
Neighbor Joining Algorithms for Inferring

Phylogenies via LCA-Distances

Ilan Gronau Shlomo Moran

June 17, 2007

Abstract

Reconstructing phylogenetic trees efficiently and accurately from dis-
tance estimates is an ongoing challenge in computational biology from
both practical and theoretical considerations. We study algorithms which
are based on a characterization of edge-weighted trees by distances to
LCAs (Least Common Ancestors). This characterization enables a direct
application of ultrametric reconstruction techniques to trees which are
not necessarily ultrametric. A simple and natural neighbor joining cri-
terion based on this observation is used to provide a family of efficient
neighbor-joining algorithms. These algorithms are shown to reconstruct
a refinement of the Buneman tree, which implies optimal robustness to
noise under criteria defined by Atteson. In this sense, they outperform
many popular algorithms such as Saitou&Nei’s NJ. One member of this
family is used to provide a new simple version of the 3-approximation
algorithm for the closest additive metric under the l∞ norm.

A byproduct of our work is a novel technique1 which yields a time
optimal O(n2) implementation of common clustering algorithms such as
UPGMA.

1 Introduction

Phylogenetic reconstruction methods attempt to find the evolutionary history
of a given set of extant species (taxa). This history is usually described by
an edge-weighted tree whose internal vertices represent past speciation events
(extinct species) and whose leaves correspond to the given set of taxa. The
amount of evolutionary change between two subsequent speciation events is
indicated by the weight of the edge connecting them. The topology of the tree
(which is defined by the set of positively weighted edges) is often assumed to
be fully resolved, meaning that it forms a binary tree (i.e. each internal vertex
is of degree 3). Distance-based phylogenetic reconstruction methods typically
try to reconstruct this evolutionary tree from estimates of pairwise distances.

1After publication of this paper, it was brought to our attention that this technique was
already presented in [30]. A proof that this technique implies a correct implementation of
UPGMA and other clustering algorithms appears in [23].

1

A distance metric consistent with some positively edge-weighted tree is said to
be additive, and a distance-based algorithm which always returns a tree given
its induced additive metric is said to be consistent.

One of the most popular distance-based reconstruction techniques is neighbor-
joining. Neighbor-joining is an agglomerative clustering approach, in which at
each stage two neighboring elements are joined to one cluster; this new cluster
then replaces them in the set of elements, and clustering continues recursively on
this reduced set. One of the most important components of a neighbor-joining
algorithm is the criterion by which elements are chosen to be joined. The sim-
plest neighbor-joining criterion is probably the ‘closest-pair’ criterion, which is
used in several well known clustering algorithms such as UPGMA, WPGMA [35]
and the single-linkage algorithm [26, 4]. While this criterion is inconsistent in
general, it is consistent for the special case of ultrametric trees, which contain a
point (root) which is equidistant from all taxa. Ultrametric reconstruction algo-
rithms typically have very efficient implementations: O(n2log(n)) for UPGMA
and WPGMA, and O(n2) for the single linkage algorithm. Neighbor-joining al-
gorithms which consistently reconstruct general trees (which are not necessarily
ultrametric) typically use more complex neighbor joining criteria, significantly
increasing their running time.

The problem of consistent reconstruction can be reduced to the special case
of ultrametric reconstruction by applying the Farris transform [18]. The Far-
ris transform converts any additive metric into an ultrametric while conserving
the topology of the corresponding tree (see Fig. 1). After applying the Farris
transform, ultrametric reconstruction methods (such as the ones listed above)
can be used to obtain an intermediate ultrametric tree. Finally, in order to
obtain the desired tree, the weights of external edges need to be restored. This
approach leads to several time optimal consistent reconstruction algorithms (see
e.g. [24, 1]). In this paper we introduce an alternative technique for reducing the
problem of consistent reconstruction to the problem of ultrametric reconstruc-
tion. Using distances to least common ancestors (LCAs), this technique directly
reconstructs the desired tree, thus bypassing the intermediate ultrametric tree
mentioned above. This direct approach enables the proof of certain robustness
properties which are strictly stronger than consistency alone.

Consistency is a natural and basic requirement, guaranteeing correct recon-
struction when distance estimates are accurate. However, in practice we are
rarely able to obtain accurate distance estimates, and the input from which
trees are reconstructed is seldom additive. The input dissimilarity matrix is
often regarded as a noisy version of some original additive metric, and distance-
based reconstruction methods are required to be robust to this noise. Informally,
robustness of an algorithm to noise is measured by the amount of noise under
which it is still guaranteed correct reconstruction of the tree’s topology (or parts
of it).

One notion of robustness is defined by the ability to reconstruct the correct
topology given nearly additive input. A dissimilarity matrix D is said to be
nearly additive with respect to a binary edge-weighted tree T (whose induced
additive metric is denoted by DT), if ||D, DT ||∞ < 1

2 ·mine∈T {w(e)} [2]. The

2

m

r

m-D(r,i)

i

Figure 1: The Farris Transform. Given a dissimilarity matrix D, a taxon r
and some value m ≥ maxi{D(r, i)}, the Farris-transform defines a dissimilarity
matrix U s.t. U(i, j) = 2m+D(i, j)−D(r, i)−D(r, j). If D is additive, consistent
with some tree T , then U is consistent with an ultrametric tree achieved by
elongating the external edges of T (elongation marked by dashed line).

topology of T is uniquely determined by any dissimilarity matrix D which is
nearly additive with respect to it. This is because the topology of T is uniquely
determined by the configurations of all taxon-quartets in the tree, and a matrix
D which is nearly additive w.r.t. T is also quartet-consistent with it in the
following sense:

Definition 1.1 (Quartet consistency). Let D be a dissimilarity matrix, then:

• D is consistent with quartet-configuration (ij : kl), if:
D(i, j) + D(k, l) < min{D(i, k) + D(j, l) , D(i, l) + D(j, k)}.

• D is quartet-consistent with some tree T if it is consistent with all quartet-
configurations induced by T .

When the input is not quartet-consistent with any tree, it may still be con-
sistent with certain edges of the tree in the sense introduced by Buneman [9].
In this context, an edge is identified with the split it induces over the taxon set,
and a split (P |Q) is implied by dissimilarity matrix D, if D is consistent with
all quartet-configurations (ij : kl) s.t. i, j ∈ P and k, l ∈ Q. The Buneman
tree of D is a tree which contains exactly all edges which are thus implied by
D (these edges are called Buneman edges). Buneman’s original algorithm in [9]
constructs the Buneman tree in Ω(n4) time. A more efficient θ(n3) algorithm
was later introduced in [5]. This reconstruction approach is considered to be
very conservative in the sense that it typically results in a highly unresolved
topology consisting only of few edges. Nevertheless, it is intuitively expected
that a robust reconstruction algorithm correctly reconstruct all Buneman edges.

In a related work, Atteson [2] introduced the concepts of l∞-radius and edge
l∞-radius, which provide numerical scales for robustness. The l∞-radius of a
reconstruction algorithm A is the maximal ε s.t. for every dissimilarity matrix
D and binary tree T , if ||D, DT ||∞ < ε · mine∈T {w(e)} then A is guaranteed
to return a tree with the same topology as T when receiving D as input. An

3

algorithm A is said to have edge l∞-radius of ε if for each input matrix D
and tree T , A correctly reconstructs all edges in T of weight strictly greater
than 1

ε ||D,DT ||∞. Notice that the edge l∞-radius of an algorithm is bounded
from above by its l∞-radius, and it is shown in [2] that they both cannot be
greater than 1

2 . It is clear by definition that an algorithm which guarantees
correct reconstruction from nearly additive input has an optimal l∞-radius of
1
2 . Moreover, any algorithm which correctly reconstructs all Buneman edges
has an optimal edge l∞-radius of 1

2 , since all edges in T of weight greater than
2||D,DT ||∞ are Buneman edge of D.

