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Abstract

Distance based reconstruction methods of phylogenetic trees consist of two independent parts:
first, inter-species distances are inferred assuming some stochastic model of sequence evolution; then
the inferred distances are used to construct a tree. In this paper we concentrate on the task of inter-
species distance estimation. Specifically, we characterize the family of valid distance functions for
the assumed substitution model and show that deliberate selection of distance function significantly
improves the accuracy of distance estimates and, consequently, also improves the accuracy of the
reconstructed tree.

Our contribution consists of three parts: First, we present a general framework for constructing
families of additive distance functions for stochastic evolutionary models. Then, we present a
method for selecting (near) optimal distance functions, and we conclude by presenting simulation
results which support our theoretical analysis.

1 Introduction.

One of the most popular approaches to phylogenetic reconstruction is the distance based approach. This
approach associates lengths to the edges of the phylogenetic tree. The additive distance between two
taxa is then defined as the sum of lengths of edges in the path connecting them in the tree. Traditionally,
this method consists of two separate (and independent) phases: first, inter-species distances are inferred
from the input DNA sequences1; then, the inferred distances are used to construct a tree. The inter-
species distances computed in the first phase act as estimates of these additive distances. There are
many methods which guarantee accurate reconstruction of the tree given the true additive distances (e.g.
[27, 3, 26]). Recent research demonstrates the sensitivity of reconstruction algorithms to inaccuracies
(or noise) in the input distance estimates [2, 6, 22, 10]. Some algorithms deal with this by ignoring
the distance estimates which appear to be too noisy (see e.g. [6, 16, 11, 5]). In this paper we present
a complementary approach which concentrates on the task of increasing the accuracy of inter-species
distance estimation.

Common methods for estimation of evolutionary distances are based on some assumed model for
DNA site substitution. In this view, each edge in the tree is associated with a 4×4 stochastic substitution
matrix which describes the substitution process along it. Distance estimation methods typically differ by
the specific site-substitution model they assume. DNA substitution models range from relatively simple
models like Jukes-Cantor (JC) [17] and Kimura’s 2 Parameter (K2P) [18], to more complex models like
Hasegawa-Kishino-Yano (HKY) [13], Tamura-Nei (TmN) [29], and the general time-reversible model
(GTR) [30]. A substitution model can be identified by the set of substitution matrices it can assign to
edges of the tree. The model tree, which is the phylogenetic tree with substitution matrices assigned to
its edges, defines a joint probability distribution for sites at its leaves. The main underlying assumption
behind distance estimation is that the taxon sequences are sampled according to this joint distribution.
The distance between two taxa is thus estimated through the following scheme:

• The two taxon sequences are used to obtain an estimate of the marginal joint distribution of
sites at the two leaves. This is usually done via maximum-likelihood, meaning that the chosen

1The discussion in this paper is limited to DNA sequences but can be adjusted to protein or other alphabets.
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distribution is the one which maximizes the probability of observing the sequences out of all the
distributions which are consistent with our assumptions on the substitution process.

• The pairwise joint distribution of step 1 is used to estimate the rate of substitution along the path
connecting the two taxa. This is done by applying a substitution rate (SR) function (to be defined
in Section 3) which, informally, provides an expected count for certain substitution events along
the path.

This scheme is required to be consistent, meaning that if the pairwise joint distributions are estimated
accurately in the first step, then the substitution rates computed in the second step should fit an
additive metric along the tree. However, the finite length of taxon sequences implies that we are not
likely to accurately recover the joint distributions. This introduces an inherent error into the estimation
process. The SR function used in the second step influences the propagation of this inherent error into
the distance estimates. Thus different SR functions induce different error patterns. This observation
motivates the two main questions we address in this paper: (a) given the assumed substitution model,
what are its valid SR functions? (b) among these SR functions, which is the one most suitable for the
observed taxon-sequences?

The issue of selecting an appropriate SR function is demonstrated by the following experiments,
whose results are described in Fig. 1. These experiments test various SR functions of the K2P model
on a simple quartet tree. The K2P model differentiates between two types of substitutions: transitions
(i.e., A ↔ G and C ↔ T), and transversions (i.e. {A,G} ↔ {C,T}). The standard distance formula
for K2P [18] estimates distances as the expected number of overall substitutions. However, there is an
alternative approach which counts only transversions by reducing the substitution model to the CFN
model [4, 8, 23] over two states – purines (A,G) and pyrimidines (C,T). We tested the performance of each
formula in reconstructing symmetric quartets whose (single) internal edge is 5 times shorter than all
four external edges. This template quartet was considered in a range of scales. 10,000 simulations were
done for each quartet in a specified scale, using 500-long sequences under a transition-to-transversion
ratio (ti/tv, or R) of 2. In each simulation, the topology of the quartet was resolved according to
the four-point method (FPM) [6] using each of the two distance estimation formulae separately. For
each formula we recorded the number of times it failed to yield the correct topology. Observing the
results, the standard formula performs well in recovering quartets of small scale, but its performance
dramatically deteriorates as the scale grows. The ‘transversions-only’ formula does not perform as well
as the standard one for small scales, but it outperforms it for larger scales. In this paper we provide
an analytic framework which predicts this behavior. We also use this analysis to devise an alternative
distance estimation formula (‘max-optimal’ in the graph of Fig. 1), which clearly outperforms the other
two in all scales of this symmetric quartet. The reader is referred to Section 6 for further details.

The rest of the paper is organized as follows. Section 2 provides a general presentation of substitution
models. Section 3 introduces the concept of SR functions and their use in obtaining additive distances.
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Figure 1: Influence of distance estimation methods. Left: the template quartet on which simula-
tions were run. Right: ratios of reconstruction failure using the four-point method under three different
distance estimation formulae.
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It also provides a general recipe (based on a generalization of logdet) for constructing a large class
of SR functions. While the discussion in these sections is rather general, our main interest lies in
unified substitution models (which include the most commonly assumed substitution models). Section
4 contains the analytic framework for evaluating the propagation of error implied by the different SR
functions in a given unified substitution model. This analysis is applied to the K2P model, which is
essentially the simplest one for which it can yield non-trivial results (all SR functions of the JC model
are shown to be equivalent). In Section 5 we present some experimental results for the K2P model
which indicate a significant reduction in noise compared to its standard distance formula. Section 6
contains some concluding discussion and a list of points for further research.

