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Abstract. Let Q be any algebraic structure and ~the set of all total programs over Q using the instruction 
set {z ,,-- 1, z , , -  x + y,  z ,,-- x - y ,  z ~ x * y ,  z ~-- x / y } .  (A program is total if no division by zero occurs 
during any computation ) Let the equivalence problem for ~ be the problem of deciding for two given 
programs in ~whether or not they compute the same funcuon The following results are proved: 

(1) If Q is an inftmte field (e.g, the rauonal numbers or the complex numbers), then the equwalence 
problem for ~ is probabilistlcally decidable in polynomml time. The result also holds for programs 
with no dwlslon instructions and Q an infimte integral domain (e.g., the integers). 

(2) If Q is a finite field, or if Q is a fimte set of integers of cardmahty _>2, then the equivalence problem 
is NP-hard. 

The case when the field Q is finite but its cardinality is a funcuon of the size of the instance to the 
eqmvalence problem is also considered An example is shown for which a sharp boundary between the 
classes NP-hard and probabihsticaUy decidable exists (provided they are not identical classes). 

Categories and Subject Descriptors' F. 1.2 [Computation by Abstract Devices[: Modes of Computation-- 
probabdistic computatton; F 1.3 [Computation by Abstract Devices]: Complexity Classes--redueibdi ty  and  
completeness, F 2.1 [Analysis of Algorithms and Problem Complexity] Numerical Algorithms and Prob- 
l e m s - c o m p u t a t i o n s  m f ini te fields, computations onpolynomlals ,  F 2 2 [Analysis of Algoritluns and Problem 
Complexity]: Nonnumerical Algorithms and Problems- -computa t ions  on discrete structures; G.3 [Proba- 
bility and Statist ics[--probabil ist tc algorithms 

General Terms' Algorithms, Theory 

Addmonal Key Words and Phrases" Stralght-hne program, eqmvalence problem, NP-hard, infinite field, 
characteristic of a field 

1. I n t r o d u c t i o n  

C o n s i d e r  the  fo l lowing  s eemi n g l y  s imple  p r o b l e m :  G i v e n  two s t r a igh t - l ine  p r o g r a m s  
F1 a n d  F,z u s i n g  o n l y  cons t ruc t s  z ~ 1, z <--- x + y,  z ~-- x - y ,  z ~ x * y ,  dev ise  a n  
a l go r i t hm to d e t e r m i n e  w h e t h e r  or  n o t  F1 a n d  F2 are  equ iva l en t .  A n  a l g o r i t h m  c lea r ly  
exists: F o r  each  p r o g r a m ,  der ive  p o l y n o m i a l  express ions  for the  o u t p u t  va r i ab l e s  i n  
t e rms  o f  the  i n p u t  var iables .  T h e n  F1 a n d  F2 are  e q u i v a l e n t  i f  a n d  o n l y  i f  t he  
c o r r e s p o n d i n g  express ions  ( in  s t a n d a r d  form,  i.e., s u m s  o f  p roduc t s )  a re  iden t ica l .  
However ,  i n  the  wors t  case the  process  is e x p o n e n t i a l  i n  the  s u m  o f  the  sizes o f  the  
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programs. At present we know of no polynomial-time algorithm for solving this 
problem. 

The equivalence problem for straight-line programs is important because of its 
relation to a number of decision problems that have recently been studied in the 
literature. In [4], for example, the equivalence problem for free Boolean graphs was 
shown to be probabilistically decidable in polynomial time by essentially reducing 
the problem to the equivalence problem for a restricted class of straight-line programs. 
In [16], probabilistic algorithms for verifying some polynomial identities were pre- 
sented. One can easily check that many of the problems discussed in [16] can be 
reduced to the zero-equivalence problem (i.e., does a program output zero for all 
inputs?) for straight-line programs. Some important problems involving matrices can 
also be reduced in polynomial time to the zero-equivalence problem for straight-line 
programs. For example, we showed in [11] that the problem of deciding for a given 
positive integer r and a matrix A with polynomial entries (where the polynomials are 
represented by arithmetic expressions with arbitrary parenthesization using addition, 
subtraction, multiplication, and exponentiation to a positive integer constant) whether 
,4 has rank _>r is polynomial-time reducible to the zero-equivalence problem for 
straight-line programs. In [19] (see also [18]) a restricted version of the rank problem 
for matrices with polynomial entries was shown to be probabilistically decidable. 

The main results of this paper are the following: 

(1) If Q is an infinite field (e.g., the field of rational numbers or the field of complex 
numbers), then the zero-equivalence problem for {z <--- 1, z (-- x + y, z ~ x - y, 
z <--- x • y)-programs over Q is probabilistically decidable in polynomial time x 
(Section 2). The result also holds when Q is an infinite integral domain (e.g., the 
integers). Thus the problems mentioned above (free Boolean graphs, polynomial 
identities, rank of matrices with polynomial entries) are probabilistically decid- 
able in polynomial time. 