1.1 Related Work

Consistent reconstruction of phylogenetic trees has been studied since the early
seventies [9, 37, 34]. In general, this task requires Ω(n2) time, and Ω(nlog(n))
for the special case of trees with fully resolved topologies (where n denotes
the number of taxa) [11]. An O(n2) algorithm was already proposed in [37],
and O(nlog(n)) algorithms for reconstructing fully-resolved topologies were pro-
posed only later in [25, 6].

The neighbor joining scheme was first used in the context of consistent
distance-based reconstruction by the Ω(n4) ADDTREE algorithm [34]. Later,
Saitou and Nei proposed the famous θ(n3) neighbor-joining algorithm commonly
called NJ [33, 36]. Since then, numerous algorithms were developed in hope of
outperforming the original NJ algorithm on noisy input matrices (e.g. BIONJ
[20], NJML [31] and Weighbor [7] to name a few). This improved performance
is typically not proven analytically, but rather demonstrated on actual data
generated via some simulation of the evolutionary process. A consistent O(n2)
neighbor joining algorithm was recently proposed in [15]; this algorithm, called
FastNJ, uses a neighbor-selection criterion similar to the one used by NJ, while
reducing the total time complexity by a factor of n. Experimental results re-
ported there show that the reduction in running time has only a minor affect
on the accuracy of reconstruction.

One approach for analytically evaluating the performance of a distance-based
reconstruction algorithm on non-additive input is by observing the distance be-
tween the input dissimilarity matrix and the metric induced by the output tree.
This distance is typically measured using some metric norm. Unfortunately,
the consequent optimization problem of finding the closest tree to the input
matrix was shown to be NP-hard for several such norms (`1, `2 in [13] and `∞
in [1]). The only constant-rate approximation known to us in this area is the
3-approximation algorithm for the `∞ norm presented in [1]. This algorithm
uses the Farris transform and an algorithm for finding the closest ultrametric
to a given dissimilarity matrix [26, 17].

Another indication for robustness to noise, which was mentioned earlier,
is Atteson’s l∞-radius, and in particular the ability to reconstruct the correct
topology given a nearly additive dissimilarity matrix. The conditions under
which a dissimilarity matrix calculated over biological sequences is guaranteed
(with high probability) to be nearly additive were studied in [16]. Much con-

4

sequent research [12, 29, 10] was done using this result and assuming near-
additivity of the input or parts of it. In [2] Atteson shows that many distance-
based algorithms (including NJ and its variants) have an optimal l∞-radius of
1
2 , meaning that they return the correct topology given nearly additive input.
He also analyzes the edge l∞-radius of these algorithms, and shows that NJ has
edge l∞-radius no greater than 1

4 . Only recently in [28], it was proven that the
edge l∞-radius of NJ is exactly 1

4 .

1.2 Our Contribution

In this paper we introduce a characterization of tree metrics by LCA-distances,
which are distances from a selected root-taxon to the least common ancestors
of all taxon-pairs. Despite not obeying the basic distance-metric requirements
(such as the triangle inequality), LCA-distances bear some of the nice properties
of ultrametric distances, with the additional advantage of being able to represent
general trees and not only ultrametric trees. A simple and natural neighbor
joining criterion based on this observation is used to provide a family of efficient
neighbor-joining algorithms – Deepest Least Common Ancestor (DLCA). DLCA
algorithms can be seen as a simpler and more direct implementation of the
Farris transform: rather than transforming the tree-metric and going through
an intermediate ultrametric tree, it uses LCA distances (which can be calculated
from the original metric) to directly reconstruct the desired tree.

The DLCA family allows a large variety of consistent reconstructions al-
gorithms, each of which is distinctive in the way it reduces the input matrix
at each recursive step. These algorithms have a time optimal O(n2) imple-
mentation based on a novel technique, which may also be used to provide O(n2)
implementations of UPGMA, WPGMA and other similar clustering algorithms.
We concentrate on a large natural sub-family of DLCA algorithms called con-
servative algorithms, which are all shown to reconstruct a refinement of the
corresponding Buneman tree, implying optimal l∞-radius and edge l∞-radius
of 1

2 . We note that although the different algorithms in this sub-family all have
identical reconstruction guarantees, their performance may still differ signifi-
cantly when executed on actual data.

The rest of the paper is organized as follows. The next subsection provides
the needed notations and definitions. In Section 2 we describe our characteri-
zation and present the generic DLCA neighbor joining algorithm based on this
characterization. An efficient O(n2) implementation is presented in Subsection
2.1. In Section 3 we analyze the robustness of our algorithms, and in Section 4
we provide specific analysis of the DLCA algorithm which uses ‘maximal-value’
reduction; among other things, this variant of DLCA is used to produce a simple
proof of the 3-approximation result of [1]. Section 5 summarizes the results and
discusses future research directions.

1.3 Definitions and Notations

Let S be a finite set (the set of taxa). A phylogenetic tree over S is an undirected
weighted tree T = (V, E,w : E →R+∪{0}) whose leaves are the elements of S.

5

An edge is external if one of its endpoints is a leaf, and is internal otherwise; it
is usually assumed that internal edges have strictly positive weights. Let r, i, j
be three (not necessarily distinct) vertices in a tree T . DT (i, j), the distance in
T between i and j, is the length of the path connecting i and j in T . Similarly,
DT (r; ij) is the length of the path connecting r and the center vertex of the
3-finger claw spanning r, i, j (see Fig. 2); when T is rooted at r, this center
vertex is the least common ancestor of i and j (note that DT (r; ii) = DT (r, i)).
A matrix over S is a square matrix A whose rows and columns are indexed by
the elements of S. For a subset S′ ⊆ S, A(S′) denotes the principal submatrix
of A induced by the indices in S′. For matrices A, B over S, A ≤ B means
that A(i, j) ≤ B(i, j) for all i, j ∈ S. All matrices referred to in this paper are
assumed to be symmetric.

j v r

i

Figure 2: Distance estimates in trees. DT (i, j) is the total weight of the path
connecting taxa i, j in T . DT (r; ij) is the total weight of the path connecting r
and the center vertex (v) of the 3-finger claw spanning r, i, j.

2 The DLCA Family of Algorithms

Given an edge-weighted tree T over a set of taxa S and a taxon r ∈ S,
LCAr

T is a matrix over S \ {r} holding all LCA-distances in T from root-
taxon r: LCAr

T (i, j) = DT (r; ij). LCA-distances may be estimated from
taxon-sequences in two ways. The first option is to obtain them from a pair-
wise dissimilarity matrix D (computed using standard methods) by the trans-
formation LCA(D, r) in Definition 2.1 below. This transformation preserves
consistency such that if D is an additive metric consistent with tree T , then
LCA(D, r) = LCAr

T .

Definition 2.1. Given a dissimilarity matrix D over a set of taxa S and a
taxon r ∈ S, L = LCA(D, r) is the matrix over S \ {r} defined by:

L(i, j) =
1
2
(D(r, i) + D(r, j)−D(i, j)) .

