
Probabilistic Algorithms for Deciding Equivalence
of Straight-Line Programs

OSCAR H. IBARRA A N D SHLOMO M O R A N

University o f Mmnesota, Mmneapohs , Minnesota

Abstract. Let Q be any algebraic structure and ~the set of all total programs over Q using the instruction
set {z ,,-- 1, z , , - x + y, z ,,-- x - y , z ~ x * y , z ~-- x / y } . (A program is total if no division by zero occurs
during any computation) Let the equivalence problem for ~ be the problem of deciding for two given
programs in ~whether or not they compute the same funcuon The following results are proved:

(1) If Q is an inftmte field (e.g, the rauonal numbers or the complex numbers), then the equwalence
problem for ~ is probabilistlcally decidable in polynomml time. The result also holds for programs
with no dwlslon instructions and Q an infimte integral domain (e.g., the integers).

(2) If Q is a finite field, or if Q is a fimte set of integers of cardmahty _>2, then the equivalence problem
is NP-hard.

The case when the field Q is finite but its cardinality is a funcuon of the size of the instance to the
eqmvalence problem is also considered An example is shown for which a sharp boundary between the
classes NP-hard and probabihsticaUy decidable exists (provided they are not identical classes).

Categories and Subject Descriptors' F. 1.2 [Computation by Abstract Devices[: Modes of Computation--
probabdistic computatton; F 1.3 [Computation by Abstract Devices]: Complexity Classes--redueibdi ty and
completeness, F 2.1 [Analysis of Algorithms and Problem Complexity] Numerical Algorithms and Prob-
l e m s - c o m p u t a t i o n s m f ini te fields, computations onpolynomlals , F 2 2 [Analysis of Algoritluns and Problem
Complexity]: Nonnumerical Algorithms and Problems- -computa t ions on discrete structures; G.3 [Proba-
bility and Statist ics[--probabil ist tc algorithms

General Terms' Algorithms, Theory

Addmonal Key Words and Phrases" Stralght-hne program, eqmvalence problem, NP-hard, infinite field,
characteristic of a field

1. I n t r o d u c t i o n

C o n s i d e r the fo l lowing s eemi n g l y s imple p r o b l e m : G i v e n two s t r a igh t - l ine p r o g r a m s
F1 a n d F,z u s i n g o n l y cons t ruc t s z ~ 1, z <--- x + y, z ~-- x - y , z ~ x * y , dev ise a n
a l go r i t hm to d e t e r m i n e w h e t h e r or n o t F1 a n d F2 are equ iva l en t . A n a l g o r i t h m c lea r ly
exists: F o r each p r o g r a m , der ive p o l y n o m i a l express ions for the o u t p u t va r i ab l e s i n
t e rms o f the i n p u t var iables . T h e n F1 a n d F2 are e q u i v a l e n t i f a n d o n l y i f t he
c o r r e s p o n d i n g express ions (in s t a n d a r d form, i.e., s u m s o f p roduc t s) a re iden t ica l .
However , i n the wors t case the process is e x p o n e n t i a l i n the s u m o f the sizes o f the

Thts research was supported in part by the National Science Foundation under Grant MCS 78-01736.
Authors' present addresses. O. H. Ibarra, Department of Computer Science, University of Minnesota, 136
Lmd Hall, 207 Church Street, SE, Mmneapohs, MN 55455; S. Moran, Department of Computer Science,
Technion--Israel Institute of Technology, Techmon City, Halfa 32000, Israel
Perm~sslon to copy without fee all or part of this material ~s granted provided that the copies are not made
or distributed for direct commerctal advantage, the ACM copyright notmce and the title of the publication
and its date appear, and notice is given that copymg is by permission of the Association for Computing
Machinery. To copy otherwise, or to repubhsh, requires a fee and/or specific permission.
© 1983 ACM 0004-5411/83/0100-0217 $00 75

Journal of the Assoclatton for Computing Machinery, Vol 30, No 1, January 1983, pp 217-228

218 O . H . IBARRA AND S. MORAN

programs. At present we know of no polynomial-time algorithm for solving this
problem.

The equivalence problem for straight-line programs is important because of its
relation to a number of decision problems that have recently been studied in the
literature. In [4], for example, the equivalence problem for free Boolean graphs was
shown to be probabilistically decidable in polynomial time by essentially reducing
the problem to the equivalence problem for a restricted class of straight-line programs.
In [16], probabilistic algorithms for verifying some polynomial identities were pre-
sented. One can easily check that many of the problems discussed in [16] can be
reduced to the zero-equivalence problem (i.e., does a program output zero for all
inputs?) for straight-line programs. Some important problems involving matrices can
also be reduced in polynomial time to the zero-equivalence problem for straight-line
programs. For example, we showed in [11] that the problem of deciding for a given
positive integer r and a matrix A with polynomial entries (where the polynomials are
represented by arithmetic expressions with arbitrary parenthesization using addition,
subtraction, multiplication, and exponentiation to a positive integer constant) whether
,4 has rank _>r is polynomial-time reducible to the zero-equivalence problem for
straight-line programs. In [19] (see also [18]) a restricted version of the rank problem
for matrices with polynomial entries was shown to be probabilistically decidable.