2 Modelling Site Substitution in DNA Evolution.

In this section we describe the general framework used for modelling DNA sequence evolution. Our
notation is similar (and often identical) to the standard terminology in this area, but is adapted to our
needs. We use the convention that matrices are represented by bold capital letters (P), while vectors
and sets are denoted by capital letters (V ).

A phylogenetic tree T = (V, E) is defined by its vertex set V and edge set E. The leaf set of
T , denoted by L ⊂ V , corresponds to a set of extant species, whereas the internal vertices of T
correspond to extinct ancestors of these extant species. We assume that there are no degree-2 vertices
in the tree; it is often even assumed that all internal vertices have degree 3 (that is, the tree is fully
resolved). Each vertex of T is associated with a fixed (but arbitrary) number of sites, denoted by
k. Each site σ is a probability distribution on the sample space {A,G,C,T}V (that is, a simple event
in the sample space is an assignment of DNA letters to the vertices in V ). For a vertex v ∈ V , σv

denotes the marginal distribution of σ at v, and Πv is the vector which represents this distribution,
i.e., Πv(a) = Pr(σv = a), a ∈ {A,G,C,T}. In our discussion we assume that all k sites are identical,
meaning that they define k i.i.d. random variables on V . The joint distribution of σ = {σv}v∈V along
the evolutionary tree T is described using a stochastic process, as detailed below.

2.1 Substitution models.

A model tree is a phylogenetic tree T = (V, E) coupled with substitution parameters. Formally, it is a
tuple (T, r, Πr, {Pe}e∈E), where r ∈ V is specified as the root of T , Πr is the distribution vector for σr,
and {Pe}e∈E is a set of substitution matrices associated with the edges of T . Each substitution matrix
Pe is a positive row-stochastic matrix (meaning that each of its rows sums up to 1). The distribution
of σ along T is described using a process of state propagation from the root towards the leaves. The
root r induces directionality on T , in which each vertex v ∈ V \ {r} has a unique parent (its neighbor
on the path to r), and each edge is directed from a parent towards its child. The propagation process
is described as follows: the state of the root is selected according to the distribution represented by
Πr; once a state a ∈ {A,G,C,T} is selected for vertex u, the state of a child v of u is selected according
to the distribution represented by the a-th row of P(u,v). Note that this propagation process defines
the joint probability distribution of {σv}v∈V , where each substitution matrix represents the conditional
probability of a child-state given a parent-state, i.e., P(u,v)(a, b) = Pr[σv = b|σu = a].

The pairwise conditional and joint distributions associated with directed edges (via the substitution
matrices) can be extended to every vertex pair (u, v) ∈ V × V . For every such pair, the matrix Fuv

describes the joint probability distribution of (σu, σv), meaning that Fuv(a, b) = Pr[σu = a ∧ σv = b],
and the matrix Puv describes the conditional probability distribution of σv given σu, meaning that
Puv(a, b) = Pr[σv = b|σu = a]. Note that P matrices are always row-stochastic (their rows sum up to
1), whereas in F matrices the entire matrix sums to 1. Let Πv = Fvv = diag(Πv) denote the diagonal
matrix whose 4 diagonal elements describe the distribution of σv. The Π matrices describe the basic
relation between P matrices and F matrices, as follows:

PT
vuΠv = Fuv = ΠuPuv . (1)

Different evolutionary models are specified by restrictions they apply on the substitution matrices.
Hence we identify substitution models with sets of substitution matrices:
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Definition 2.1. A substitution model for {A,G,C,T} is a set M of 4× 4 row-stochastic matrices which
is closed under matrix product (i.e. P,Q ∈M⇒ PQ ∈M).

We say that a model tree belongs to a substitution model M, if Puv ∈M for every u, v ∈ V (T ). For
example, the substitution model of JC is defined by the set of matricesMJC =

{
(1− 4p)I + pJ : 0 < p < 1

4

}
,

where I4 and J4,4 are the 4× 4 identity and all-one matrices (resp.). All substitution models addressed
in the literature are contained in a universal model defined as follows:

Muniv = {P : P is stochastic and positive (P(a, b) > 0), and 0 < | det(P)| < 1} (2)

The following lemma states some basic properties of substitution matrices in Muniv which are used
later on. The proof is due to Perron Frobenius theory (see e.g. [15], Chapter 8).

Lemma 2.2. For every P ∈Muniv, the following holds:

1. 1 is an eigenvalue of P of algebraic multiplicity one.

2. For every other eigenvalue λ of P, 0 < |λ| < 1.

3. There is a unique eigenvector Π of P s.t. for every a ∈ {A,G,C,T}, Π(a) ≥ 0 and
∑

a Π(a) = 1.
The eigenvalue corresponding to Π is 1.

The vector Π guaranteed by Lemma 2.2(3) is often referred to as the stationary vector or the stationary
distribution of P.

Definition 2.3 (Reversible substitution matrix). Let P be a substitution matrix, and let Πstat be the
diagonal matrix representation of Πstat – the (unique) stationary vector of P. Then P is said to be
(time) reversible if F = ΠstatP is a symmetric matrix.

Definition 2.4 (Reversible substitution model). A substitution model M is said to be (time) reversible
if all substitution matrices in M are time-reversible and share the same stationary vector.

Our discussion is mostly restricted to time-reversible substitution models. We assume that when a
model tree belongs to a reversible modelM, the distribution at the root Πr is the stationary distribution
of M. Note that this guarantees the stationarity of the substitution process (i.e., ∀u, v ∈ V (T ), Πu =
Πv). An important property of reversible model trees is that Puv = Pvu for every vertex-pair u, v in
T (through Equation §1 and Definition 2.3). This implies that the location of the root has no affect
on the model tree and can be ignored. Thus a time-reversible model tree is completely defined by the
pair (T, {Pe}e∈E). Most of our discussion and analysis focuses on reversible substitution models which
have the following useful algebraic property:

Definition 2.5 (Unified Substitutions Model). A substitution model M is said to be unified by a matrix
U iff every matrix P ∈ M is triangulated by U, meaning that U−1PU is an upper-triangular matrix.
M is said to be unified if it is unified by some matrix U. M is said to be strongly unified if U−1PU
is a diagonal matrix for all P ∈M.