LCA-distances may also be estimated directly from taxon-sequences by ap-
plying standard maximum likelihood techniques (e.g. [19]) over triplets of se-
quences. Previous works [32, 27] indicate that distance estimates obtained di-
rectly over sequence-triplets are more accurate than the ones obtained from
sequence-pairs, potentially leading to more accurate reconstruction.

6

A characterization of matrices of the form LCAr
T , to be denoted LCA-

matrices, is given by Definition 2.2 and Theorem 2.3 below.

Definition 2.2 (LCA-matrix). A symmetric non-negative matrix L over a set
S is an LCA-matrix if it satisfies the following properties:

1. for all taxa i ∈ S, L(i, i) = maxj∈S L(i, j).

2. For every triplet of distinct taxa (i, j, k) in S, L(i, j) ≥ min{L(i, k), L(j, k)}
(this property will be termed the 3-point condition2).

The above 3-point condition can also be phrased as follows: In every three
entries of L of the form {L(i, j), L(i, k), L(j, k)}, the minimal value appears at
least twice.

Theorem 2.3. A symmetric non-negative matrix L over a set of taxa S is an
LCA-matrix iff there exists an edge-weighted tree T over the expanded set of
taxa S ∪ {r} s.t. L = LCAr

T , i.e. ∀i, j ∈ S, DT (r; ij) = L(i, j).

Proof. ⇐ Suppose that T is a weighted tree over the taxon-set S ∪ {r}, and
let L = LCAr

T . It is clear that ∀i, j ∈ S : DT (r, i) ≥ DT (r; ij), which implies
Property 1 of Definition 2.2. Now observe the subtree spanning r, i, j, k. If its
topology is a star (Fig. 3a), then L(i, j) = L(i, k) = L(j, k), and the minimum
value appears in {L(i, j), L(i, k), L(j, k)} three times. If i is paired up with r in
this quartet (Fig. 3b) then L(i, j) = L(i, k) < L(j, k), and the minimum value
appears twice. The same can be argued for the other two possible topologies of
this subtree, proving Property 2.

a.

j v

i

r

k
b.

j

i

rvu

k

Figure 3: The 3-point condition for LCA-distances. Observe the subtree
spanning r, i, j, k (marked edges). a) If its topology is a star (4-finger claw), with
center-vertex v, then DT (r; ij) = DT (r; ik) = DT (r; jk) = DT (r, v). b) Other-
wise, w.l.o.g. i is paired up with r as illustrated, and DT (r; ij) = DT (r; ik) =
DT (r, v) < DT (r, u) = DT (r; jk).

⇒ The proof of the other direction is constructive. Given a matrix L which
satisfies both conditions, we show that any variant of the generic Deepest Least
Common Ancestor (DLCA) neighbor joining algorithm described in Table 1
constructs a tree T s.t. LCAr

T = L. It is clear that such an algorithm returns
a tree rooted at r with S as its set of leaves. We prove by induction on |S| that
this tree is consistent with the input LCA-matrix L.

2Matrices satisfying this condition are referred to in [24] as min-ultrametrics.

7

————————————————————

Deepest LCA Neighbor Joining (DLCA):

Input: A symmetric nonnegative matrix L over a set (of taxa) S.
1. Stopping condition: If L = [w] return a tree consisting of a single edge

of weight w, connecting the root r to the single taxon in S.

2. Neighbor selection: Select a pair of distinct taxa i, j, s.t. L(i, j) is a
maximal off-diagonal entry in rows i, j of L.
(i.e. for all k 6= i, j : L(i, j) ≥ max{L(i, k), L(j, k)})

3. Reduction: Remove i, j and add v to the taxon-set.
– Set L(v, v) ← L(i, j).
– For all k 6= v, set L(v, k) ← αkL(i, k) + (1− αk)L(j, k).

– Recursively call DLCA on the reduced matrix L.

4. Neighbor connection: In the returned tree, add i and j as daughters
of v, with edge-weights: w(v, i) = max{0, L(i, i)− L(i, j)} and
w(v, j) = max{0, L(j, j)− L(i, j)}.

————————————————————
Table 1: The DLCA algorithm. The recursive procedure above describes a
generic DLCA algorithm. Each variant of this algorithm is determined by the
way αk is calculated in step 3. This calculation may depend on the identities of
i, j, k, on the input matrix L, and on any other data kept by the algorithm.

Base case: |S| = 1. L = [w], and by the stopping condition we have
LCAr

T = [w]. For the induction step, observe the following lemma, which
follows immediately from the 3-point condition:

Lemma 2.4. Let L be an LCA-matrix over S, and let i, j be two distinct el-
ements of S s.t. ∀k 6= i, j : L(i, j) ≥ max{L(i, k), L(j, k)}. Then ∀k 6= i, j :
L(i, k) = L(j, k).

Now, suppose that |S| > 1 and let i, j be the taxon-pair chosen by the
algorithm (in step 2). By Lemma 2.4 we have L(i, k) = L(j, k) for all k 6= i, j.
Hence in step 3 of the algorithm we get L(v, k) ← L(i, k), regardless of the
value assigned to αk. We now argue that the reduced matrix L′ over S′ =
S \ {i, j} ∪ {v} defined by step 3 of the algorithm is an LCA-matrix as well.
Since all the entries of L′ except L′(v, v) are identical to the corresponding
entries of L(S \{j}) (where index v in L′ corresponds to index i of L), Property
2 of Definition 2.2 holds for L′ as it holds for L. For the same reason, Property
1 holds for all indices in S′ \ {v}. Property 1 holds for v as well, since for all
k ∈ S′ \ {v}, L′(k, v) = L(k, i) ≤ L(i, j) = L′(v, v).

Given that L′ is an LCA-matrix, the induction hypothesis implies that the
tree T ′ over S′ ∪ {r} returned by the recursive call at the end of step 3 satisfies
LCAr

T ′ = L′. Using this we show that LCAr
T = L. Recall that T is obtained

8

from T ′ in step 4 by adding two edges (v, i), (v, j) with weights L(i, i)− L(i, j)
and L(j, j)−L(i, j) respectively (these weights are non-negative due to Property
1 of LCA-matrices). Now for all k, l ∈ S \ {i, j} we have:

LCAr
T (k, l) = LCAr

T ′(k, l) = L′(k, l) = L(k, l) ,

LCAr
T (k, i) = LCAr

T ′(k, v) = L′(k, v) = L(k, i) ,

LCAr
T (k, j) = LCAr

T ′(k, v) = L′(k, v) = L(k, j) .

We are left to prove the equality for the entries (i, j), (i, i), (j, j) of L:

LCAr
T (i, j) = LCAr

T ′(v, v) = L′(v, v) = L(i, j) ,

LCAr
T (i, i) = LCAr

T ′(v, v) + w(v, i) = L(i, j) + L(i, i)− L(i, j) = L(i, i) ,

LCAr
T (j, j) = LCAr

T ′(v, v) + w(v, j) = L(i, j) + L(j, j)− L(i, j) = L(j, j) .

In order to complete the proof of consistency for the DLCA algorithm, it is
enough to show that each LCA-matrix represents a unique edge-weighted tree
(with strictly positive internal edge weights). This is implied by the fact that
the taxa i, j chosen in step 2 of the algorithm must be neighbors in all trees
consistent with the input LCA-matrix (proof details are omitted).