The main results of this paper are the following:

(1) If Q is an infinite field (e.g., the field of rational numbers or the field of complex
numbers), then the zero-equivalence problem for {z <--- 1, z (-- x + y, z ~ x - y,
z <--- x • y)-programs over Q is probabilistically decidable in polynomial time x
(Section 2). The result also holds when Q is an infinite integral domain (e.g., the
integers). Thus the problems mentioned above (free Boolean graphs, polynomial
identities, rank of matrices with polynomial entries) are probabilistically decid-
able in polynomial time.

(2) If Q is a fmite field, or if Q is a finite set of integers (of cardinality >_2), then the
zero-equivalence problem for (z ~ 1, z <---x +y, z <---x - y , z ~--x * y}-programs
over Q is NP-hard (Section 3). The proofs of these results provide answers to
some open problems in the literature [13, 18].

(3) If Q is finite but its cardinality is a function of the size of the instance (i.e., input
program) to the zero-equivalence problem, then we can prove a "gap" theorem
(Section 4): If the function (which maps the length of the program to the
cardinality of the field) grows fast, then the zero-equivalence problem is proba-
bilistically decidable in polynomial time. If the function grows slowly, then the
problem is NP-hard.

One can easily extend the results above to hold for the equivalence problem (i.e.,
deciding if two programs are equivalent) even when division z <--- x / y is allowed,
provided only total programs are considered. (A program is total if no division by
zero occurs on any input.) When the programs are not guaranteed to be total and the
inputs are integers, the zero-equivalence problem is undecidable [10].

Remark. We could add the constructs z <--- k * x and z <--- x 1' k (i.e., multiplication
and exponentiation by a positive integer constant) to the instruction set of straight-
line programs. However, such instructions will not change the computing power

1 This means that there is a polynomlal-tmae algorithm which uses a random number generator to deode
if a program F computes the zero-function. If the algorithm outputs "yes," then F probably computes the
zero-funcUon with probabdlty of error _< 1/2. If the algorithm outputs "no," then F does not compute the
zero-function for sure Clearly, a probabihty of error _<1/2 4 may be obtained by running the algoritlma k
times.

Equivalence of Straight-Line Programs 219

of straight-line programs, since it can easily be shown that z ~-- k * x and z ~ x t k
can be computed by straight-line programs over (z <-- 1, z ~-- x + y, z ~--.x - y,
z ~ x * y} of length O(log k).

We conclude this section by showing the connection between straight-line programs
with one output variable and polynomial expressions. For notational convenience we
only consider expressions over the integers.

Definition. A polynomial expression (p.e.) is any expression which can be derived
using rules (1)-(4) below:

(1) 1 is a p.e.
(2) Any variable is a p.e.
(3) If a is a p.e. and k is a positive integer, then k * a and a 1' k are p.e.'s
(4) I f a and/3 are p.e.'s, then so are a +/3, a - / 3 , and a */3. (Parentheses may be

used to avoid ambiguity.)

By straightforward coding (see the remark above) we can easily prove the following
proposition.

PROPOSITION 1.1. We can construct for every p.e. E an equivalent straight-line
program Foyer {z ~ 1, z ~---x + y, z *--x - y , z ~---x *y} in timepolynomialin the
size (= length of representation) of E. (It follows that the size o f F is polynomial in the
size of E.)

We can generate p.e.'s from straight-line programs of size n by direct substitutions
resulting in expressions of size at most O(((~/-5 + 1)/2)% A polynomial bound seems
unlikely. Consider, for example, the following program, F (x and y are the input
variables, z is the output variable, and n _ 2):

w ,--(x +.v) ~ 2
z ~ (w + y) ~ 3
w ,-- (w + z) "f 4
z ,--(w + z) ~ 5

w ~ (w + z) 1' (2n)
z ~ (w + z) ~ (2n + 1)

Clearly, F can be converted to a straight-line program F ' over (z <-- 1, z <--- x + y,
z ~ x - y, z <--- x * y} whose size is polynomial in the size of F. Now, by direct
substitutions, a p.e. E denoting the value of z at the end of F can easily be obtained.
However, the length of E is exponential in the size of F. (See [9, 17] for related
topics.)

The brief discussion above shows that results (e.g., probabilistic algorithms) for
straight-line programs are applicable to polynomial expressions, b~It the converse
may not be true.

2. The Zero-Equivalence Problem for Programs over Infinite Fields

In this section we show that the zero-equivalence problem for {z ~-- 1, z *- x + y,
z ,,-- x - y, z ~-- x * y}-programs over infinite fields is probabilistically decidable in
polynomial time.