(2) If Q is a fmite field, or if Q is a finite set of integers (of cardinality >_2), then the 
zero-equivalence problem for (z ~ 1, z <---x +y,  z <---x - y ,  z ~--x * y}-programs 
over Q is NP-hard (Section 3). The proofs of these results provide answers to 
some open problems in the literature [13, 18]. 

(3) If Q is finite but its cardinality is a function of the size of the instance (i.e., input 
program) to the zero-equivalence problem, then we can prove a "gap" theorem 
(Section 4): If the function (which maps the length of the program to the 
cardinality of the field) grows fast, then the zero-equivalence problem is proba- 
bilistically decidable in polynomial time. If the function grows slowly, then the 
problem is NP-hard. 

One can easily extend the results above to hold for the equivalence problem (i.e., 
deciding if two programs are equivalent) even when division z <--- x / y  is allowed, 
provided only total programs are considered. (A program is total if no division by 
zero occurs on any input.) When the programs are not guaranteed to be total and the 
inputs are integers, the zero-equivalence problem is undecidable [10]. 

Remark.  We could add the constructs z <--- k * x and z <--- x 1' k (i.e., multiplication 
and exponentiation by a positive integer constant) to the instruction set of straight- 
line programs. However, such instructions will not change the computing power 

1 This means that there is a polynomlal-tmae algorithm which uses a random number generator to deode 
if a program F computes the zero-function. If the algorithm outputs "yes," then F probably computes the 
zero-funcUon with probabdlty of error _< 1/2. If the algorithm outputs "no," then F does not compute the 
zero-function for sure Clearly, a probabihty of error _<1/2 4 may be obtained by running the algoritlma k 
times. 
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of  straight-line programs, since it can easily be shown that z ~-- k * x and z ~ x t k 
can be computed by straight-line programs over (z <-- 1, z ~-- x + y, z ~--.x - y, 
z ~ x * y} of  length O(log k). 

We conclude this section by showing the connection between straight-line programs 
with one output variable and polynomial expressions. For  notational convenience we 
only consider expressions over the integers. 

Definition. A polynomial expression (p.e.) is any expression which can be derived 
using rules (1)-(4) below: 

(1) 1 is a p.e. 
(2) Any variable is a p.e. 
(3) If  a is a p.e. and k is a positive integer, then k * a and a 1' k are p.e.'s 
(4) I f  a and/3 are p.e.'s, then so are a +/3, a - / 3 ,  and a */3. (Parentheses may be 

used to avoid ambiguity.) 

By straightforward coding (see the remark above) we can easily prove the following 
proposition. 

PROPOSITION 1.1. We can construct for every p.e. E an equivalent straight-line 
program Foyer {z ~ 1, z ~---x + y, z *--x - y ,  z ~---x *y}  in timepolynomialin the 
size (= length of representation) of  E. (It follows that the size o f F  is polynomial in the 
size of E.) 

We can generate p.e.'s from straight-line programs of  size n by direct substitutions 
resulting in expressions of  size at most O(((~/-5 + 1)/2)% A polynomial bound seems 
unlikely. Consider, for example, the following program, F (x and y are the input 
variables, z is the output variable, and n _ 2): 

w ,--(x +.v) ~ 2 
z ~ ( w + y ) ~ 3  
w ,-- (w + z) "f 4 
z ,--(w + z) ~ 5 

w ~ (w + z) 1' (2n) 
z ~ (w + z) ~ (2n + 1) 

Clearly, F can be converted to a straight-line program F '  over (z <-- 1, z <--- x + y, 
z ~ x - y, z <--- x * y} whose size is polynomial in the size of  F. Now, by direct 
substitutions, a p.e. E denoting the value of  z at the end of  F can easily be obtained. 
However, the length of  E is exponential in the size of  F. (See [9, 17] for related 
topics.) 

The brief discussion above shows that results (e.g., probabilistic algorithms) for 
straight-line programs are applicable to polynomial expressions, b~It the converse 
may not be true. 

2. The Zero-Equivalence Problem for Programs over Infinite Fields 

In this section we show that the zero-equivalence problem for {z ~-- 1, z *-  x + y, 
z ,,-- x - y, z ~-- x * y}-programs over infinite fields is probabilistically decidable in 
polynomial time. 

When we are dealing with zero-equivalence, we assume that the programs have 
exactly one output variable. F(xl, . . . ,  xt) (or simply F)  will denote a program with 
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input variables xl,  . . . ,  xt. We also use F(Xl . . . .  , x t )  to denote the input-output  
function computed by F. Length(F) is the number of  instructions in F, while size(F) 
is the length of  the binary representation of  F. 