The degree of freedom in the choice of reduction formula (defined by the
value assigned to αk in step 3) implies a wide family of consistent algorithms
(the DLCA family). The discussion in this paper is confined to algorithms which
use only conservative reductions. A conservative reduction step is achieved by
first calculating some value for α ∈ [0, 1], and then applying one of the following:

either ∀k 6= v : L(v, k) ← α L(i, k) + (1− α) L(j, k),
or ∀k 6= v : L(v, k) ← α max{L(i, k), L(j, k)} + (1− α)min{L(i, k), L(j, k)} .

Although not all consistent reductions are conservative, most interesting reduc-
tions are. We will mainly be interested in two specific conservative variants:

• The mid-point reduction: L(v, k) ← 1
2 (L(i, k) + L(j, k))

• The maximal-value reduction: L(v, k) ← max{L(i, k), L(j, k)}
The deepest LCA neighbor-joining scheme proposed here relates to the well

known closest-pair neighbor-joining scheme for ultrametric reconstruction. The
closest-pair criterion is based on the 3-point condition for ultrametrics much the
same way that the deepest-LCA criterion is based on the 3-point condition for
LCA-matrices. This simple relation allows us to convert many known algorithms
which reconstruct ultrametric trees from pairwise-distances to algorithms which
reconstruct general trees from LCA-distances. The aforementioned ‘mid-point’
variant can actually be viewed as such a conversion of the WPGMA algorithm3.
The ‘maximal-value’ variant similarly relates to the single linkage algorithm
presented in [26, 17].

3A variant of the DLCA algorithm which similarly relates to UPGMA can be achieved by
a slight modification of the mid-point reduction.

9

2.1 A Time Optimal Implementation of DLCA

Given an input matrix L over a set of n taxa S, DLCA performs n−1 iterations
(recursive calls). Each such iteration involves selecting a neighboring taxon-
pair and reducing the input matrix. It is easy to see that the reduction step
can be implemented in linear time4. Thus, the running time of the algorithm
is typically dominated by the time required for the neighbor selection steps.
A naive approach for neighbor selection, which requires θ(n2) time in each
iteration (and a total time complexity of θ(n3)) scans the matrix L for a
maximum off-diagonal entry and selects the taxon-pair corresponding to it.

The time complexity can be reduced to O(n2log(n)) by maintaining for each
i ∈ S an index j s.t. L(i, j) is a maximal off diagonal entry in row i of L,
as follows. Let MAXL(i) = maxk 6=i L(i, k) denote the maximal off-diagonal
value in row i of L. An ordered taxon-pair (i, j) is a maximal pair (in row i)
of L if L(i, j) = MAXL(i). Finding a maximal pair for each row in L can be
done in O(n2) time. Once a maximal pair is kept for each row, a taxon-pair
satisfying the neighbor-selection criterion is found in linear time by scanning the
set of maximal pairs and selecting a pair (i, j) for which L(i, j) is maximized.
Updating the set of maximal pairs after the reduction of L (in step 3 of the
algorithm) can be done in O(nlog(n)) time by maintaining the entries in each
row of L in a heap, thus resulting in total time complexity of O(n2 log n).

For the ‘maximal value’ reduction, the running time of the above algorithm
can be reduced to O(n2) by techniques similarly employed in the single linkage
algorithm [17, 4]. In a nutshell, this is done by updating the set of maximal pairs
in linear time during each reduction step. This is possible since when reducing
the matrix L to a matrix L′ by replacing i, j with v, the maximal value reduction
guarantees that if (k, i) or (k, j) is a maximal pair of L, then (k, v) is a maximal-
pair of L′. Unfortunately, this is not true for other conservative reductions.
We are able to get O(n2) running time for other conservative reductions by
the observation that the selected pair i, j should correspond to a maximal off
diagonal entry in rows i, j, but not necessarily in the entire matrix. To find such
pairs efficiently, we maintain a complete ascending path. A sequence of distinct
taxa P = (i1, i2, . . . , il) is an ascending path with respect to L if all its edges
(ir, ir+1) are maximal pairs, implying also that MAXL(ir) ≤ MAXL(ir+1). An
ascending path is complete if the above inequality holds with equality for the
last taxon-pair in the sequence (i.e. MAXL(il−1) = MAXL(il)).

Observation 2.5. If P = (i1, . . . , il) is a complete ascending path of L, then
L(il−1, il) is a maximal off-diagonal entry in rows il−1, il of L.

Observation 2.5 implies that neighbor selection can be implemented by main-
taining a complete ascending path. A method for constructing and maintaining
such a path throughout the execution of the algorithm in overall O(n2) time will
imply the desired bound on the total time complexity. Our method is based on
the following basic extension operation: given an ascending path P = (i1, . . . , il)

4We exclude the computation of αk in step 3 from our analysis as it is typically done in
constant time for commonly used reductions.

10

of L, compute m = MAXL(il); if m = L(il−1, il) then terminate extension; oth-
erwise, extend the path P by adding to it any vertex il+1, s.t. L(il, il+1) = m.
By repeating this basic extension operation until termination, we obtain a com-
plete ascending path.

Given an input matrix L of dimension n > 1, a complete ascending path
is constructed by initializing an ascending path P in an arbitrary taxon (i.e.
P = (i1, i2) s.t. i1 ∈ S and L(i1, i2) = MAXL(i1)), and then extending P as
described above. Given a complete ascending path P = (i1, . . . , il) of a matrix
L, consider a reduction step in which the taxon-pair (i, j) = (il−1, il) is replaced
by a new taxon v. Let L′ be the matrix obtained by this reduction. We observe
that if the reduction is convex, meaning that for all k 6= v the value of L′(v, k)
lies between L(i, k) and L(j, k)5, then the path P̄ = (i1, . . . , il−2) is a (possibly
empty) ascending path of the reduced matrix L′. This observation follows from
the fact that all consecutive pairs in P̄ remain maximal with respect to L′. Thus
a complete ascending path P ′ can be computed for L′ by iteratively extending
P̄ by basic extension operations, until the termination condition is met.

We now analyze the total time complexity of the process described above.
This process consists of a series of basic extension operations, some of which
lead to termination, whereas the rest lead to an extension of P by an addi-
tional vertex. Each operation requires the computation of MAXL(i) (for some
taxon i), which can be done in linear time. Thus, the total time complexity of
maintaining P is determined by the total number of basic extension operations
invoked throughout the execution of the algorithm. n− 1 such operations leads
to termination (one in each iteration), whereas the rest result in an extension of
the path by a single vertex. Now, since in each iteration only two vertices are
removed from P , and by the time the execution concludes this path is emptied
(up to a single vertex), the total number of vertices added to P throughout the
execution is no more than 2n − 2. Thus the total number of basic extension
operations is no more than 3n− 3, leading to a total running time of O(n2).

Note: Complete ascending paths can also be used to achieve optimal O(n2) im-
plementations of some well known clustering algorithms such as UPGMA and
WPGMA. To the best of our knowledge, these are the first O(n2) faithful im-
plementations of these algorithms which completely preserve their input-output
specifications for all possible inputs (see [23]).

3 Optimal Robustness of DLCA

In this section we discuss the robustness of DLCA. In particular, we consider
an execution of an arbitrary conservative DLCA algorithm on input of the form
LCA(D, r), and prove that in such an execution the algorithm returns a tree
which refines the Buneman tree of D. We then show that this implies optimal
robustness under Atteson’s criteria. We start by defining the concepts of clades
and LCA-clusters, which play a central role in the analysis.