When we are dealing with zero-equivalence, we assume that the programs have
exactly one output variable. F(xl, . . . , xt) (or simply F) will denote a program with

220 O. H. IBARRA AND S. MORAN

input variables xl, . . . , xt. We also use F(Xl , x t) to denote the input-output
function computed by F. Length(F) is the number of instructions in F, while size(F)
is the length of the binary representation of F.

We begin with the following lemma.

LEMMA 2.1. For each program F(xl xt) over a f ie ld Q there exists a polynomial
Pv(Xl, . . . , x t) such that PF(xI x t) -~ F(xl , xt). I f length(F) = r, then deg(Pv)
<_ 2r. 2 I f Q has characteristic p < oo, then the coefficients o f the polynomial are integers
between 0 and p - 1, otherwise, the coefficients are integers between -oo and +,0.

PROOF. By induction on r. []

LEMMA 2.2. Let Q be an infinite field, P(Xl , x t) a nonzero polynomial o f
degree <_d over Q, and,4 a subset o f Q, 1,41 = k > d. Then there are at least (k - d) t
elements ~ = (as, . . . , at) in .4 t such that P(~) # O.

PROOF. The proof is by induction on t. For t = 1 the lemma follows from the fact
that a one-variable polynomial of degree d has at most d roots in Q.

Assume the lemma holds for t > 1, and consider a nonzero polynomial
P(x l xt, xt+x) of degree __d. Then there exists a t + 1 tuple ~ l , at, c) such
that e (a i , at, c) # O. Hence the polynomial e (x l xt, C) = e (x I x t) is not
a zero polynomial. Clearly, deg(P) _< d. Hence, by the induction hypothesis, there are
at least (k - d) t t-tuples (al at) in A t such that P(a l , . . . , at) = e(ai , . . . , at, c)
0. For each such tuple, the one-variable polynomial P(xt+l) = P(ax , at, Xt+l)

is not a zero polynomial, and therefore there are at least k - d elements at+l in A
such that/if(at+l) -~ P (a l , . . . , at, at+l) # 0. The lemma follows. []

COROLLARY 2.1. Let e (x l , • • . , x t) , d, k , and A be as in L e m m a 2.1. Le t k >_ 2td,
and /e t ~ -- (al , at) be a random element of ,4 t. Then P(~) -~ P(al at) # 0 with
probability >_½.

PROOF

I {ala in ,4 t, P(a) # 0) 1
Prob(P(ff) ~ O) - 1,4 t l

_ _ I -

1 > - []
m 2"

In the proof of the main result of this section we have to distinguish between two
cases. First, we deal with the case when the field F over which the programs are
defmed is the rational numbers (this represents the case when F i s any field of infinite
characteristic). Later we deal with the ease when F is an infinite field with finite
characteristic..

2.1 TrIE ZERO-EQUIVALENCE PROBLEM OVER THE RATIONALS

PROPOSITION 2.1. A program F ==- 0 (i.e., computes the zero-function) over the
rationals i f and only i f F =- 0 over the integers.

PROOF. This follows from Lemma 2.1 []

Proposition 2.1 shows that deciding zero-equivalence for programs over the
rationals is equivalent to deciding zero-equivalence for programs over the integers.

2 deg(PF) denotes the degree of PF = max{sum of powers of the variables in any term}.

Equivalence o f Straight-Line Programs 221

Hence we assume in the remainder of this subsection that the inputs to the programs
are integers.

Definition. Let F be a program and m a positive integer. Then Ft,~) is the program
obtained from F by replacing each instruction by the equivalent instruction modulo
m. Thus z <-- l, z ~-- x + y, z *-- x - y, and z * - x * y are replaced by the instructions
z ,-- 1 (mod m), z * - x + y (mod m), z *-- x - y (mod m), and z <--- x • y (mod m),
respectively.

The relationship between F and Fin) is given by the following lemma.

LEMMA 2.3. F(Xl x t) (mod m) = Ft,~)(xl, . . . , xt) .

PROOF. By induction on length(F) and the fact that [x (mod m) 0 y (mod m)]
(rood m) = x 0 y (rood m) for 0 ffi +, - , *. []

The next lemma gives an upper bound on the size of F(xl xt) .

LEMMA 2.4. Let al , at be input integers such that I a, I <-- a, where a > 2. Then
I F(al at) I <-- a3r, where r = length (F).

PROOF. By induction on r. []

LEMMA 2.5. Let k be a given integer, 1 ___ I kl _< 22n~, and let m be an integer
chosen at random f r o m the set M = (l, 2, 22n}. Then f o r all sufficiently large n,
k ~ 0 (mod m) with probability >>_ 1/4n.

PROOF. By the prime number theorem [7], the number of primes smaller than 22n
tends to 22~/1n 22n and hence, for large n, is greater than 22~/2n. Let p~ ,ps be the
distinct prime divisors of k. Clearly, s _< log2k ___ 2n2 ~. (I f k -- 1, then s -- 0.) Hence,
for large enough n there are at least 22n/2n - 2n2 n primes smaller than 22n which do
not divide k. Since for n _> 10, 22~/2n - 2n2 ~ > 22n/4n, the l emma follows. []

We are now ready to prove the main result o f this subsection.