Most commonly assumed substitution models (like JC and K2P) are strongly unified. As we show
in Section 3, the unifying property is useful in constructing and analyzing distance functions.

2.2 Continuous-time Markov processes and rate matrices

Common substitution models are often described using a continuous-time Markov process. In this
section we briefly describe the substitution matrices implied by such processes. A detailed exposition of
continuous-time Markov processes can be found in [25], Chapter 16, and its applications to evolutionary
models are discussed, e.g., in [20].

A continuous-time Markov process is specified by a 4×4 substitution rate matrix (or just rate matrix )
R. A rate matrix is a matrix whose off-diagonal entries are all non-negative, and whose rows all sum
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up to 0. A substitution matrix P is said to be realized by a continuous-time Markov process with rate
R iff P = eR. Common evolutionary models assume rate matrices which are diagonalizable, meaning
that for some invertible matrix U, D = U−1RU is a diagonal matrix. In such a case, eR = UeDU−1,
where eD is the diagonal matrix obtained by exponentiating the diagonal elements of D.

When possible, it is convenient to associate substitution models with the rate matrices realizing
their substitution matrices, rather than with the substitution matrices themselves. This is because
the composition of two substitution matrices corresponds to their product, whereas composition of
two rate matrices corresponds to their sum. Of special interest are homogeneous substitution models,
which consist of rate matrices which are all proportional to a single matrix. Formally, the homogenous
substitution model of the rate matrix R is defined by MR = {etR : t > 0}.

The expected number of substitutions along a continuous-time Markov process acts as a natural
additive distance measure. Indeed, most distance estimation formulae try to estimate a substitution
count (of some or all types of substitutions) along the evolutionary path. Now, consider a stationary
Markov process with rate matrix R. Stationarity implies that the site distribution is the one described
by the stationary vector Πstat of eR (which is the left eigenvector of R corresponding to eigenvalue 0).
The product Πstat(a)R(a, b) is the expected count for substitution a → b along this stationary Markov
process . Hence, the total substitution rate (or number of substitutions) is given by:

total substitution rate =
∑

a 6=b

Πstat(a)R(a, b) = −
∑

a

Πstat(a)R(a, a) (3)

Notice that if the stationary distribution is uniform (Πstat =
(

1
4 , 1

4 , 1
4 , 1

4

)
), then the total substitution

rate is 1
4 |trace(R)|.

2.3 Kimura’s 2 Parameter Model

We conclude this section with a short description of the K2P model [18], which we use as a case study
for our analysis. A rate matrix R in the K2P model (see Fig. 2) is specified by two parameters: α, which
specifies the rate of transition-type substitutions (i.e., A ↔ G and C ↔ T), and β, which specifies the
rate of transversion-type substitutions (i.e. {A,G} ↔ {C,T}); R has two distinct non-zero eigenvalues:
λ1(R) = −4β , λ2(R) = λ3(R) = −2α−2β. The stationary distribution for this model is uniform (i.e.,
Πstat = ( 1

4 , 1
4 , 1

4 , 1
4 )). The matrix UK2P in Fig. 2 diagonalizes all rate matrices, and hence also all the

R =




− α β β
α − β β
β β − α
β β α −


 Λ(R) =




−4β
−2α− 2β
−2α− 2β

0




P =




pnil pα pβ pβ

pα pnil pβ pβ

pβ pβ pnil pα

pβ pβ pα pnil


 Λ(P) =




1− 4pβ

pnil − pα

pnil − pα

1




UK2P =




1
2

1√
2

0 1
2

1
2

−1√
2

0 1
2

− 1
2 0 1√

2
1
2

− 1
2 0 −1√

2
1
2




Figure 2: The Kimura 2-Parameter (K2P) model. A generic rate matrix R of the K2P model is
described at the top left. As a general convention, we order the rows and columns according to the order
A,G,C,T. The matrix R is determined using the parameters α, β. The vector Λ(R) of its eigenvalues
is given next to it. The substitution matrix P = eR corresponding to R is described at the bottom
left. It consists of three distinct values pnil, pα, pβ , where pnil + pα + 2pβ = 1. The vector Λ(P) of
its eigenvalues is given next to it. On the right, is the unifying matrix UK2P of the K2P model. The
connection between α, β and pnil, pα, pβ is obtained through the equation Λ(R) = ln(Λ(P)).
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substitution matrices, in this model. Thus it strongly unifies this model. There are many other matrices
which unify the K2P model, such as the Hadamard matrix of order 4 [14]. One notable property of
UK2P from Fig. 2 is that it is unitary, meaning that UT

K2PUK2P = I4.
A substitution matrix P in the K2P model is determined by two parameters: pα for transition-type

entries, and pβ for transversion-type entries. We denote by pnil = 1−pα−2pβ the value of the diagonal
entries of P. The matrix P has two (positive) eigenvalues other than 1: λ1(P) = 1 − 4pβ , λ2(P) =
λ3(P) = pnil − pα = 1 − 2pα − 2pβ . The parameters of P and the parameters of R are tied by
exponentiation of the eigenvalues, i.e., the equations λt(R) = ln(λt(P)), t = 1, 2. This gives

pnil =
1
4

+
1
4
e−4β +

1
2
e−2α−2β ; pα =

1
4

+
1
4
e−4β − 1

2
e−2α−2β ; pβ =

1
4
− 1

4
e−4β .

The transition-to-transversion (ti/tv) ratio of a K2P rate matrix is defined by R = α
2β . Note that

a homogeneous sub model of K2P is a substitution model that consists of K2P rate matrices which all
have the same ti/tv ratio. A ratio of R = 1

2 (implying that α = β) results in the sub model of JC.

3 Additive Distances and Substitution Rate functions.

In this section we explore ways of obtaining additive distances for model trees in a given substitution
model. We are interested in distance metrics on the tree vertices d : V × V → R+ which obey the
following basic conditions:

Locality: For every u, v ∈ V , the distance d(u, v) is a function of the joint distribution matrix Fuv.