5Observe that each conservative reduction is convex.

11

Definition 3.1 (Clades). Given a tree T rooted at r and a vertex v in T , denote
by Lr(v) (the clade of v) the set of leaves which are descendants of v in T .

Definition 3.2 (LCA clusters). Let L be a symmetric matrix over S. A proper
subset X ⊂ S is an LCA-cluster of L if it satisfies the following condition:

∀{x, y} ⊆ X, z ∈ S \X : L(x, y) > max{L(x, z), L(y, z)} .

The following lemma characterizes the connection between clades and LCA-
clusters.

Lemma 3.3. Let L be a symmetric non-negative matrix over S, and let T be the
rooted tree returned by a conservative DLCA algorithm when run on L. Then
every LCA-cluster of L is a clade in T .

Proof. Let X be an LCA-cluster of L. We prove by induction on |S| that X is
a clade in T . This claim holds vacuously for |S| = 1, so assume that |S| > 1. If
|X| = 1, then X = {x} for some taxon x, and clearly {x} = Lr(x) is a clade in
T . So we may assume that |S| > |X| > 1.

The induction step is carried out by observing that conservative reductions
preserve LCA-clusters. Let i, j ∈ S be the taxon-pair selected by the algorithm.
Since X is an LCA-cluster of S and |X| > 1, the maximality of L(i, j) in rows
i, j of L implies that either {i, j} ⊆ X, or {i, j} ⊆ S \ X. Now denote by
v the parent vertex of i, j, by S′ = S \ {i, j} ∪ {v} the reduced set of taxa,
and by L′ the reduced matrix. Let X ′ be the reduced version of X, such that
X ′ = X \ {i, j} ∪ {v} if {i, j} ⊆ X and X ′ = X otherwise. We prove now that
X ′ is an LCA-cluster of L′, i.e:

∀{x, y} ⊆ X ′, z ∈ S′ \X ′ : L′(x, y) > max{L′(x, z), L′(y, z)}.
Let x, y, z as above be given. We distinguish between two cases:

• {i, j} ⊆ S \X (and hence v ∈ S′ \X ′): If z 6= v the claim follows from the
inductive assumption on X, so assume that z = v. We need to show that
for an arbitrary pair {x, y} ⊆ X ′ it holds that L′(x, y) > L′(x, v). First,
we note that {x, y} ⊆ X as well; hence L(x, y) > L(x, i), L(x, j) since X
is an LCA-cluster of S. Now since L′(x, y) = L(x, y), the convexity of the
reduction step guarantees that L′(x, y) > L′(x, v). Similar argument can
be used to show that L′(x, y) > L′(y, v) as well.

• {i, j} ⊆ X (and hence v ∈ X ′): If x, y 6= v the claim follows from
the inductive assumption on X. We are left to show that L′(x, v) >
max{L′(x, z), L′(v, z)} for all x ∈ X ′ \ {v}, z /∈ X ′.
Let x, z be as above. Since X is an LCA-cluster of L, we have L(x, i), L(x, j) >
L(x, z). Again, the convexity of the reduction step guarantees L′(x, v) >
L′(x, z). We are left to prove that L′(x, v) > L′(v, z). Since X is an
LCA-cluster we have that L(i, x) > L(i, z) and L(j, x) > L(j, z). As-
sume first that the conservative reduction is of the form L(v, k) ←
αL(i, k) + (1− α)L(j, k), then:

L′(v, x) = αL(i, x) + (1− α)L(j, x) > αL(i, z) + (1− α)L(j, z) = L′(v, z).

12

A similar argument applies also when the reduction if of the second form
(L(v, k) ← α min{L(i, k), L(j, k)} + (1 − α)max{L(i, k), L(j, k)}), using
the fact that max{L(i, x), L(j, x)} > max{L(i, z), L(j, z)} and
min{L(i, x), L(j, x)} > min{L(i, z), L(j, z)}.

Now denote by T ′ the rooted tree returned by DLCA when run on L′. Since
X ′ is an LCA-cluster of L′, the induction hypothesis implies that there is a
vertex u in T ′, s.t. Lr(u) = X ′. The tree T is obtained from T ′ by adding i, j
as two daughters of v. Therefore, in T we get Lr(u) = X.

After establishing the connection between LCA-clusters and clades, the fol-
lowing lemma completes the picture by providing the desired connection between
Buneman edges and LCA-clusters.

Lemma 3.4. Let D be a dissimilarity matrix over a taxon-set S, and let (P |Q)
be a partition of S induced by some edge in the Buneman tree of D. Then Q is
an LCA-cluster of LCA(D, r) for every taxon r in P .

Proof. Let L = LCA(D, r). In order to show that Q is an LCA-cluster of L, we
need to prove that for every x, y ∈ Q, z ∈ P we have L(x, y) > L(x, z). Since
(P |Q) is induced by a Buneman edge, then for all x, y ∈ Q and w, z ∈ P , we
have D(w, z) + D(x, y) < min{D(w, x) + D(y, z) , D(w, y) + D(x, z)}. When
assigning w = r we get the following:

D(r, y) + D(x, z) > D(r, z) + D(x, y) ⇒
D(r, y)−D(x, y) > D(r, z)−D(x, z) ⇒
D(r, x) + D(r, y)−D(x, y) > D(r, x) + D(r, z)−D(x, z) ⇒ L(x, y) > L(x, z).

Lemmas 3.3 and 3.4 rather straightforwardly imply the following theorem,
which contains our main result.

Theorem 3.5. Any conservative DLCA algorithm, when executed on LCA(D, r)
(for arbitrary dissimilarity matrix D and a root-taxon r), has an optimal edge
l∞-radius (and hence also optimal l∞ radius) of 1

2 .

Proof. Let T be an edge-weighted tree, D be a dissimilarity matrix over taxon-
set S, and let e be an edge in T s.t. w(e) > 2||D,DT ||∞. It is required to
show that the tree reconstructed by DLCA has an edge inducing the same split
(P |Q) as e. It is easy to see that since w(e) > 2||D, DT ||∞, the Buneman tree
of D contains an edge inducing the split (P |Q). Now, assume w.l.o.g. that the
root-taxon r (from which DLCA is executed) is in P , then Lemma 3.4 implies
that Q is an LCA-cluster of LCA(D, r). By Lemma 3.3, Q is a clade of the
tree returned by DLCA, meaning that some edge in this tree induces the split
(P |Q).

13

We conclude this section by comparing the robustness of (conservative)
DLCA algorithms with that of NJ (as reported in [2, 28]). Regarding recon-
struction of ‘long-edges’ (i.e. edge l∞-radius), we showed that DLCA is optimal
and hence superior to NJ (whose edge l∞-radius is 1

4). Regarding reconstruc-
tion of the entire tree, both algorithms have an optimal l∞-radius. However, it
was demonstrated in [28] that NJ does not always correctly reconstruct a tree
from a dissimilarity matrix which is quartet-consistent with it. DLCA, on the
other hand, is guaranteed correct reconstruction in such a case, demonstrating
yet again its superior robustness to noise compared with NJ.

4 The ‘Maximal-Value’ variant of DLCA

This section is devoted to a detailed discussion of a specific member of the DLCA
family – the ‘maximal-value’ variant. As mentioned earlier, the ‘maximal-value’
variant of DLCA relates to the single linkage ultrametric reconstruction algo-
rithm from [26, 17]. Its Farris-transform equivalent was used as part of the
O(n3) algorithm for reconstructing the Buneman tree [5], and as part of the
O(n2) 3-approximation algorithm from [1]. In this section we prove that this
variant possesses some interesting properties, which are implied by the fact that
it yields a tree whose LCA-matrix is the unique dominant LCA-matrix of the
input matrix6. Among other things, our analysis provides a simple proof of the
3-approximation result from [1].