LEMMA 2.6. The zero-equivalence problem f o r {z *-- 1, z * - x + y , z ,,-- x - y ,
z * - x * y}-programs over the rationals is probabilistically decidable in polynomial
time.

PROOF. Let F(x~ x t) be a program of length r. Le tA = {1, 2 2t2 r} and
M = (l , 2 22~}, where n = r + t. The following algorithm probabilistically
decides if F(x~ x t) computes the zero-function.

begin
for i = I to 8n do

begin
choose a random element (~, m) in A t x M
compute Ftm)(d)
if F~)(d) # 0 then [output ('no'); halt]

end
output ('yes')
halt

end

Let G be the event F<m)(~) # 0 and H the event F(~?) # 0. (By Lemma 2.3, Ft,~)Q?)
= F(.~) (rood m), and hence G _C_ H.) I f F -= 0 (i.e., F computes the zero-function),
then the algorithm will output 'yes' no matter what random elements (~, m) are
chosen inside the for-loop. Now suppose that F ~ 0. In this case, since G N H ffi G,
we have that Prob(G) = Prob(H)Prob(G[H). By Corollary 2.1 and the fact that

222 O. H. IBARRA AND S. MORAN

deg(PF) --< 2 r (Lemma 2.1), Prob(H) _> ½. Let J? = (al , at) be any element from
A t. Then la~l <-- 2n2 n <-- 2 2n, and hence, by Lemma 2.4, [F(~?)I _<2 2n2n. Hence, by
Lemma 2.5, if F(~) # 0, then Prob(F(:f) # 0 (mod m)) _> 1/4n, where m is a random
element from M. Since F(m)(:~) -- F(~?) (mod m), this means that Prob(G[H) >_ 1/4n,
and therefore Prob(G) _> 1/Sn. Now the algorithm will output 'yes' i f and only if
Ftm)(~) = 0 for all 8n random samplings of ~ and m. The probability of this event
happening is _<(1 - 1/Sn) 8n < ½. Hence, i f F ~ 0, the algorithm will output 'no' with
probability >½.

Since the algorithm uses modulo m arithmetic for m _< 2 2n, the time complexity of
the algorithm is polynomial in size(F). This completes the proof. []

2.2. THE ZERO-EQUIVALENCE PROBLEM FOR INFINITE FIELDS WITH FINITE CHAR-
ACTERISTIC. A field Q has finite characteristic if there exists a positive integer n
such that na ffi 0 3 for every element a in Q. The characteristic of Q is then defined
to be the minimal positive integer n which has this property. Throughout the rest of
this subsection Q denotes an infinite field of finite characteristic, and p denotes the
characteristic of Q (p must be a prime number).

Definition. For a in Q, a # 0, order(a) = n if a n = 1 and a "~ # 1 for 0 < m < n.
I f a n # 1 for all positive integer n, then order(a) ffi oo. It is known that if order(a) _
pd _ 1 for some d, then P(a) ~ 0 for any polynomial P(x) with coefficients in GF(p)
of degree < d [3].

LEMMA 2.7. For each integer n there is an a in Q such that order(a) > n.

PROOF. Suppose the lemma is false. Then for some integer no, no ffi
max(order(a) [a in Q}. Then it can easily be shown that order(a) divides no for each
a in Q [3]. Hence, all the elements in Q are roots of the polynomial x n°+l - x, which
means that] Q] _ no + 1. This contradicts the infiniteness of Q. []

We need the following defmition for our next lemma.

Definition. Let GF(p) be the Galois field of integers modulo p. Then GF(p) [x]
is the ring of one-variable polynomials over GF(p) , where addition and multiplication
are defined in the standard way. (The zero element of GF(p) [x] is the zero
polynomial.)

LEMMA 2.8. F -- 0 over Q if and only i f F =- 0 over GF(p)[x].

PROOF. Let F(x~ xt) be a program and r = length(F). Let d be the smallest
integer satisfying pd > 2t2 r. Defme a set A _ GF(p) [x] by A = {a(x) la (x) in
GF(p)[x] , deg(a(x)) < d}. Note that IAI Let a in Q be such that order(a) >
p 2r~. (Such an a exists by Lemma 2.7.) Let A~ __. Q be the set A ~ = (a(a)la(x)
inA) . We claim that IAI = IA~l. (Otherwise, al(a) = a2(a) for some al(x), as(x) such
that deg(al(x)) < d, deg(a2(x)) < d. Then a is a root o f the polynomial al(x) - a2(x)
whose degree < d. This is impossible, since order(a) >pg .) It follows, by Lemma 2.2,
that F --- 0 over Q if and only if F - 0 over A~. By a similar argument, F --- 0 over
GF(p)[x] if and only if F - 0 over A.