Additivity: If w lies on the path connecting u and v in T , then d(u, v) = d(u,w) + d(w, v).

Locality is necessary since we wish to be able to estimate the distance between two taxa i, j just
by observing samples from (σi, σj). Additivity is important for reconstruction using distance-based
methods (see e.g. [3, 27]). These two properties are guaranteed by using additive functions defined
next.

Definition 3.1 (Additive functions – ADM). An additive function for a substitution model M is a
mapping ∆ : M→ R which satisfies the following: if P,Q,S ∈ M, and S = PaQb for some a, b ∈ R,
then ∆(S) = a∆(P) + b∆(Q). ADM denotes the set of all additive functions for M.

Note: When the model M is defined by a continuous-time Markov processes as in Section 2.2, we have
that for every P ∈M and a > 0, Pa exists and is in M. For such a model, a function ∆ is additive iff
it satisfies a simpler condition: for all P,Q ∈M, ∆(PQ) = ∆(P) + ∆(Q).

The additive functions we are interested in are strictly positive. We refer to such functions as
Substitution Rate (SR) functions.

Definition 3.2 (SR functions – SRM). ∆ is a substitution rate (SR) function for a substitution model
M if ∆ ∈ ADM and ∆(P) > 0 for all P ∈M. SRM denotes the set of all SR functions for M.

SR functions are used to obtain additive distances using the following scheme:

Lemma 3.3. Let ∆ be an SR function for M. Then for each model tree of M, the function d : V ×V →
R+ defined by d(u, v) = 1

2 (∆(Puv) + ∆(Pvu)) is an additive (and local) metric on V . In particular, if
M is time-reversible, then d(u, v) = ∆(Puv) is an additive metric on V .

A notable example of an SR function is the well known logdet function (also referred to as the
paralinear distance measure) [28, 21, 19], given by ∆(P) = − ln | det(P)|. logdet is clearly additive (due
to the multiplicativity of the determinant) and positive (since 0 < |det(P)| < 1). Its great advantage
is in being applicable to all substitution models included in Muniv. This function is also implicitly
used by the standard distance formulae of the JC and K2P models [17, 18]. These formulae obtain
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distance estimates between two taxa i, j by applying logdet to a substitution matrix P̂ij estimated
from the taxon sequences Si, Sj (P̂ij is a matrix in the model which is most likely to produce Si, Sj –
more details in Section 4). We note that when restricted to JC or K2P, logdet has a natural biological
interpretation: logdet(P) is proportional to the total substitution rate associated with P. Recall that
P = eR and so logdet(P) = logdet(eR) = −trace(R), and since the stationary distribution in JC and
K2P is uniform, the total substitution rate associated with R is − 1

4 trace(R) = 1
4 logdet(P).

The first step in our analysis is to figure out what are the SR functions for a given substitution model
M. Mathematically, it is more natural to characterize the set of additive functions ADM because it
forms a linear vector space over R: for ∆1,∆2 ∈ ADM and c1, c2 ∈ R, the function ∆ = c1∆1 + c2∆2 is
also in ADM. The dimension of this vector space determines the “richness” of ADM (and SRM). In
Section 3.1 below we describe a general technique for obtaining a large class of SR functions spanned
by a core set of functions which are generalized versions of logdet.

3.1 Generalized logdet SR functions.

Our generalization of logdet is based on invariant subspaces of R4 (see e.g. [15], Chapter 1).

Definition 3.4 (Invariant Subspace). Let H be a linear subspace of Rn, and let A be an n × n real
matrix. Then H is said to be A-invariant if AH ⊆ H (where AH = {AV : V ∈ H}). Given a
collection A of n × n matrices, the subspace H is said to be A-invariant if it is A-invariant for every
matrix A ∈ A.

Given an A-invariant subspace H ⊆ Rn of dimension m ≤ n, denote by A|H (the restriction of A
to H) the linear transformation induced by A on H. In such a case, let det(A|H) be the determinant
of the linear transformation A|H 2. The following lemma is based on the fact that det(AB|H) =
det(A|H) · det(B|H).

Lemma 3.5 (Generalized logdet functions). Let H be an M-invariant subspace of R4 for some substi-
tution model M ⊆ Muniv. Then the mapping ∆H : M → R+ defined by ∆H(P) = − ln |det(P|H)| is
an SR function for M.

The ‘original’ logdet function can be defined as ∆Rn . Another example of generalized logdet func-
tions, which is of specific interest in this work, is the family of log-eigenvalue functions defined below.
Assume that all substitution matrices in M share a common eigenvector V , such that 0 < |λV (P)| < 1,
where λV (P) is the eigenvalue of P corresponding to V (this happens, for instance, if M is strongly
unified). Then HV , the one dimensional linear subspace spanned by V , is an M-invariant subspace. In
such a case, ∆HV

(P) = − ln |λV (P)|. Log-eigenvalue SR functions are (implicitly) mentioned in several
places in the literature (see e.g. [12]).

To the best of our knowledge, all published distance formulae are based on SR functions which are
spanned by generalized logdet functions. The following lemma indicates that in certain strongly unified
substitution models of biological interest (e.g. JC and K2P), all SR functions are indeed generalized
logdet functions.

Lemma 3.6. Let M be a strongly unified model, and assume that for each P ∈M, all the eigenvalues
of P are positive. Then ADM is spanned by the set of generalized logdet functions.

Proof. Let U be any matrix which strongly unifies M. For t = 1, . . . , 4, let U t be the t-th column of
U, and let Ht be the M-invariant one dimensional subspace spanned by U t. Then ∆Ht is a generalized
logdet SR function defined by ∆Ht(P) = − ln |det(P|Ht)| = − ln(λt(P)), where λt(P) is the eigenvalue
of P corresponding to the eigenvector U t. The proof is completed by showing that for each ∆ ∈ ADM
there are constants c1, . . . , c4, such that for all P ∈M, ∆(P) =

∑4
t=1 ct ln(λt(P)).