We begin with the following lemma. 

LEMMA 2.1. For each program F(xl  . . . . .  xt)  over a f ie ld  Q there exists a polynomial  
Pv(Xl, . . . , x t )  such that PF(xI . . . . .  x t )  -~ F(xl  . . . .  , xt).  I f  length(F) = r, then deg(Pv) 
<_ 2r. 2 I f  Q has characteristic p < oo, then the coefficients o f  the polynomial  are integers 
between 0 and p - 1, otherwise, the coefficients are integers between -oo and +,0. 

PROOF. By induction on r. [] 

LEMMA 2.2. Let  Q be an infinite field, P(Xl . . . .  , x t )  a nonzero polynomial  o f  
degree <_d over Q, and,4  a subset o f  Q, 1,41 = k > d. Then there are at least (k  - d )  t 
elements ~ = (as, . . . ,  at) in .4 t such that P(~)  # O. 

PROOF. The proof  is by induction on t. For  t = 1 the lemma follows from the fact 
that a one-variable polynomial of  degree d has at most d roots in Q. 

Assume the lemma holds for t > 1, and consider a nonzero polynomial 
P(x l  . . . . .  xt, xt+x) of  degree __d. Then there exists a t + 1 tuple ~ l  . . . .  , at, c) such 
that e (a i  . . . .  , at, c) # O. Hence the polynomial e ( x l  . . . . .  xt, C) = e ( x I  . . . . .  x t )  is not 
a zero polynomial. Clearly, deg(P) _< d. Hence, by the induction hypothesis, there are 
at least (k  - d )  t t-tuples (al . . . . .  at) in A t such that P(a l , .  . . ,  at) = e(ai ,  . . . ,  at, c) 
# 0. For  each such tuple, the one-variable polynomial P(xt+l)  = P(ax . . . .  , at, Xt+l) 

is not a zero polynomial, and therefore there are at least k - d elements at+l in A 
such that/if(at+l) -~ P ( a l , . . . ,  at, at+l) # 0. The lemma follows. []  

COROLLARY 2.1. Let  e ( x l ,  • • . ,  x t ) ,  d, k ,  and A be as in L e m m a  2.1. Le t  k >_ 2td, 
and /e t  ~ -- (al . . . .  , at) be a random element of ,4 t. Then P(~)  -~ P(al . . . . .  at ) # 0 with 
probability >_½. 

PROOF 

I {ala in ,4 t, P(a)  # 0) 1 
Prob(P(ff) ~ O) - 1,4 t l 

_ _ I -  

1 > -  []  
m 2" 

In the proof  of  the main result of  this section we have to distinguish between two 
cases. First, we deal with the case when the field F over which the programs are 
defmed is the rational numbers (this represents the case when F i s  any field of  infinite 
characteristic). Later we deal with the ease when F is an infinite field with finite 
characteristic.. 

2.1 TrIE ZERO-EQUIVALENCE PROBLEM OVER THE RATIONALS 

PROPOSITION 2.1. A program F ==- 0 (i.e., computes the zero-function) over the 
rationals i f  and only i f  F =- 0 over the integers. 

PROOF. This follows from Lemma 2.1 [] 

Proposition 2.1 shows that deciding zero-equivalence for programs over the 
rationals is equivalent to deciding zero-equivalence for programs over the integers. 

2 deg(PF) denotes the degree of  PF = max{sum of powers of  the variables in any term}. 



Equivalence o f  Straight-Line Programs 221 

Hence we assume in the remainder of  this subsection that the inputs to the programs 
are integers. 

Definition. Let F be a program and m a positive integer. Then Ft,~) is the program 
obtained from F by replacing each instruction by the equivalent instruction modulo  
m. Thus z <-- l, z ~-- x + y, z *-- x - y, and z * -  x * y are replaced by the instructions 
z ,-- 1 (mod m), z * -  x + y (mod m), z *-- x - y (mod m), and z <--- x • y (mod m), 
respectively. 

The relationship between F and Fin) is given by the following lemma. 

LEMMA 2.3. F(Xl . . . . .  x t)  (mod m) = Ft,~)(xl, . . . ,  xt) .  

PROOF. By induction on length(F) and the fact that [x (mod m) 0 y (mod m)] 
(rood m) = x 0 y (rood m) for 0 ffi +, - ,  *. []  

The next lemma gives an upper  bound on the size of  F(xl  . . . . .  xt) .  

LEMMA 2.4. Let  al . . . .  , at be input integers such that I a, I <-- a, where a > 2. Then 
I F(al  . . . . .  at) I <-- a3r, where r = length (F).  