Suppose now that F =-- 0 over GF(p)[x] . Then F(al(x) at(x)) = 0 for all a~(x),
. . . , at(x) in A. In particular, F(al(a) at(a)) = 0 for all al(a) at(a) in A~,
which implies that F -= 0 over Q. On the other hand, i f F ~ 0 over GF(p)[x] ,

3 na ffi a + .. . + a (n times)

Equivalence of Straight-Line Programs 223

then F ~ 0 over A. Hence, for some al(x) at(x) in A, the polynomial
eF(al(x) at(x)) = F(al(x) , at(x)) is a nonzero polynomial. Call this
polynomial ~(x). Now deg(t~(x)) < 2rd, and since order(a) > p 2rd, a(a) =
F(a~(a), . . . , at(a)) ~ O. It follows that F ~ 0 over Q. []

We have shown that deciding zero-equivalence for programs over Q is equivalent
to deciding zero-equivalence for programs over GF(p)[x]. We shall assume, there-
fore, that the inputs to the program F are elements of GF(p)[x]. (Note that a
polynomial of degree d over GF(p) can be represented by its coefficiems in O(d)
space.) One can easily verify that Corollary 2.1 still holds if Q is replaced by the ring
GF(p)[x]:

COROLLARY 2.1'. Let P(Xl xt) be a nonzero polynomial of degree <_d over
GF(p)[x]. Let A be a subset of GF(p)[x] such that]A I >- 2td. Let 5 --- (a: at) be
a random element o fA t. Then P(5) ~ 0 with probability >_½.

Definiton. For a polynomial q(x) in GP(p)[x], Fq is the program obtained by
replacing all instructions in F by the equivalent instructions modulo q(x).

The proof of the following lemma is similar to that of Lemma 2.3 and is omitted.

LEMMA 2.9. Let F be a program with t input variables, and let q(x) be in
GF(p)[x]. Then Fq(al(x) at(x)) = F(al(x) at(x)) (mod q(x)) for all ax(x),
. . . . at(x) in GF(p)[x].

L~MMA 2.10. Let a(x) in GF(p)[x] be given such that deg(?t(x)) < 2 a, where
d >_ 2. Then there are at leastp2d/8d monicpolynomials of degree 2d over GF(p) which
do not divide ~(x). (Note that there are exactly p 2d monic polynomials of degree 2d.)

PROOF. Clearly, there are at most 2a/2d distinct monic irreducible polynomials
of degree 2d which divide ~(x). By [3, Eq. 3.37] there are more than p2d/4d monic
irreducible polynomials of degree 2d (d _> 2). The result follows from the fact that for
d >_ 2,p2a/8d >_ 2d/2dfor allprimesp. []

We can now prove the following.

LnMMA 2.11. The zero-equivalence problem for (z ~ 1, z ,,-- x + y, z ,,-- x - y,
z *---x * y)-programs over Q is probabilistwally decidable in polynomial time.

PROOF. Let F(xl xt) be a program of length r. By Lemma 2.8, it is sufficient
to decide if F ¢ 0 over GF(p)[x]. Let d be the smallest integer satisfying pd > 2t2 r.
(Note that d -- O(r), and d can be found in time polynomial in r.) Let A =
(a(x) la(x) in GF(p)[x], deg(a(x)) < d). Let M = (qlq is a monic polynomial of
degree 2(d + r) over GF(p)}. The algorithm below probabilistically decides if
F(x~ xt) computes the zero-function. The complexity and probabilistic anal-
ysis of this algorithm are similar to that of the algorithm given in the proof of
Lemma 2.6, knowing that the following hold for random (al(x) at(x)) in A t
and q(x) in M:

(i) deg(PF(al(x) at(x)) <_ d2 ~. (This follows from Lemma 2.1.)
(ii) I f F ~- 0, then Prob(F(a~(x) at(x)) # 0) _> ½ (by Corollary 2.1').

(iii) If F(al(x) at(x)) ~ O, then Prob(F(al(x) a,(x)) ~ 0 (mod q(x))) >"
1/8(d + r) (by Lemma 2.10, (i), and the inequality d2 ~ < 2 a+r for d E 1).

The details are omitted.

224 O. H. IBARRA AND S. MORAN

begin
for/--- 1 to 16 (d+ r) do

begin
choose a random element ((al(x) at(x)), q(x)) in A t × M
compute Fq(al(x) at(x))
if Fq(a~(x) at(x)) ~ 0 then [output('no'), haiti

end
output(~jes')
halt

end []

Combining Lemma 2.6 and 2.11, we obtain the main result o f this section.

THeOReM 2.1. The zero-equivalence problem f o r {z ~ 1, z ~ x + y , z ~ x - y ,

z ~-- x * y} -programs over any infinite f i e ld F is probabilistically decidable in po lynomial
time.