Let U(A) be the set of all LCA-matrices which are greater or equal to a
matrix A. Since U(A) is closed and bounded from below (by A), it contains a
minimal element. It is also easy to see that for any two matrices L1, L2 in U(A),
the matrix L defined by L(i, j) = min{L1(i, j), L2(i, j)} is also in U(A). This
implies that U(A) contains a unique minimal element – the unique dominant
LCA-matrix of A – denoted by Ldom. The uniqueness of Ldom implies that
it is closest to A among all LCA-matrices in U(A), under any distance-metric
d which satisfies the following intuitive requirement: if A ≤ A1 ≤ A2 then
d(A,A1) ≤ d(A, A2) (this includes, for instance, all `p norms). It is also easy to
see that Ldom is an LCA-matrix closest to A (among all matrices, not just those
in U(A)) under the maximal distortion measure defined by: MaxDist(A,L) =
maxi,j

L(i,j)
A(i,j) ·maxi,j

A(i,j)
L(i,j) [3].

The following lemma states another nice property of dominant LCA-matrices:

Lemma 4.1. Let Ldom be the dominant LCA-matrix of a symmetric matrix A.

Then: ∀i : Ldom(i, i) = maxj{A(i, j)}.
Proof. Let mi = maxj{A(i, j)}, and let L be the matrix over S defined by:
L(i, j) = min{Ldom(i, j),mi,mj}. Then we have that for all i, j ∈ S,

A(i, j) ≤ min{Ldom(i, j), mi,mj} = L(i, j) ≤ Ldom(i, j),

6This concept is dual to the unique sub-dominant ultrametric defined in [26].

14

meaning that A ≤ L ≤ Ldom. Moreover, L(i, i) = mi (since Ldom(i, i) =
maxj{Ldom(i, j)} ≥ maxj{A(i, j)} = mi). Thus, if we show that L is an LCA-
matrix, then by the dominance of Ldom, L = Ldom and the lemma follows.

Property 1 of LCA-matrices (see Definition 2.2) holds for L since for all i, j,
min{Ldom(i, i),mi} ≥ min{Ldom(i, j),mi,mj}. To see that property 2 holds as
well, consider an arbitrary triplet {i, j, k}. Let m = min{Ldom(i, j), Ldom(i, k),
Ldom(j, k)}, and assume w.l.o.g. that mi ≤ mj ≤ mk. If m ≤ mi, the two
minimal entries in {L(i, j), L(i, k), L(j, k)} are as in Ldom (and equal to m).
Otherwise, L(i, j) = L(i, k) = mi ≤ min{mj , L

dom(j, k)} = L(j, k). In both
cases the two minimal entries in {L(i, j), L(i, k), L(j, k)} hold the same value.

We now turn to prove that the LCA-matrix of the tree reconstructed by the
‘maximal-value’ variant of DLCA is dominant to the input matrix.

Theorem 4.2. Let A be a symmetric matrix over S, and let T be the tree over
S ∪ {r} reconstructed from A by the DLCA algorithm using the maximal-value
reduction. Then LCAr

T is the unique dominant LCA-matrix of A.

Proof. By induction on |S|. If |S| = 1, then A = [w], T is a tree with one
edge of weight w, and LCAr

T = [w] = A. Assume now that |S| > 1, and
let i, j be the taxon-pair chosen in step 2 of the DLCA algorithm. Denote by
S′ = S \ {i, j} ∪ {v} the reduced taxon-set, by A′ the reduced matrix, and
by T ′ the tree returned by the algorithm given A′ as input. By the induction
hypothesis, L′ = LCAr

T ′ is the unique dominant LCA-matrix of A′. We will use
this to show that L = LCAr

T is dominant to A.
First, we show that L ≥ A and L(i, j) = A(i, j). By the induction hypothesis

(L′ ≥ A′) and the maximal-value reduction of A to A′, we have:

∀k, l 6= i, j : L(k, l) =L′(k, l) ≥ A′(k, l) = A(k, l).
∀k 6= i, j : L(k, i) =L(k, j) = L′(k, v) ≥ A′(k, v) ≥ A(k, i), A(k, j).

L(i, j) =L′(v, v) ≥ A′(v, v) = A(i, j).

Observe that the neighbor-selection criterion and reduction formula guarantee
that A′(v, v) = maxk{A′(v, k)}. Since L′ is dominant to A′, Lemma 4.1 implies
that L′(v, v) = A′(v, v), and the third inequality above turns into an equality
(L(i, j) = A(i, j)).

We are left to prove that if M is an LCA-matrix and A ≤ M ≤ L, then
M = L. Given such a matrix M , and an arbitrary taxon k 6= i, j, we use the
fact that L(i, j) = A(i, j) and L(i, k) = L(j, k) ≤ L(i, j), to show that:

M(i, k) ≤ L(i, k) ≤ L(i, j) = A(i, j) ≤ M(i, j), and similarly M(j, k) ≤ M(i, j).

Thus we have that M(i, j) ≥ max{M(i, k), M(j, k)} for all k 6= i, j. This
implies, by Lemma 2.4, that M(i, k) = M(j, k). Hence the matrix M can be
reduced to a matrix M ′ over S′ by replacing rows i, j by row v, and as argued
in the proof of Theorem 2.3, this reduced matrix is an LCA-matrix. Now since

15

A′ ≤ M ′ ≤ L′, the induction hypothesis on L′ implies that M ′ = L′, and this
in turn implies that M = L by the following equalities:

∀k, l 6= i, j : M(k, l) =M ′(k, l) = L′(k, l) = L(k, l).
∀k 6= i, j : M(k, i) =M(k, j) = M ′(k, v) = L′(k, v) = L(k, i) = L(k, j).

M(i, j) =M ′(v, v) = L′(v, v) = L(i, j).

The following lemma demonstrates how to transform Ldom into an LCA-
matrix closest to A under the `∞ norm (out of all LCA-matrices, not just the
ones in U(A)).

Lemma 4.3. Given a matrix A and its unique dominant LCA-matrix Ldom,
denote by ε = ||A,Ldom||∞ = maxi,j{Ldom(i, j)−A(i, j)}. Then L∞ defined by
L∞(i, j) = max{Ldom(i, j)− ε

2 , 0} is an LCA-matrix closest to A under `∞.

Proof. First, it is easy to see that L∞ is an LCA-matrix, and that ||A,L∞||∞ =
ε
2 . Given an arbitrary LCA-matrix L, we need to prove that ε

2 ≤ εL, where εL =
||A, L||∞. Denote by L′ the matrix defined as follows: L′(i, j) = L(i, j) + εL.
It is again easy to verify that A ≤ L′, and that ||A,L′||∞ ≤ 2εL. Now since
L′ is an LCA-matrix, and Ldom is the dominant LCA-matrix of A, we have
A ≤ Ldom ≤ L′. This means that ε = ||A,Ldom||∞ ≤ ||A,L′||∞ ≤ 2εL.