PROOF. By induction on r. []  

LEMMA 2.5. Let  k be a given integer, 1 ___ I kl _< 22n~, and let m be an integer 
chosen at random f r o m  the set M = ( l, 2, . . . .  22n}. Then f o r  all sufficiently large n, 
k ~ 0 (mod m) with probability >>_ 1/4n. 

PROOF. By the prime number  theorem [7], the number  of  primes smaller than 22n 
tends to 22~/1n 22n and hence, for large n, is greater than 22~/2n. Let p~ . . . .  ,ps be the 
distinct prime divisors of  k. Clearly, s _< log2k ___ 2n2 ~. ( I f  k -- 1, then s -- 0.) Hence, 
for large enough n there are at least 22n/2n - 2n2 n primes smaller than 22n which do 
not divide k. Since for n _> 10, 22~/2n - 2n2 ~ > 22n/4n, the l emma follows. [] 

We are now ready to prove the main result o f  this subsection. 

LEMMA 2.6. The zero-equivalence problem f o r  {z *-- 1, z * -  x + y ,  z ,,-- x - y ,  
z * -  x * y}-programs over the rationals is probabilistically decidable in polynomial  
time. 

PROOF. Let F(x~ . . . . .  x t )  be a program of  length r. Le tA = {1, 2 . . . . .  2t2 r} and 
M = ( l ,  2 . . . . .  22~}, where n = r + t. The following algorithm probabilistically 
decides if  F(x~ . . . . .  x t )  computes the zero-function. 

begin 
for i = I to 8n do 

begin 
choose a random element (~, m) in A t x M 
compute Ftm)(d) 
if F~)(d) # 0 then [output ('no'); halt] 

end 
output ('yes') 
halt 

end 

Let G be the event F<m)(~) # 0 and H the event F(~?) # 0. (By Lemma  2.3, Ft,~)Q?) 
= F(.~) (rood m), and hence G _C_ H.) I f  F -= 0 (i.e., F computes the zero-function), 
then the algorithm will output 'yes'  no matter  what random elements (~, m) are 
chosen inside the for-loop. Now suppose that F ~ 0. In this case, since G N H ffi G, 
we have that Prob(G) = Prob(H)Prob(G[ H).  By Corollary 2.1 and the fact that 
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deg(PF) --< 2 r (Lemma 2.1), Prob(H) _> ½. Let J? = (al . . . .  , at) be any element from 
A t. Then la~l <-- 2n2 n <-- 2 2n, and hence, by Lemma 2.4, [F(~?)I _<2 2n2n. Hence, by 
Lemma 2.5, if  F(~) # 0, then Prob(F(:f) # 0 (mod m)) _> 1/4n, where m is a random 
element from M. Since F(m)(:~) -- F(~?) (mod m), this means that Prob(G[ H )  >_ 1/4n, 
and therefore Prob(G) _> 1/Sn. Now the algorithm will output 'yes' i f  and only if 
Ftm)(~) = 0 for all 8n random samplings of  ~ and m. The probability of  this event 
happening is _<(1 - 1/Sn) 8n < ½. Hence, i f F  ~ 0, the algorithm will output 'no' with 
probability >½. 

Since the algorithm uses modulo m arithmetic for m _< 2 2n, the time complexity of  
the algorithm is polynomial in size(F). This completes the proof. [] 

2.2. THE ZERO-EQUIVALENCE PROBLEM FOR INFINITE FIELDS WITH FINITE CHAR- 
ACTERISTIC. A field Q has finite characteristic if there exists a positive integer n 
such that na ffi 0 3 for every element a in Q. The characteristic of  Q is then defined 
to be the minimal positive integer n which has this property. Throughout  the rest of  
this subsection Q denotes an infinite field of  finite characteristic, and p denotes the 
characteristic of  Q (p must be a prime number). 

Definition. For a in Q, a # 0, order(a) = n if a n = 1 and a "~ # 1 for 0 < m < n. 
I f  a n # 1 for all positive integer n, then order(a) ffi oo. It is known that if  order(a) _ 
pd _ 1 for some d, then P(a) ~ 0 for any polynomial P(x)  with coefficients in GF(p )  
of  degree < d  [3]. 

LEMMA 2.7. For each integer n there is an a in Q such that order(a) > n. 

PROOF. Suppose the lemma is false. Then for some integer no, no ffi 
max(order(a)  [ a in Q}. Then it can easily be shown that order(a) divides no for each 
a in Q [3]. Hence, all the elements in Q are roots of  the polynomial x n°+l - x, which 
means that ] Q] _ no + 1. This contradicts the infiniteness of  Q. [] 

We need the following defmition for our next lemma. 