PROOF. I f F is o f inifmite characteristic, then F contains an isomorphic image of
the rational numbers, and hence the theorem follows f rom L e m m a 2.6. I f F is o f
finite characteristic, then the theorem holds by Lemma 2.11. []

Remark. The proof of Theorem 2.1 can be easily modified to show that the zero-
equivalence problem for {z * - 1, z *-- x + y, z <--- x - y, z *-- x * y}-programs over
any infinite integral domain (i.e., infinite commutat ive ring with no zero divisors)
which contains the unit element is probabilistically decidable in polymomial time.

3. N P - H a r d Zero-Equivalence Problems

In this section we show that the zero-equivalence problem for straight-line programs
becomes NP-hard when we restrict the input domain to be a finite set. We shall
consider two cases: (a) when the input domain is a finite set o f integers, and (b) when
the input domain is a finite field.

THEOREM 3.1. Let D be any f in i te set o f integers with at least two elements. Then
the zero-equivalence problem f o r {z ~ 1, z ~ x + y , z ~ x - y , z ~ x * y} -programs
over D is NP-hard.

PROOF. We shall reduce the satisfiability problem for Boolean formulas in
conjunctive normal form (CNF) to our problem. So let L = C1 . . . Cm be a Boolean
formula in C N F over variables xl, . . . , Xn. Assume that each C~ contains exactly
three literals. (A literal is a variable or its negation.) We shall construct a program F
such that F(al an) = 0 for all a~ in D i f and only i f L is 'not satisfiable. F has
input variables 2;1 Xn, output variable z, and auxiliary variables which include
X1 Xn, Zl z,~, etc. Assume that D -- {al ak}, where k > 2 and al <
• - . < ak. The relationship between the logical formula L and the program F
constructed below is as follows: For each truth assignment to the variables x~ ,
xn there corresponds one or more input assignments to the variables X ~ , . . . , Xn such
that the truth assignment satisfies L if and only if each of the corresponding input
assignments produces a nonzero output. The correspondence between the assign-
ments is the following: I f x~ is assigned 'false,' then X~ is assigned al. I f x~ is assigned
'true,' then X~ is assigned aj for some j > 1. The program F is the following:

Segment 1. For i ffi 1, 2 n, write the code to perform the following task:

(If the input is (a l , . . , an) in D ~, then after segment 1, X~ = 0 if a~ = cq; otherwise, X, > 0.)

Equivalence o f Straight-Line Programs

Segment 2. For i = 1, 2, . . . , n, write the code to perform the following task:

,~, , -- ((,~ - a ~) - X ,) ((~ - ~) - X ,) . . . ((a , - ~) - X ~)

(If X, -- 0, then ~', > 0; if X, > 0, then ,Y, = 0.)

Segment 3. For i = 1, 2, . . . , m, write the code to perform the following task:

z, ,,-- sum of the variables representing the literals of C,

(If C, is satisfied, then z, > 0; if C~ is not satisfied, then z, = 0.)

Segment 4

z * - - 1

7 , ~ - - g * g l

225

Z~"--Z*2m

Clearly, we can construct the p rogram F in time polynomia l in the size o f L. (Note
that an instruction o f the form z ~-- c, where c > 1, can be coded over (z ,,-- 1,
z ~ x + y, z ~-- x - y, z ,-- x • y} using at most O(log c) instructions.) Moreover , F
computes the zero-funct ion if and only if L is not satisfiable. The result now follows,
since the satisfiability problem is NP-ha rd [5]. []

Note. The p roo f o f Theorem 3.1 above implies that the inequivalenee problem
for polynomial expressions over a t'mite set o f integers [13] is NP-complete , thus
settling an open problem in [13].

Remark . One can easily verify that when D has exactly one element, then the
zero-equivalence problem is probabilistically decidable in polynomia l time. (Simply
evaluate the program for the given value in D using modu la r arithmetic, where the
modulus is chosen randomly.)

THEOREM 3.2. Le t Q be any f in i te f ield. Then the zero-equivalence prob lem f o r
{z ~-- 1, z ~-- x + y , z *-- x - y , z ~-- x * y} -programs over Q is NP-hard.

PROOf. Since every t'mite field is isomorphic to G F (p ') for some pr ime p and
positive integer s, we m a y assume that Q = GF(p~) . Let L = C~ . . . Cm be a Boolean
formula in C N F over variables x~ xn, where each C1 contains exactly three
literals. We shall construct a p rogram F such that F(a~ an) = 0 for all ai in Q i f
and only if L is not satisfiable. F has input variables x~ xn, output variable z,
and auxiliary variables which include ~ ~n, z~ zm, etc. The description o f
F follows:

Segment 1. For i = 1, 2, . . . , n, write the code to perform the following task:
Xz ~ X~ "-1

(Clearly, the code can be written to have at most O(legp s) = O(s) instructions. If the input is
(al, . . . , an) in Qn then after the segment, x~ = 0 ifa~ -- 0; otherwise x~ = 1. This follows from
the fact that in GF(pS), a ~'-x = 1 for all a ~ 0.)