Note that if Ldom(i, i) = A(i, i) for all i, then we can modify the definition of
L∞ in Lemma 4.3 s.t. ε

2 is subtracted only from off-diagonal entries of Ldom,
and thus for all i, L∞(i, i) = A(i, i) as well. Both versions of the transformation
of Ldom to L∞ do not change the topology of the tree corresponding to Ldom,
with the exception of setting some edge-weights to zero. We now show that the
tree T∞ corresponding to L∞ provides the desired 3-approximation. Given a
metric D over a taxon-set S, our 3-approximation algorithm acts as follows:

1. Choose some arbitrary taxon r, and calculate L = LCA(D, r).

2. Execute the ‘maximal-value’ variant of DLCA on L to get a tree T dom.
Let Ldom = LCAr

T dom .

3. Apply on Ldom the transformation of Lemma 4.3 which subtracts ε
2 only

from off-diagonal entries. Return the tree T∞ corresponding to the re-
sulting LCA-matrix L∞.

Note that all stages of the algorithm can be implemented in O(n2) time.

Theorem 4.4. Let D be a metric over a taxon-set S, and let T∞ be the tree
returned by the above algorithm. Denote by DT∞ the additive metric implied by
T∞. Then for every additive metric D′:

||D, DT∞ ||∞ ≤ 3 · ||D, D′||∞ .

16

Proof. Denote by L = LCA(D, r), and by T ′ the edge-weighted tree which
realizes D′. Note that L′ = LCAr

T ′ is an LCA-matrix due to Theorem 2.3. Our
proof consists of two simple claims:

Claim 4.5. ||D, DT∞ ||∞ = 2 · ||L,L∞||∞.

Proof. We first need to show that for all taxa i, DT∞(r, i) = D(r, i). Notice
that since D satisfies the triangle inequality, L is nonnegative and ∀i : D(r, i) =
L(i, i) = maxj L(i, j). Therefore, by Lemma 4.1 we have that ∀i : Ldom(i, i) =
maxj L(i, j) = L(i, i). Hence, when invoking the transformation implied by
Lemma 4.3, ε

2 is not subtracted from the diagonal, and we get:

∀i : DT∞(r, i) = L∞(i, i) = Ldom(i, i) = L(i, i) = D(r, i) .

Now we use the above equality and the formula in Definition 2.1 to show that
the following holds for every taxon-pair i, j ∈ S \ {r}:

D(i, j)−DT∞(i, j) =
(D(r, i) + D(r, j)− 2L(i, j))− (DT∞(r, i) + DT∞(r, j)− 2L∞(i, j)) =
2(L∞(i, j)− L(i, j)) ,

which implies that ||D, DT∞ ||∞ = 2 · ||L,L∞||∞.

Claim 4.6. ||L,L′||∞ ≤ 3
2 · ||D,D′||∞.

Proof. The proof simply follows from the fact that L′(i, j) = 1
2 (D′(r, i) +

D′(r, j)−D′(i, j)) and L(i, j) = 1
2 (D(r, i) + D(r, j) −D(i, j)).

Now since by definition ||L,L∞||∞ ≤ ||L,L′||∞, the above claims imply:

||D,DT∞ ||∞ = 2 · ||L,L∞||∞ ≤ 2 · ||L,L′||∞ ≤ 3 · ||D,D′||∞ .

Note: Theorem 3.5 in the previous section implies that the ‘maximal-value’
variant of DLCA has optimal l∞-radius and edge l∞-radius of 1

2 . Since the
transformation in step 3 of the above 3-approximation algorithm does not change
the topology of the tree, the same robustness result applies to this algorithm as
well. We note that in [16] it is argued that a 3-approximation algorithm cannot
have l∞-radius greater than 1

6 . This claim is based on an example which consists
of a dissimilarity matrix D and two trees with different topologies over the same
set of 4 taxa. One tree (T) satisfies ||D, DT ||∞ = 1

6 ·mine∈T {w(e)}, whereas the
other (T ′) is shown to give a 3-approximation of the closest additive metric to
D under `∞. We observe that this example only demonstrates that, a-priori, a
3-approximation algorithm is not guaranteed to have an l∞-radius greater than
1
6 . However, it does not exclude the possibility that such an algorithm may
indeed have a greater l∞-radius, and hence it does not contradict our result.

17

5 Conclusion and Discussion
In this paper we discussed a characterization of edge-weighted trees using LCA-
distances. We showed that any tree can be uniquely defined by distances from
an arbitrary taxon to the least common ancestors of all taxon-pairs (Theorem
2.3). These LCA-distances obey a 3-point condition dual to the 3-point ultra-
metric condition, providing us with a simple neighbor-joining criterion (Deepest
Least Common Ancestor). Using this criterion, we defined a family of neighbor
joining algorithms (DLCA), and then presented an O(n2) time implementa-
tion of these algorithms using the technique of complete ascending paths. The
same technique can be used to implement various clustering algorithms such as
UPGMA and WPGMA in optimal O(n2) time as well.

A major part of our discussion was dedicated to exploring the robustness of
DLCA algorithms to noise in the input distance-estimates. DLCA algorithms
using conservative reduction steps were shown to possess various optimal robust-
ness properties. In this respect, they outperform Saitou&Nei’s NJ algorithm.
Specific analysis was given for one conservative variant of DLCA – ‘maximal
value’. This variant was shown to yield a tree-topology best fitting the input
LCA-distances under several interesting measures. It was also used to provide
a new simple O(n2) 3-approximation algorithm for the closest additive metric
under the `∞ norm. The optimal robustness of conservative DLCA algorithms
mentioned above applies to this 3-approximation algorithm as well.

Apart from their being efficient and robust, DLCA algorithms are distinctive
in their pivotal nature, which may hold an advantage when executing them on
actual data. DLCA algorithms allow an arbitrary choice of the root-taxon,
however, preliminary experiments indicate that accuracy of reconstruction is
very much influenced by this choice as well as the choice of reduction formula. In
our experiments we used datasets described in [14, 32], which were downloaded
from the LIRMM ‘Methods and Algorithms in Bioinformatics’ website [21]. A
detailed account of our experimental setup and results can be found in [22].

The results of these experiments indicate that accuracy of reconstruction
varies very much among the different choices of root taxon. Accuracy is also
highly influenced by the reduction formula used by the algorithm: the ‘mid-
point’ variant of DLCA typically yields significantly better reconstruction than
the ‘maximal-value’ variant despite the theoretical guarantees shown for the
latter in Section 4. On average, both variants were observed to yield less ac-
curate reconstruction compared with NJ (averaging over all possible choices of
root-taxon). It is plausible that the relative superiority of both NJ and the
‘mid-point’ variant is due to the use of averaging, which plays an important role
in ‘smoothing’ noise in the input. Averaging appears in the reduction steps of
both NJ and the ‘mid-point’ variant, and in NJ it also appears in the neighbor-
selection criterion. Given a dissimilarity matrix D, NJ selects a pair of taxa
maximizing D(i, j) +

∑
r 6=i,j Lr(i, j), where Lr = LCA(D, r). Intuitively, this

criterion gives priority to pairs of taxa with average deepest LCA7.
7The introduction of the term D(i, j) is necessary to make the selection criterion consistent

(see e.g. [8]).