Definition. Let GF(p)  be the Galois field of  integers modulo p. Then GF(p) [x]  
is the ring of  one-variable polynomials over GF(p) ,  where addition and multiplication 
are defined in the standard way. (The zero element of  GF(p) [x]  is the zero 
polynomial.) 

LEMMA 2.8. F -- 0 over Q if  and only i f  F =- 0 over GF(p)[x].  

PROOF. Let F(x~ . . . . .  xt)  be a program and r = length(F). Let d be the smallest 
integer satisfying pd  > 2t2 r. Defme a set A _ GF(p) [x ]  by A = {a(x ) la (x )  in 
GF(p)[x] ,  deg(a(x)) < d}. Note that IAI Let a in Q be such that order(a) > 
p 2r~. (Such an a exists by Lemma 2.7.) Let A~ __. Q be the set A ~  = (a(a)la(x) 
inA) .  We claim that IAI = IA~l. (Otherwise, al(a) = a2(a) for some al(x), as(x) such 
that deg(al(x)) < d, deg(a2(x)) < d. Then a is a root o f  the polynomial al(x) - a2(x) 
whose degree < d. This is impossible, since order(a) >pg . )  It follows, by Lemma 2.2, 
that F --- 0 over Q if and only if F - 0 over A~. By a similar argument, F --- 0 over 
GF(p)[x]  if and only if  F - 0 over A. 

Suppose now that F =-- 0 over GF(p)[x] .  Then F(al(x)  . . . . .  at(x)) = 0 for all a~(x), 
. . . ,  at(x) in A. In particular, F(al(a) . . . . .  at(a)) = 0 for all al(a) . . . . .  at(a) in A~, 
which implies that F -= 0 over Q. On the other hand, i f  F ~ 0 over GF(p)[x] ,  

3 na ffi a + .. .  + a (n times) 
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then F ~ 0 over A. Hence, for some al(x) . . . . .  at(x) in A, the polynomial 
eF(al(x) . . . . .  at(x)) = F(al(x) . . . .  , at(x)) is a nonzero polynomial. Call this 
polynomial ~(x). Now deg(t~(x)) < 2rd, and since order(a) > p 2rd, a(a) = 
F(a~(a), . . . ,  at(a)) ~ O. It follows that F ~ 0 over Q. [] 

We have shown that deciding zero-equivalence for programs over Q is equivalent 
to deciding zero-equivalence for programs over GF(p)[x]. We shall assume, there- 
fore, that the inputs to the program F are elements of GF(p)[x]. (Note that a 
polynomial of degree d over GF(p) can be represented by its coefficiems in O(d) 
space.) One can easily verify that Corollary 2.1 still holds if Q is replaced by the ring 
GF(p)[x]: 

COROLLARY 2.1'. Let P(Xl . . . . .  xt) be a nonzero polynomial of  degree <_d over 
GF(p)[x]. Let A be a subset of  GF(p)[x] such that ]A I >- 2td. Let 5 --- (a: . . . . .  at) be 
a random element o fA t. Then P(5) ~ 0 with probability >_½. 

Definiton. For a polynomial q(x) in GP(p)[x], Fq is the program obtained by 
replacing all instructions in F by the equivalent instructions modulo q(x). 

The proof of the following lemma is similar to that of Lemma 2.3 and is omitted. 

LEMMA 2.9. Let F be a program with t input variables, and let q(x) be in 
GF(p)[x]. Then Fq(al(x) . . . . .  at(x)) = F(al(x) . . . . .  at(x)) (mod q(x)) for  all ax(x), 
. . . .  at(x) in GF(p)[x]. 

L~MMA 2.10. Let a(x) in GF(p)[x] be given such that deg(?t(x)) < 2 a, where 
d >_ 2. Then there are at leastp2d/8d monicpolynomials of  degree 2d over GF(p) which 
do not divide ~(x). (Note that there are exactly p 2d monic polynomials of  degree 2d.) 

PROOF. Clearly, there are at most 2a/2d distinct monic irreducible polynomials 
of degree 2d which divide ~(x). By [3, Eq. 3.37] there are more than p2d/4d monic 
irreducible polynomials of degree 2d (d _> 2). The result follows from the fact that for 
d >_ 2,p2a/8d >_ 2d/2dfor allprimesp. [] 

We can now prove the following. 

LnMMA 2.11. The zero-equivalence problem for (z ~ 1, z ,,-- x + y, z ,,-- x - y, 
z *---x * y)-programs over Q is probabilistwally decidable in polynomial time. 