For P ∈ M, let VP ∈ R4 be the vector [ln(λ1(P)), . . . , ln(λ4(P))]. Then since λt(P) > 0 for all
P ∈ M and t = 1..4, the mapping f(P) = VP is 1 to 1 (implying that VP uniquely determines P).

2Recall that det(A|H) =
∏

t λet
t , where λt varies over the distinct eigenvalues of A|H (which are also eigenvalues of

A) and et is the algebraic multiplicity of λt.
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Let Lf = {VP : P ∈ M} be the image of f . For an additive function ∆ ∈ ADM, let T∆ : Lf → R be
defined by T∆(VP) = ∆(P). Since ∆ is additive, we have that

∀P,Q ∈M, α ∈ R : T∆(VP + VQ) = T∆(VP) + T∆(VQ), and if Pα ∈M then T∆(αVP) = αT∆(VP).

This means that T∆ is a linear scalar function on Lf , which can be extended to a total linear function
T ′∆ on R4. For t = 1, . . . , 4, let ct = T ′∆(et), where et is the unit vector with 1 at the t-th entry and
0 elsewhere. Then for each vector X = [x1, . . . , x4] ∈ R4, T ′∆(X) =

∑4
t=1 ctxt. Also, for all P ∈ M,

VP =
∑4

t=1 ln(λt(P))ēt. Hence ∆(P) = T ′∆(VP) =
∑4

t=1 ct ln(λt(P)) as claimed.

3.2 Log-eigenvalue SR functions for unified substitution models

The remainder of this paper focuses on the class of SR functions spanned by log-eigenvalue functions.
First, we establish that if M is unified, then each log-eigenvalue function is an SR functions for M.
Assume a fixed (but arbitrary) substitution modelM, unified by a 4×4 matrix U. For every substitution
matrix P ∈ M, Let Λ(P) = U−1PU denote the upper triangular matrix associated with P. Denote
further by λt(P) the t’th diagonal entry of Λ(P) (t = 1 . . . 4). Note that λt(P) is an eigenvalue of P.
Hence, since P is row-stochastic, then there is a t ∈ {1, 2, 3, 4} s.t. λt(P) = 1. We now show that this
t is unique and common to all matrices in M.

Lemma 3.7. There exists t0 ∈ {1 . . . 4} s.t. for each P ∈ M: λt0(P) = 1, and 0 < |λt(P)| < 1 for
t 6= t0.

Proof. By Lemma 2.2(1,2), we have that for each matrix P ∈ M there is a unique t s.t. λt(P) = 1,
and for each t′ 6= t, 0 < |λt′(P)| < 1. So it remains to prove that for some fixed t0, λt0(P) = 1 for
all P ∈ M. Consider an arbitrary matrix P ∈ M. Then for some t0, λt0(P) = 1. We show that for
any other matrix Q ∈ M, λt0(Q) = 1 as well. Assume for contradiction that λt0(Q) 6= 1. Then for
t = 1, . . . , 4, it holds that |λt(PQ)| = |λt(P)λt(Q)| < 1 (here we used the fact that M is unified, and
Λ(P),Λ(Q), are upper triangular). This contradicts the fact that PQ ∈ M is row-stochastic and so
must have 1 as an eigenvalue .

From now on we assume for brevity that t0 of Lemma 3.7 is 4 (if M is strongly unified then this
can be achieved by permuting the columns of U). The following theorem shows that log-eigenvalue
functions are SR functions in M by showing that they are spanned by generalized logdet functions.

Theorem 3.8. For t ∈ {1, 2, 3}, let λt(P) be the t’th eigenvalue of P as defined above. Then the

function ∆t(P)
4
= − ln |λt(P)| is an SR function for M.

Proof. For t = 1 . . . 4, let U t be the t’th column of U. Let further H1,H2 and H3 be the subspaces of
R4 spanned by {U1}, {U1, U2} and {U1, U2, U3}, respectively. Then, since M is unified by U, we have
that H1,H2,H3 are all M-invariant. The determinants of the restrictions of P ∈M to these subspaces
are det(P|H1) = λ1(P), det(P|H2) = λ1(P)λ2(P), and det(P|H3) = λ1(P)λ2(P)λ3(P). Hence, by
Lemma 3.5, the functions

− ln |λ1(P)| , − (ln |λ1(P)|+ ln |λ2(P)|) , − (ln |λ1(P)|+ ln |λ2(P)|+ ln |λ3(P)|)

are all (generalized logdet) SR functions for M. The theorem then follows by the linearity of ADM,
and the fact that 0 < |λt(P)| < 1 for t = 1..3.

The rest of the paper studies the class of SR functions spanned by the log-eigenvalue functions
∆1,∆2, ∆3 mentioned in Theorem 3.8. Every SR function ∆ = c1∆1 + c2∆2 + c3∆3 in this class is
defined by the three SR coefficients c1, c2, c3. For instance, the logdet function is in this class and its SR
coefficients are all 1. The “richness” of this class of SR functions is measured by its dimension, which
is the maximal number of linearly independent SR functions in the class. By definition, its dimension
cannot be greater than 3, however, in some cases the functions ∆1, ∆2, ∆3 might be linearly dependent.
For instance, in the JC model, for every P ∈ JC we have λ1(P) = λ2(P) = λ3(P), implying that the
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three log-eigenvalue functions are identical and (through Lemma 3.6) that all SR functions in SRJC are
proportional to that log-eigenvalue function. In our study, proportional SR functions are considered to
be equivalent, since they have the same relative error rate (see Section 5). Hence, there is no room for
optimization in models (like JC) in which the dimension of SRM is 1.

K2P is the simplest published model which provides a non-trivial selection of SR function. Due
to the structure of substitution matrices in the K2P model, this model has two linearly independent
basic SR functions: ∆1 6= ∆2(= ∆3). Every other SR function in SRK2P is a linear combination of
these two basic functions, and every valid distance formula for K2P must use one of these SR functions.
For instance, the standard distance formula for K2P [18] uses the logdet SR function which is equal to
∆1 + 2∆2. On the other hand, the distance formula which considers only transversions (reducing the
model to a binary one) corresponds to the SR function ∆1.