18

As mentioned above, when the root taxon is chosen uniformly at random,
reconstruction done by the DLCA algorithm is typically less accurate than that
of Saitou&Nei’s NJ. However, almost every instance in our dataset contained a
taxon from which the ‘mid-point’ variant of DLCA yields a tree closer to the
true tree than the one returned by NJ. This phenomenon suggests two possible
courses of action. The first option is to run DLCA from all taxa to obtain n
possibly different trees, and then select from these trees the one most likely to be
closest to the true topology. While there is no straightforward way to perform
such a selection, certain natural criteria come into mind, such as fit to the
input matrix, parsimony score and likelihood. An apparent disadvantage of this
approach is that it introduces an additional factor of n to the running time of
the algorithm. Another approach is to choose the root-taxon according to some
criterion which is expected to lead to better reconstruction. Our experiments
indicate that taxa closer to the origin of evolution are more likely to lead to
better reconstruction.

Their relative simplicity and proven robustness are apparent advantages of
DLCA algorithms. The main conclusion we draw from our preliminary exper-
imental results is that a better use of the pivotal nature of DLCA may lead
to competitive reconstruction in practice. This venue of research is still to be
pursued.

Acknowledgement

We would like to thank Isaac Elias and Satish Rao for interesting discussions,
and Satish Rao also for drawing our attention to [28].

References

[1] R. Agarwala, V. Bafna, M. Farach, M. Paterson, and M. Thorup. On the
approximability of numerical taxonomy (fitting distances by tree metrics).
SIAM Journal on Computing, 28(3):1073–1085, June 1999.

[2] K. Atteson. The performance of neighbor-joining methods of phylogenetic
reconstruction. Algorithmica, 25:251–278, 1999.

[3] Y. Bartal, N. Linial, M. Mendel, and A. Naor. Low dimensional embeddings
of ultrametrics. Eur. J. Comb., 25(1):87–92, 2004.

[4] J. Barthelemy and A. Guenoche. Trees and proximities representations.
Wiley, 1991.

[5] V. Berry and D. Bryant. Faster reliable phylogenetic analysis. In RECOMB
’99: Proceedings of the third annual international conference on Compu-
tational molecular biology, pages 59–68, New York, NY, USA, 1999. ACM
Press.

[6] G. Brodal, R. Fagerberg, C. Pedersen, and A. stlin. The complexity of con-
structing evolutionary trees using experiments. In Proc. 28th International
Colloquium on Automata, Languages, and Programming, volume 2076 of
Lecture Notes in Computer Science, pages 140–151. 2001.

19

[7] W. Bruno, N. Socci, and A. Halpern. Weighted Neighbor Joining: a
likelihood-based approach to distance-based phylogeny reconstruction. Mol
Biol Evol, 17(1):189–197, 2000.

[8] D. Bryant. On the uniqueness of the selection criterion in neighbor-joining.
Journal of Classification, 22(1):3–15, 2005.

[9] P. Buneman. The recovery of trees from measures of dissimilarity. Mathe-
matics in the Archeological and Historical Sciences, pages 387–395, 1971.

[10] A. Jaffe R. Mihaescu E. Mossel S. Rao C. Daskalakis, C. Hill. Maximal
accurate forests from distance matrices. In RECOMB, pages 281–295, 2006.

[11] J. Culberson and P. Rudnicki. A fast algorithm for constructing trees from
distance matrices. Information Processing Letters, 30(4):215–220, February
1989.

[12] T. Warnow D. Huson, S. Nettles. Disk-Covering, a fast-converging method
for phylogenetic tree reconstruction. J Comp Biol, 6:369–386, 1999.

[13] W. Day. Computational complexity of inferring phylogenies from dissimi-
larity matrices. Bulletin of Mathematical Biology, 49(4):461–467, 1987.

[14] R. Desper and O. Gascuel. Fast and accurate phylogeny reconstruction al-
gorithms based on the minimum-evolution principle. J Comp Biol, (5):687–
705, 2002.

[15] I. Elias and J. Lagergren. Fast neighbor joining. In Proc. of the
32nd International Colloquium on Automata, Languages and Programming
(ICALP’05), volume 3580 of Lecture Notes in Computer Science, pages
1263–1274. Springer-Verlag, July 2005.

[16] P. Erdos, M. Steel, L. Szekely, and T. Warnow. A few logs suffice to build
(almost) all trees (II). Theoretical Computer Science, 221:77–118, 1999.

[17] M. Farach, S. Kannan, and T. Warnow. A robust model for finding optimal
evolutionary trees. Algorithmica, 13(1/2):155–179, January 1995.

[18] J. Farris. A probability model for inferring evolutionary trees. Systematic
Zoology, 22:250–256, 1973.

[19] J. Felsenstein. Evolutionary trees from DNA sequences: a maximum like-
lihood approach. J Mol Evol, 17(6):368–376, 1981.

[20] O Gascuel. BIONJ: an improved version of the NJ algorithm based on a
simple model of sequence data. Mol Biol Evol, 14(7):685–695, 1997.

[21] O. Gascuel and S. Guindon. The methods and algo-
rithms in bioinformatics (MAB) lab. Le Laboratoire
d’Informatique, de Robotique et de Microlectronique de Montpellier
http:/www.lirmm.fr/mab/sommaire english.php3.

20

[22] I. Gronau and S. Moran. Pivotal neighbor joining algorithms for infer-
ring phylogenies via LCA-distances. Technical Report CS-2006-11, Tech-
nion, May 2006. http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-
get.cgi/2006/CS/CS-2006-11.pdf.

[23] I. Gronau and S. Moran. Optimal implementations of UPGMA and
other common clustering algorithms. Technical Report CS-2007-06, Tech-
nion, May 2007. http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-
get.cgi/2007/CS/CS-2007-06.pdf.

[24] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge
University Press, 1997.

[25] S. Kannan, E. Lawler, and T. Warnaw. Determining the evolutionary tree
using experiments. Journal of Algorithms, 21:26–50, 1996.

[26] M. Křivánek. The complexity of ultrametric partitions on graphs. Inform.
Process. Lett., 27:265–270, 1988.

[27] D. Levy, R. Yoshida, and L. Pachter. Beyond pairwise distances: Neighbor-
joining with phylogenetic diversity estimates. Mol Biol Evol, 23(3):491–498,
2006.

[28] R. Mihaescu, D. Levy, and L. Pachter. Why neighbor-joining works, 2006.

[29] E. Mossel. Phase transitions in phylogeny. Trans Amer Math Soc, 356:2379–
2404, 2004.

[30] F. Murtagh. Complexities of hierarchic clustering algorithms: state of the
art. Computational Statistic Quarterly, 1(2):101–113, 1984.

[31] S. Ota and W. Li. NJML: a hybrid algorithm for the neighbor-joining and
maximum-likelihood methods. Mol Biol Evol, 17(9):1401–1409, 2000.

[32] V. Ranwez and O. Gascuel. Improvement of distance-based phylogenetic
methods by a local maximum likelihood approach using triplets. Mol Biol
Evol, 19(11):1952–1963, 2002.

[33] N. Saitou and M. Nei. The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Mol Biol Evol, 4:406–425, 1987.

[34] S. Sattath and A. Tversky. Additive similarity trees. Psychometrica,
42(3):319–345, 1977.

[35] P. Sneath and R. Sokal. Numerical Taxonomy : the principles and practice
of numerical classification. W. H. Freeman, San Francisco, 1973.

[36] J. Studier and K. Keppler. A note on the neighbor-joining algorithm of
Saitou and Nei. Mol Biol Evol, 5(6):729–731, 1988.

[37] M. Waterman, T. Smith, M. Singh, and W. Beyer. Additive evolutionary
trees. J Theor Biol, 64(2):199–213, January 1977.

21