Segment 2. For [= 1, 2, . . . , n, write the code to perform the following task:

~ , ~ , " l - - x ,

(If x, ---- 0, then ~, --- 1; if x, = 1, then ~?, = 0.)

Segment 3. For i = 1, 2 m, i f C, = 1,1 + 1,~ + 1,'~, each l,j in (xl, ~1 xn, ~ } , then write
the code to perform the following task:

z, ~-- (1 - h~)(1 -/,~)(1 - 1~)
Zz ¢-- 1 -- Z~

(I f C~ is satisfied, i.e., one o f L1, l~2, or/~a is 1, then z, = l; i f C~ is not satisf ied, then z~ -- 0.)

226

Segment 4
z ,~--- I

Z < " ' Z * Z I

O. H. IBARRA AND S. MORAN

g 6-" g *gin

It is straightforward to verify that F computes the zero-function if and only if L is
not satisfiable. Moreover, F can be constructed in polynomial time. []

Note. The proof of Theorem 3.2 above implies that the nonzero-equivalence
problem for polynomial expressions over finite fields is NP-complete. This settles
(positively) an open problem in [18].

4. A Boundary Between Probabilistically Decidable Problems and NP-Hard
Problems

We have shown that the zero-equivalence problem for (z ,,-- 1, z ~ x + y, z ~--
x - y, z <--- x * y}-programs over infinite fields is probabilistically decidable in
polynomial time (Section 2). On the other hand, over f'mite fields the problem is NP-
hard (Section 3). In this section we look at what happens when the size of the field
(over which the zero-equivalence of programs is to be decided) is a function of the
length of the program. A special instance of this problem was considered implicitly
in [4], where equivalence of free Boolean graphs was shown to be probabilistically
decidable in polynomial time. The proof in [4] was essentially a reduction to the
zero-equivalence problem for a restricted class of straight-hne programs over finite
fields, where the size of the field is a function of the sizes of the graphs.

We shall show that if the function which maps the length of the program to the
size of the field grows fast, then zero-equivalence is probabilistically decidable in
polynomial time. If the function grows slowly, then the problem is NP-hard, and
there is a sharp boundary between these two cases. Thus in certain cases we can
show a "gap" between the class R of sets which are probabilistically decidable in
polynomial time (see [2, 14] for a precise definition of R) and the class NPC of NP-
complete sets. This result is of special interest in light of [15], which gives strong
evidence that the class NP of nondeterministic polynomial-time languages consists of
an infinite hierarchy of accepting density classes (in the sense of [1]), the higher
classes in the hierarchy corresponding to sets which have smaller accepting density.

Definition. For each nonnegative rational number t, let l i t be the problem of
deciding for an arbitrary {z ~ 1, z <--- x + y, z ~-- x - y, z ~ x • y}-program F over
GF(2M), r = length(F), whether F computes a nonzero-function.

THEOREM 4.1

(a) I f t >-- 1, then li t is probabllistically decidable in polynomial time.
(b) I f t < 1, then lit is NP-complete.

PROOF

(a) Let f be a program of length r. By Lemma 2.1, deg(PF) --<ofT" Clearly, if deg(Pe)
= 2 , then PF has one of two forms: PF = X 2 or Pp = x 2 -,y2r-l, where x and y
are input variables. It is easy to check whether deg(PF) ---- 2 ~. I f deg(Pe) = 2 ~,
then F ~ 0 over any nontrivial field. So assume that deg(PF) < 2 ~. Since there
are at least 2 ~ elements in GF(2 M) for t >_ 1, F - 0 over GF(2 trq) if and only if
PF is the zero polynomial, and hence if and only if F -= 0 over any infinite field

Equivalence o f Straight-Line Programs 227

which conta ins G F (2 M) . This last p r o b l e m can be dec ided probabi l i s t i caUy in
p o l y n o m i a l t ime as in L e m m a 2.11.

(b) To show tha t l i t is NP-ha rd , let L = C1 . . - Cm be a Boo lean f o r m u l a in C N F
over var iables x l xn, where each C, conta ins exac t ly th ree l i terals . W e shal l
construct a p r o g r a m F o f length r over G F (2 tr'J) such tha t F computes the zero-
funct ion i f and only i f L is not satisfiable. The cons t ruc t ion is g iven below.

Stage 1. Define r = [(8(m + n)) 1/(x-t)] and d = Irtj. Hence Q = GF(2a).

Stage 2. Carry out the reduction given in the proof of Theorem 3.2. Let the program obtained
be F ' and r ' = length(F'). Referring to the proof of Theorem 3.2, we see that segment 1
requires at most 2n([rtJ + 1) instructions, since x+ *-- x~ d-~ can be coded as

y + - - y - y
y ~ - - y + x ,
x ,<--I
Xt 4<'-- X t * y

Y +-Y* Y 1)
x,. ~ x , .) , l ~

d - 1 pairs

• "

x , o - x , . y j j

Segments 2, 3, and 4 require at most n + l, 6m + 1, and m + 1 instructions, respectively.
Hence, r' < 2n([rtJ + 1) + n + 1 + 6m + 1 + m + 1 _< 8(m + n)Lrtj. Since 8(m + n) - r I-t,
r t < r .