4 Analyzing the Error in Distance Estimation.

The previous section defined the set of SR functions for a given substitution model M, and showed
that each SR function induces an additive metric D over every model tree in M. This additive metric
can be used to reconstruct the topology of the model tree from the pairwise substitution matrices
{Pij : i, j ∈ L}. Unfortunately, the limited length of taxon sequences allows us only to obtain a
statistical estimate P̂ij for each substitution matrix Pij . Applying an SR function to the estimated
substitution matrices results in a statistical estimate D̂ for the additive metric D induced by that
SR function. The inherent stochastic error in the estimation of the substitution matrices propagates
through the SR function and results in errors in the estimates of the additive distances. This deviation
from the additive metric determines how accurately we will be able to reconstruct the topology of the
model tree. Hence, the obvious goal is to find an SR function which minimizes the propagation of the
inherent statistical error.

The first step to take in pursuing such an optimization is to provide an expression for the expected
error in distance estimation associated with an SR function on any given evolutionary path. Hence,
the discussion from this point on considers an arbitrary evolutionary path under some unified (and
time-reversible) substitution model M. Let P ∈ M and F denote the substitution matrix and joint
distribution matrix of this path, respectively. Given an SR function ∆ = c1∆1 + c2∆2 + c3∆3, we
denote by d = ∆(P) the distance between the endpoints of the corresponding path according to ∆, and
by d̂ the random variable corresponding to the estimated value of this distance. The model parameters
P,F determine the distribution of the inherent stochastic error, P̂ − P, whereas the SR coefficients
c1, c2, c3 determine how this error transforms into distance estimation error, d̂− d. The SR function is
evaluated on the path in question according to the normalized mean square error (NMSE[d̂]) which is
the expected relative-error-squared defined in §4 below.

NMSE[d̂] = E




(
d̂− d

d

)2

 . (4)

Note that since d is constant, we have NMSE[d̂] = MSE[d̂]
d2 (where MSE[d̂]

4
= E[(d̂ − d)2]). In this

section we present a general framework for approximating MSE[d̂] as a function of the SR coefficients
and the matrix P. This approximation is based on computing MSE(d̃), where d̃ is a linear approximation
of d̂ which is simpler to handle, as will be detailed soon. We show that as long as P does not have
eigenvalues which are too close to zero, this approximation is valid. Section 4.1 presents the general
scheme for computing MSE[d̃], and Section 4.2 provides a specific demonstration for the K2P model.

4.1 Propagation of Error through an SR function.

Distance estimation starts with a pair of sequences S1, S2 corresponding to the two taxa situated at the
end points of the evolutionary path. The k pairs of aligned sites form k independent samples from the
joint distribution of (σ1, σ2) defined by the matrix F. The k pairs are sorted according to the 16 possible

9



(
F

(0)
=⇒

)
F̂

(1)
=⇒ P̂

(2)
=⇒ Λ̂

(3)
=⇒ ∆̂

(4)
=⇒ d̂

Figure 3: Outline of the process of distance estimation. The matrix F̂ consists of the statistics
extracted from the taxon sequences. The matrix P̂ is computed from F̂ using some optimization
criterion (e.g. maximum likelihood). Steps 2-4 implement an invocation of an SR function on P̂.

types, and the relative frequencies of these types define the matrix F̂: for every a, b ∈ {A,G,C,T}, F̂(a, b)
is the number of aligned sites of type (a, b) divided by k. Note that the 16 entries of the matrix k · F̂ are
distributed multinomially (see [7]) with parameters (k,F). This means that F̂ is an unbiased statistical
estimators of F (i.e., for every a, b ∈ {A,G,C,T}, F̂(a, b) is a random variable s.t. E[F̂(a, b)] = F(a, b)).
Furthermore, the variances and covariances of the entries of F̂ are given by:

VAR[F̂(a, b)] =
F(a, b)(1− F(a, b))

k
; COV[F̂(a, b), F̂(c, d)] = − F(a, b)F(c, d)

k
. (5)

Distance estimation is a (deterministic) mapping of the matrix F̂ onto d̂. In order to analyze the
propagation of error, we describe this mapping as a series of transformations or steps (see Fig. 3):

1. F̂ is used to obtain P̂, an estimation of the substitution matrix P. For example, P̂ can be a
matrix from the unified model M which is most likely to produce F̂.

2. The three non-trivial eigenvalues λ̂1, λ̂2, λ̂3 of P̂ are determined using the unifying matrix U of
the substitution model:3

λ̂t =
4∑

s,r=1

U−1(t, s)P̂(s, r)U(r, t) , t = 1..3 . (6)

3. The three basic distance components are extracted from these eigenvalues by taking logarithms:

δ̂t

(
= ∆t(P̂)

)
= − ln |λ̂t| , t = 1..3 . (7)

4. The distance estimate d̂ is computed as a linear combination of the basic distance components
using the SR coefficients c1, c2, c3:

d̂
(
= ∆(P̂)

)
= c1δ̂1 + c2δ̂2 + c3δ̂3 . (8)

Propagation of error along these steps is analyzed by associating each intermediate step with a vector
of random variables: the 16-point vectors F̂ , P̂ correspond to vectorized versions of the matrices F̂, P̂
(resp.), and the 3-point vectors Λ̂, ∆̂ hold the values obtained in steps 2 and 3 (resp.). Each of these
vectors is a statistical estimator of the appropriate model parameters: F̂ , P̂ estimate F, P – vectorized
versions of the matrices F,P; Λ̂ = (λ1(P̂), λ2(P̂), λ3(P̂)) estimates Λ = (λ1(P), λ2(P), λ3(P)) and
∆̂ =

(
− ln |λ1(P̂)|,− ln |λ2(P̂)|,− ln |λ3(P̂)|

)
estimates ∆ = (− ln(λ1(P)),− ln(λ2(P)),− ln(λ3(P))).