PROOF. Let F(xl . . . . .  xt) be a program of length r. By Lemma 2.8, it is sufficient 
to decide if F ¢ 0 over GF(p)[x]. Let d be the smallest integer satisfying pd > 2t2 r. 
(Note that d -- O(r), and d can be found in time polynomial in r.) Let A = 
(a(x) la(x) in GF(p)[x], deg(a(x)) < d). Let M = (qlq is a monic polynomial of 
degree 2(d + r) over GF(p)}. The algorithm below probabilistically decides if 
F(x~ . . . . .  xt) computes the zero-function. The complexity and probabilistic anal- 
ysis of this algorithm are similar to that of the algorithm given in the proof of 
Lemma 2.6, knowing that the following hold for random (al(x) . . . . .  at(x)) in A t 
and q(x) in M: 

(i) deg(PF(al(x) . . . . .  at(x)) <_ d2 ~. (This follows from Lemma 2.1.) 
(ii) I f F  ~- 0, then Prob(F(a~(x) . . . . .  at(x)) # 0) _> ½ (by Corollary 2.1'). 

(iii) If F(al(x) . . . . . .  at(x)) ~ O, then Prob(F(al(x) . . . . .  a,(x)) ~ 0 (mod q(x))) >" 
1/8(d + r) (by Lemma 2.10, (i), and the inequality d2 ~ < 2 a+r for d E  1). 

The details are omitted. 
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begin 
for/--- 1 to 16 (d+  r) do 

begin 
choose a random element ((al(x) . . . . .  at(x)), q(x)) in A t × M 
compute Fq(al(x) . . . . .  at(x)) 
if Fq(a~(x) . . . . .  at(x)) ~ 0 then [output('no'), haiti 

end 
output(~jes') 
halt 

end [] 

Combining Lemma  2.6 and 2.11, we obtain the main result o f  this section. 

THeOReM 2.1. The zero-equivalence problem f o r  {z ~ 1, z ~ x + y ,  z ~ x - y ,  

z ~-- x * y}  -programs over any infinite f i e ld  F is probabilistically decidable in po lynomial  
time. 

PROOF. I f  F is o f  inifmite characteristic, then F contains an isomorphic image of  
the rational numbers, and hence the theorem follows f rom L e m m a  2.6. I f  F is o f  
finite characteristic, then the theorem holds by Lemma  2.11. [] 

Remark.  The proof  of  Theorem 2.1 can be easily modified to show that the zero- 
equivalence problem for {z * -  1, z *-- x + y, z <--- x - y, z *-- x * y}-programs over 
any infinite integral domain (i.e., infinite commutat ive ring with no zero divisors) 
which contains the unit element is probabilistically decidable in polymomial  time. 

3. N P - H a r d  Zero-Equivalence Problems 

In this section we show that the zero-equivalence problem for straight-line programs 
becomes NP-hard  when we restrict the input domain to be a finite set. We shall 
consider two cases: (a) when the input domain is a finite set o f  integers, and (b) when 
the input domain is a finite field. 

THEOREM 3.1. Let  D be any f in i te  set o f  integers with at least two elements. Then 
the zero-equivalence problem f o r  {z ~ 1, z ~ x + y ,  z ~ x - y ,  z ~ x * y} -programs  
over D is NP-hard.  

PROOF. We shall reduce the satisfiability problem for Boolean formulas in 
conjunctive normal  form (CNF) to our problem. So let L = C1 . . .  Cm be a Boolean 
formula in C N F  over variables xl, . . . ,  Xn. Assume that each C~ contains exactly 
three literals. (A literal is a variable or its negation.) We shall construct a program F 
such that F(al . . . . .  an) = 0 for all a~ in D i f  and only i f  L is 'not  satisfiable. F has 
input variables 2;1 . . . . .  Xn, output variable z, and auxiliary variables which include 
X1 . . . . .  Xn, Zl . . . . .  z,~, etc. Assume that D -- {al . . . . .  ak}, where k > 2 and al  < 
• - .  < ak. The relationship between the logical formula L and the program F 
constructed below is as follows: For  each truth assignment to the variables x~ . . . .  , 
xn there corresponds one or more input assignments to the variables X ~ , . . . ,  Xn such 
that the truth assignment satisfies L if and only if each of  the corresponding input 
assignments produces a nonzero output. The correspondence between the assign- 
ments is the following: I f  x~ is assigned 'false,' then X~ is assigned al. I f  x~ is assigned 
'true,' then X~ is assigned aj for some j > 1. The program F is the following: 

Segment 1. For i ffi 1, 2 . . . .  n, write the code to perform the following task: 

(If the input is ( a l , . . ,  an) in D ~, then after segment 1, X~ = 0 if a~ = cq; otherwise, X, > 0.) 
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Segment 2. For i = 1, 2, . . . ,  n, write the code to perform the following task: 

,~, , --  ( ( ,~  - a ~ )  - X , ) ( ( ~  - ~ )  - X , )  . . .  ( ( a ,  - ~ )  - X ~ )  

(If X, -- 0, then ~', > 0; if X, > 0, then ,Y, = 0.) 

