown to be probabilistically
decidable in polynemial time. The proof in [4] was essentially a reduction to the
zero-equivalence problem for a restricted class of straight-line programs over finite
fields, where the size of the field is a function of the sizes of the graphs.

We shall show that if the function which maps the length of the program to the
size of the field grows fast, then zero-equivalence is probabilistically decidable in
polynomial time. If the function grows slowly, then the problem is NP-hard, and
there is a sharp boundary between these two cases. Thus in certain cases we can
show a “gap” between the class R of sets which are probabilistically decidable in
polynomial time (see [2, 14] for a precise definition of R) and the class NPC of NP-
complete sets. This result is of special interest in light of [15], which gives strong
evidence that the class NP of nondeterministic polynomial-time languages consists of
an infinite hierarchy of accepting density classes {in the sense of [1]), the higher
classes in the hierarchy corresponding to sets which have smaller accepting density.

Definition. For each nonnegative rational number ¢, let H, be the problem of
deciding for an arbitrary {z < 1,z <~ x + y, 2 & X — y, z « x * y}-program F over
GF(2¥"), r = length(F), whether F computes a nonzero-function.

THEOREM 4.1

(a) Ift = 1, then H, is probabilistically decidable in polynomial time.
(b) If t <1, then H, is NP-complete.

PROOF
(a) Let Fbe a program of length r. By Lemma 2 1, deg(Pp-) = 2’ Clearly, if deg(Pr)
= 27, then Pr has one of two forms: Pr = x% or Pr = y , where x and y

are input variables. It is easy to check whether deg(PF) = 27, If deg(Pr) = 27,
then F # O over any nontrivial field. So assume that deg(Pr) < 2. Since there
are at least 2" elements in GF(2"")) for 1 = 1, F = 0 over GF(2V") if and only if
Pris the zero polynomial, and hence if and only if F = O over any infinite field
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which contains GF(2V""). This last problem can be decided probabilistically in
polynomial time as in Lemma 2.11.

(b) To show that H, is NP-hard, let L = C; -+ Cr be a Boolkan formula in CNF
over variables x1, ..., X», where each C, contains exactly three literals. We shall
construct a program F of length r over GF(2V"")) such that F computes the zero-
function if and only if L is not satisfiable. The construction is given below.

Stage . Define r = [{(8(m + n))’* " and d = |r’). Hence ¢ = GF(2%).

Stage2. Carry out the reduction given in the proof of Theorem 3.2, Let the program obtained
be F’ and r’ = length(F’). Referring to the proof of Theorem 3.2, we see that segment 1
requires at most 2n([r*] + 1) instructions, since x, « x{"" can be coded as
ye=y-y
y Yy + x;
X, 1
Xy e— X Xy
yeyry }
Xy = X% Y
: d — 1 pairs

)’*‘)’*)’}

Xy =X p

Segments 2, 3, and 4 require at most # + 1, 6m + L, and m + 1 insiructions, respectively.
Hence, ¥’ = 2n(lr'] + )+ n+ 1+ 6m+ 1+ m+ 1 < 8(m + n)|r']. Snce 8(m + n) = r'™,
r=r

Stage 3. Pad F’ with r — r’ additional instructions of the form x; <« 1. Let the program
obtained be F Then length(¥) = r and F computes the zero-function over GF(2UY) if and
cnly if L is not satisfiable. Moreover, F can be constructed in polynomial time.

To show that H, is in NP, we use the following nondeterministic algorithm, given
a program F(x,, ..., xa):

(1) Compute d = |r’], where r = length(F).

(2) Nondeterministically find an irreducible polynomial of degree 4 over GF(2). This can be
done by guessing a polynomial of degree 4 over GF(2) and checking (in deterministic
polynomial time using Berlekamp’s algorithm [12]) that it is irreducible.

(3) Using the irreducible polynomial found in (2), generate nondeterministically field elements
ay, ..., a, in GF(2""1) and compute F(ai, . ., au).
(4) Output ‘yes’ if F(ay, ..., @) # 0; otherwise output ‘no.” [
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