Each such vector X ∈ {F̂ , P̂ , Λ̂, ∆̂} is associated with an expectation vector E(X) s.t. Ei = E[Xi]
and a covariance matrix Σ(X) s.t. Σij = COV[Xi, Xj ]. Σ(F̂ ) is given by §5, and the covariance
matrices of P̂ , Λ̂, ∆̂ (and d̂) are computed by representing each such vector as a linear transformation
of its predecessor and applying the following standard lemma (whose proof is omitted):

Lemma 4.1. Let X̂ be a column vector of n random variables such that E(X̂) = X (i.e. X̂ is an
unbiased statistical estimator of the vector X). Further let A be a constant m× n matrix and let B be
a constant column-vector of length m. Then for Y = AX + B and Ŷ = AX̂ + B it holds that:

3We note that sometimes steps 1 and 2 are combined and the eigenvalues of P̂ are computed directly from F̂. For
instance, in the K2P model, these eigenvalues can be obtained by the diagonal elements of U−1[4F̂]U.
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1. E(Ŷ ) = Y (i.e. Ŷ is an unbiased statistical estimator of Y ).

2. Σ(Ŷ ) = A ·Σ(X̂) ·AT .

We are now left to show how each step of the distance estimation process can be represented by a
linear transformation. We consider a common scenario where the entries of P̂ are computed (in step
1) as linear combinations of the entries of F̂ (other cases are briefly discussed in Section 6). In the
K2P model, for instance, a substitution matrix P is defined by its three (potentially) distinct entries
pnil, pα, pβ (as defined in Section 2.3). The maximum likelihood estimates p̂nil, p̂α, p̂β of these entries
are given by the following linear combinations of entries of F̂ 4:

p̂nil = F̂(A,A) + F̂(G,G) + F̂(C, C) + F̂(T, T ) . (9)

p̂α = F̂(A,G) + F̂(G,A) + F̂(C, T ) + F̂(T, C) .

p̂β =
∑

a∈{A,G},b∈{C,T}

1
2
(F̂(a, b) + F̂(b, a)) .

Note: The formulae above provide a valid K2P substitution matrix P̂ only when p̂β < 0.25 and p̂α <
p̂nil. This is because the eigenvalues of a substitution matrix in the K2P model must be positive. The
restriction of positive eigenvalues is common to all substitution models corresponding to a continuous-
time Markov process (see Section 2.2). Therefore, in the rest of our analysis (and experiments done in
Section 5) we will assume that the eigenvalues of both P and P̂ are all positive. If the matrix P̂ turns
out to have a non-positive eigenvalue, the distance estimation process is failed and ignored.

Step 2 of the distance estimation process is clearly linear, as apparent in §6. Therefore, applying
Lemma 4.1(1) to the first two steps gives us that E(P̂ ) = P and E(Λ̂) = Λ. Furthermore, the second
part of the lemma is applied twice to obtain Σ(Λ̂). Step 3 requires a non-linear transformation (since
ln(x) is a non-linear function), so we use the delta method [24] to replace it by a linear transformation
which provides linear approximations of ∆̂ and d̂ as follows.

Consider the two-term Taylor expansion of §7 around λt = E[λ̂t] (assuming that λ̂t, λt > 0):

δ̂t = − ln(λ̂t) = − ln(λt)− (λ̂t − λt)
λt

+
(λ̂t − λt)2

2ξ2
, where min{λt, λ̂t} ≤ ξ ≤ max{λt, λ̂t}. (10)

An approximation δ̃t of δ̂t is obtained by taking the first two terms in the above expression:

δ̃t
4
= − ln(λt)− λ̂t − λt

λt
= 1− ln(λt)− λ̂t

λt
, t = 1..3 . (11)

Clearly, δ̃t is linear in λ̂t. The approximation d̃ of d̂ is then defined as d̃
4
= c1δ̃1 + c1δ̃2 + c1δ̃3. After

this linearization, Lemma 4.1(2) can be applied twice to yield Σ(d̃) = VAR[d̃]. Furthermore, due to
linearity of expectation (Lemma 4.1(1)), we get that for all t = 1..3, E[δ̃t] = − ln(λt) = δt, and E[d̃] = d,
implying that VAR[d̃] = MSE[d̃].

The end-to-end process of computing MSE[d̃] is summarized in the following scheme:

1. Compute Σ(F̂ ) using §5.

2. Compute the linear transformation associated with each of the 4 steps of distance estimation: for
step 1 use the model-specific formula for P̂ (e.g. §9 for K2P); for step 2 use the unifying matrix
UM and §6; for step 3 use the approximation formula of §11; and for step 4 use the SR-coefficients.

3. Apply Lemma 4.1(2) to each step, and obtain VAR[d̃] = MSE[d̃].

4The proof that these formulae correspond to the maximum likelihood estimate (which is rather straightforward) is
not presented here.
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This scheme results in an approximation of MSE(d̂) which is valid when |d̂ − d̃| is much smaller
than |d̃ − d|. Note that this condition is guaranteed if for t = 1..3, we have |δ̂t − δ̃t| ¿ |δ̃t − δt|. Let

ht
4
= |λ̂t−λt|

λt
= |δ̃t − δt|. Then |δ̂t − δ̃t| = h2

t λ2
t

2ξ2 ≤ 1
2

(
ht

1−ht

)2

(since ξ ≥ (1 − ht)λt). Hence, when ht is

sufficiently small, we indeed have |δ̂t − δ̃t| ¿ |δ̃t − δt|. On the other hand, when ht is relatively large,
|δ̂t − δt| ceases to be a good approximation for |δ̃t − δt|. This typically happens when λt is very small.
Therefore, the approximation of MSE[d̂] by MSE[d̃] becomes less tight if for some t = 1..3, the eigenvalue
λt is near-zero and the SR coefficient ct is non-negligible compared to the other two SR coefficients.
This effect, dubbed ‘small eigenvalue distortion’, is observed in the simulations described in Section 5
(see Fig. 6).

4.2 Propagation of error in the K2P model.

In this section we apply the general recipe of Section 4.1 to the K2P model, simplifying the computations
when possible. Recall that SR functions in the K2P model are of the form ∆(P) = − (c1 ln(λ1) + c2 ln(λ2)),
where λ1, λ2 are defined in Section 2.3. First we specify F̂ , the vector of random variables associated
with the observed joint distribution. Then, each step s = 1 . . . 4 is associated with a linear transfor-
mation defined by a matrix As and vector Bs, and Lemma 4.1(2) is applied to obtain the appropriate
covariance matrix for that step.