Segment 3. For i = 1, 2, . . . ,  m, write the code to perform the following task: 

z, ,,-- sum of the variables representing the literals of C, 

(If C, is satisfied, then z, > 0; if C~ is not satisfied, then z, = 0.) 

Segment 4 

z * - - 1  

7 , ~ - - g * g l  
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Z~"--Z*2m 

Clearly, we can construct the p rogram F in time polynomia l  in the size o f  L. (Note  
that  an  instruction o f  the form z ~-- c, where c > 1, can  be coded  over (z ,,-- 1, 
z ~ x + y, z ~-- x - y, z ,-- x • y} using at most  O(log c) instructions.) Moreover ,  F 
computes  the zero-funct ion if  and only if  L is not  satisfiable. The  result now follows, 
since the satisfiability problem is NP-ha rd  [5]. [ ]  

Note.  The p roo f  o f  Theorem 3.1 above implies that  the inequivalenee problem 
for polynomial  expressions over a t'mite set o f  integers [13] is NP-complete ,  thus 
settling an open  problem in [13]. 

Remark .  One can easily verify that  when  D has exactly one element, then the 
zero-equivalence problem is probabilistically decidable in polynomia l  time. (Simply 
evaluate the program for the given value in D using modu la r  arithmetic, where the 
modulus  is chosen randomly.)  

THEOREM 3.2. Le t  Q be any f in i te  f ield.  Then the zero-equivalence prob lem f o r  
{z ~-- 1, z ~-- x + y ,  z *-- x - y ,  z ~-- x * y} -programs  over Q is NP-hard.  

PROOf. Since every t'mite field is isomorphic to G F ( p ' )  for  some pr ime p and  
positive integer s, we m a y  assume that  Q = GF(p~) .  Let L = C~ . . .  Cm be a Boolean 
formula  in C N F  over variables x~ . . . . .  xn, where each C1 contains exactly three 
literals. We shall construct a p rogram F such that  F(a~ . . . . .  an) = 0 for all ai in  Q i f  
and only if L is not  satisfiable. F has input variables x~ . . . . .  xn, output  variable z, 
and auxiliary variables which include ~ . . . . .  ~n, z~ . . . . .  zm, etc. The  description o f  
F follows: 

Segment 1. For i = 1, 2, . . . ,  n, write the code to perform the following task: 
Xz ~ X~ "-1 

(Clearly, the code can be written to have at most O(legp s) = O(s) instructions. If  the input is 
(al, . . . ,  an) in Qn  then after the segment, x~ = 0 ifa~ -- 0; otherwise x~ = 1. This follows from 
the fact that in GF(pS), a ~'-x = 1 for all a ~ 0.) 

Segment 2. For [ = 1, 2, . . . ,  n, write the code to perform the following task: 

~ , ~ , " l - - x ,  

(If x, ---- 0, then ~, --- 1; if x, = 1, then ~?, = 0.) 

Segment 3. For i = 1, 2 . . . . .  m, i f  C, = 1,1 + 1,~ + 1,'~, each l,j in (xl, ~1 . . . . .  xn, ~ } ,  then write 
the code to perform the following task: 

z, ~-- (1 - h~)(1 -/,~)(1 - 1~) 
Zz ¢-- 1 -- Z~ 

( I f  C~ is satisfied, i.e., one  o f  L1, l~2, or/~a is 1, then  z, = l; i f  C~ is not  satisf ied,  then  z~ -- 0.) 
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Segment 4 
z ,~--- I  

Z < " ' Z * Z I  
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g 6-" g *gin  

It is straightforward to verify that F computes the zero-function if and only if L is 
not satisfiable. Moreover, F can be constructed in polynomial time. [] 

Note. The proof of Theorem 3.2 above implies that the nonzero-equivalence 
problem for polynomial expressions over finite fields is NP-complete. This settles 
(positively) an open problem in [18]. 

4. A Boundary Between Probabilistically Decidable Problems and NP-Hard 
Problems 

We have shown that the zero-equivalence problem for (z ,,-- 1, z ~ x + y, z ~-- 
x - y, z <--- x * y}-programs over infinite fields is probabilistically decidable in 
polynomial time (Section 2). On the other hand, over f'mite fields the problem is NP- 
hard (Section 3). In this section we look at what happens when the size of  the field 
(over which the zero-equivalence of  programs is to be decided) is a function of  the 
length of  the program. A special instance of  this problem was considered implicitly 
in [4], where equivalence of free Boolean graphs was shown to be probabilistically 
decidable in polynomial time. The proof in [4] was essentially a reduction to the 
zero-equivalence problem for a restricted class of  straight-hne programs over finite 
fields, where the size of  the field is a function of  the sizes of  the graphs. 