Stage 3. Pad F" with r - r' additional instructions of the form xl <--- 1. Let the program

obtained be F Then length(F) = r and F computes the zero-function over GF(2 trq) i f and
only if L is not satisfiable. Moreover, F can be constructed in polynomial time.

To show that Ht is in NP, we use the fol lowing nonde te rmin i s t i c a lgor i thm, given
a p rog ram F(x t xn):

(l) Compute d = [rtJ, where r = length(F).
(2) NondeterministlcaUy fred an irreducible polynomial of degree d over GF(2). This can be

done by guessing a polynomial of degree d over GF(2) and checking (in deterministic
polynomial time using Berlekamp's algorithm [12]) that it is irreducible.

(3) Using the irreducible polynomial found in (2), generate nondeterministically field elements
ax, . . . , an in GF(2 tr'j) and compute F(al an).

(4) Output 'yes' if F(at an) # 0; otherwise output 'no.' []

REFERENCES

(Note. References [6, 8] are not cited m the text)
1 ADL~N, L Two theorems on random polynomial tune Proc. 19th Arm. IEEE Symp. on Foun-

daUons of Computer Science, Ann Arbor, Mich., 1978, pp 75-83.
2. ADLEMAN, L., AND MANDERS, K. Reduclbdlty, randomness, and mtractablfity. Proc. 9th Ann. ACM

Syrup. on Theory of Computing, Boulder, ColD, 1977, pp. 151-163
3 BERLEKAraP, E. Algebraic Coding Theory. McGraw-Hill, New York, 1968.
4. BLUM, M, CHANDRA, A, AND WEGMAN, M. Equivalence of free Boolean graphs can he decided

probablhstically m polynomial time. Inf. Proc. Lett 10 (1980), 80-82.
5 COOK, S The complexity of theorem-proving procedures Proc. 3rd Ann. ACM Syrup. on Theory of

Computing, Shaker Heights, Ohio, 1971, pp 151-158.
6 GAREY, M, AND JOHNSON, D Computers and Intractablhty" A Guide to the Theory of NP-Complete-

hess. Freeman, San Francisco, 1979.
7 HARDY, G , AND WRIGHT, E. The Theory of Numbers, 4th ed. Oxford University Press, 1960.

228 O. H. IBARRA AND S. MORAN

8. HOPCROFT, J., AND ULLMAN, J.D. Introducuon to Automata Theory, Languages and Computation.
Addtson-Wesley, Reading, Mass., 1979.

9. HYAPn, L. On the parallel evaluation ofmuluvariate polynomials. Proc. 10th Ann. ACM Symp. on
Theory of Computing, San Diego, Calif., 1978, pp. 193-195.

10. IBARRA, O , AND LEININGER, B. On the simplification and equivalence problems for straight-line
programs To appear in J. ACM (available as Tech. Rep. 79-21, Computer Science Dep., Univ. of
Minnesota, Mirmeapolis, Minn., 1979).

11 IBARRA, O., ROSIER, L, AND MORAN, S. Probabifistic algorithms and stratght-hne programs for some
rank decision problems. Inf Proc. Left. 12 (1981), 227-232.

12. Kmyra, D. The Art of Computer Programming, Vol. 2. Seminumerical Algorithms. Addison-Wesley,
Reading, Mass., 1969.

13.]~IEYER, A., AND STOCKMEYER, L. Word problems reqmring exponential ttme. Proc. 5th Ann. ACM
Symp. on Theory of Computmg, Austin, Texas, 1973, pp 1-9

14. MILLER, G. Riemarm's hypothesis and tests of primahty. Ph D. Dissertauon, Umv. of California,
Berkeley, Calif, 1975.

15. MORAN, S. On the accepting denstty h~erarchy in NP (submitted for publication) A more complete
version is available as Tech. Rep. 79-29, Computer Science Dep., Umv. of Minnesota, Minneapolis,
Minn, 1979.

16. SCHWARTZ, J. Fast probabihstic algonthms for verification of polynomial identities. J. ACM 27, 4
(Oct. 1980), 701-717.

17 VALIANT, L. Completeness classes m algebra. Proc. 1 lth Ann ACM Symp on Theory of Computing,
Atlanta, Ga., 1979, pp. 249-261

18. Y~MINI, Y. Some theoretical aspects of position-location problems. Proc. 20th Ann. IEEE Symp on
Foundauons of Computer Science, San Juan, Puerto Rico, 1979, pp. 1-8.

19. YE~aNI, Y. On some randomly decidable geometrical problems. Submitted for publicauon.

RECEIVED APRIL 1980, REVlSED MAY 1981; ACCEPTED FEBRUARY 1982

Journal of the Assoctatton for Computing Machinery, Vol 30, No 1, January 1983