We shall show that if  the function which maps the length of the program to the 
size of  the field grows fast, then zero-equivalence is probabilistically decidable in 
polynomial time. If  the function grows slowly, then the problem is NP-hard, and 
there is a sharp boundary between these two cases. Thus in certain cases we can 
show a "gap" between the class R of  sets which are probabilistically decidable in 
polynomial time (see [2, 14] for a precise definition of R) and the class NPC of  NP- 
complete sets. This result is of  special interest in light of  [15], which gives strong 
evidence that the class NP of  nondeterministic polynomial-time languages consists of 
an infinite hierarchy of accepting density classes (in the sense of [1]), the higher 
classes in the hierarchy corresponding to sets which have smaller accepting density. 

Definition. For each nonnegative rational number t, let l i t  be the problem of  
deciding for an arbitrary {z ~ 1, z <--- x + y, z ~-- x - y, z ~ x • y}-program F over 
GF(2M), r = length(F), whether F computes a nonzero-function. 

THEOREM 4.1 

(a) I f  t >-- 1, then li t  is probabllistically decidable in polynomial time. 
(b) I f  t < 1, then lit  is NP-complete. 

PROOF 

(a) Let f be a program of length r. By Lemma 2.1, deg(PF) --<ofT" Clearly, if  deg(Pe) 
= 2 ,  then PF has one of two forms: PF = X 2 or Pp = x 2 -,y2r-l, where x and y 
are input variables. It is easy to check whether deg(PF) ---- 2 ~. I f  deg(Pe) = 2 ~, 
then F ~ 0 over any nontrivial field. So assume that deg(PF) < 2 ~. Since there 
are at least 2 ~ elements in GF(2 M) for t >_ 1, F - 0 over GF(2 trq) if and only if  
PF is the zero polynomial, and hence if  and only if F -= 0 over any infinite field 



Equivalence o f  Straight-Line Programs 227 

which  conta ins  G F ( 2 M ) .  This  last  p r o b l e m  can  be dec ided  probabi l i s t i caUy in 
p o l y n o m i a l  t ime as in  L e m m a  2.11. 

(b) To  show tha t  l i t  is NP-ha rd ,  let  L = C1 . . -  Cm be a Boo lean  f o r m u l a  in  C N F  
over  var iables  x l  . . . . .  xn, where  each  C, conta ins  exac t ly  th ree  l i terals .  W e  shal l  
construct  a p r o g r a m  F o f  length  r over  G F ( 2  tr'J) such tha t  F computes  the  zero-  
funct ion i f  and  only  i f  L is not  satisfiable.  The  cons t ruc t ion  is g iven below.  

Stage 1. Define r = [(8(m + n)) 1/(x-t)] and d = Irtj. Hence Q = GF(2a). 

Stage 2. Carry out the reduction given in the proof of  Theorem 3.2. Let the program obtained 
be F '  and r '  = length(F'). Referring to the proof of  Theorem 3.2, we see that segment 1 
requires at most 2n([rtJ + 1) instructions, since x+ *-- x~ d-~ can be coded as 

y + - - y - y  
y ~ - - y + x ,  
x ,<--I  
Xt  4<'-- X t  * y 

Y +-Y*  Y 1) 
x,. ~ x ,  . ) , l ~  

d -  1 pairs 

• " 

x , o - x , . y j j  

Segments 2, 3, and 4 require at most n + l, 6m + 1, and m + 1 instructions, respectively. 
Hence, r' < 2n([rtJ + 1) + n + 1 + 6m + 1 + m + 1 _< 8(m + n)Lrtj. Since 8(m + n) - r I-t, 
r t < r .  

Stage 3. Pad F" with r - r' additional instructions of the form xl <--- 1. Let the program 

obtained be F Then length(F) = r and F computes the zero-function over GF(2  trq) i f  and 
only if L is not satisfiable. Moreover, F can be constructed in polynomial time. 

To show that  Ht is in NP,  we use the  fol lowing nonde te rmin i s t i c  a lgor i thm,  given 
a p rog ram F(x t  . . . . .  xn): 

( l )  Compute d = [rtJ, where r = length(F). 
(2) NondeterministlcaUy fred an irreducible polynomial of  degree d over GF(2). This can be 

done by guessing a polynomial of  degree d over GF(2) and checking (in deterministic 
polynomial time using Berlekamp's algorithm [12]) that it is irreducible. 

(3) Using the irreducible polynomial found in (2), generate nondeterministically field elements 
ax, . . . ,  an in GF(2 tr'j) and compute F(al . . . .  an). 

(4) Output 'yes' if F(at . . . . .  an) # 0; otherwise output 'no.' [] 
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