The vector F̂ : Assume that entries 1-4 of F̂ correspond to nil-substitutions (diagonal entries of F̂),
entries 5-8 correspond to transition-type substitutions, and entries 9-16 correspond to transversion-type
substitutions. Then according to §5, we get:

Σ(F̂ ) =
1

16k




pnil(4I4 − pnilJ4,4) −pnilpαJ4,4 −pnilpβJ4,8

−pnilpαJ4,4 pα(4I4 − pαJ4,4) −pαpβJ4,8

−pnilpβJ8,4 −pαpβJ8,4 pβ(4I8 − pβJ8,8)


 (12)

(where In is the n× n identity matrix and Jn,m is the n×m all-one matrix).

Step 1: The three parameters p̂nil, p̂α, p̂β (defining the matrix P̂) are computed as maximum likelihood
estimates of pnil, pα, pβ , (which define P) according to §9, which implies P̂ = A1F̂ + B1, where P̂ =
(p̂nil p̂α p̂β)T and

A1 =




1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2


 ; B1 =




0
0
0


 .

Plugging A1 and Σ(F̂ ) in Lemma 4.1(2) results in:

Σ(P̂ ) =
1
k




pnil(1− pnil) −pnilpα −pnilpβ

−pnilpα pα(1− pα) −pαpβ

−pnilpβ −pαpβ
1
2pβ(1− 2pβ)


 (13)

Step 2: The eigenvalues λ̂1, λ̂2 of the matrix P̂ are computed. Recall that λ̂1 = 1−4p̂β , λ̂2 = p̂nil− p̂α

(see Fig. 2). Hence, Λ̂ = A2P̂ + B2, where

A2 =
(

0 0 −4
1 −1 0

)
; B2 =

(
1
0

)
.

Plugging A2 and Σ(P̂ ) in Lemma 4.1(2), and expressing through λ1, λ2 results in:

Σ(Λ̂) =
1
k

(
8pβ(1− 2pβ) 4pβ(pnil − pα)
4pβ(pnil − pα) pnil(1− pnil) + pα(1− pα) + 2pnilpα

)
(14)

=
1
k

(
1− λ2

1 (1− λ1)λ2

(1− λ1)λ2
1
2 (1 + λ1)− λ2

2

)
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Step 3: The linear approximation ∆̃ of ∆̂ is computed by §11, which gives us ∆̃ = A3Λ̂ + B3, where

A3 =
(− 1

λ1
0

0 − 1
λ2

)
; B3 =

(
1− ln(λ1)
1− ln(λ2)

)
.

Plugging A3 and Σ(Λ̂) in Lemma 4.1(2), and expressing through α, β results in:

Σ(∆̃) =
1
k

(
1−λ2

1
λ2

1

(1−λ1)
λ1

(1−λ1)
λ1

(1+λ1)
2λ2

2
− 1

)
=

1
k

(
e8β − 1 e4β − 1
e4β − 1 1

2e4α(e4β + 1)− 1

)
(15)

Step 4: Finally, consider d̃ (the linear approximation of d̂) which is obtained by d̃ = A4∆̃ + B4,
where

A4 =
(
c1 c2

)
; B4 = 0

Plugging A4 and Σ(∆̃) in Lemma 4.1 gives us the following expression for the variance of d̃:

MSE[d̃] = VAR[d̃] =
1
k

(
c2
1(e

8β − 1) + 2c1c2(e4β − 1) +
1
2
c2
2(e

4α(e4β + 1)− 2)
)

. (16)

5 Finding an Optimal SR function for a single path.

In this section we use the analysis of Section 4 for the following task: given an alignment of two
sequences which evolved according to the K2P model, find an SR function which (nearly) minimizes
the propagation of error in estimation of the distance between the corresponding two taxa. Finding
such a function seems a basic ingredient in any method for choosing an SR function which is ‘best’ for
a given taxon set (of any size). In Section 5.1 we show how to select an SR function according to the
(unknown) model parameters α, β associated with the path connecting the two taxa. In Section 5.2 we
demonstrate the potential reduction in error of this approach. Then, in Section 5.3, we show how a
similar approach can be used to fit the SR function to the observed taxon sequences rather than to the
unknown model parameters.

5.1 Finding the SR coefficients which minimize NMSE[d̃].

The formula for MSE[d̃] in §16 provides a linear approximation for the actual mean square error rate,

MSE[d̂], in the K2P model. The normalized mean square error NMSE[d̂] = MSE[d̂]
d2 , is thus approximated

by:

NMSE[d̃] =
MSE[d̃]

d2
=

c2
1(e

8β − 1) + 2c1c2(e4β − 1) + 1
2c2

2(e
4α(e4β + 1)− 2)

k(4c1β + 2c2(α + β))2

=
(e8β − 1) c2 + 2(e4β − 1) c + 1

2 (e4α(e4β + 1)− 2)
k(4β c + 2(α + β))2

, (17)

where c
4
= c1

c2
. Note that NMSE[d̃] depends only on the ratio between the SR coefficients c, which implies

that proportional SR functions are equivalent under this criterion. Therefore, although DIM(SRK2P) =
2, the optimization of the SR function is only one dimensional.

Lemma 5.1. Let α, β > 0 be the K2P parameters associated with a certain evolutionary path. Then
the SR-function which minimizes NMSE[d̃] along this path is given by SR coefficients c1, c2, s.t.

c1

c2
= cOPT

4
=

e4β+1
e4β−1

(e4α − 1)β − α

(e4β − 1)β + (e4β + 1)α
. (18)
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Proof Outline. 5 In order to find the value of c which minimizes NMSE[d̃], the partial derivative of §17
is taken with respect to c.

∂(NMSE[d̃])
∂c

=

(
(e4β − 1)2β + (e8β − 1)α

)
c − (

(e4β + 1)(e4α − 1)β − (e4β − 1)α
)

2k(2β c + α + β)3
.

It is easy to see that cOPT of §18 is the unique point where this derivative vanishes. The proof is
completed by showing that (a) cOPT is positive (implying that it corresponds to a valid SR function),
and (b) cOPT is a local minimum point of NMSE[d̃].
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Figure 4: Predicted optimal SR coefficients. The graph above contains plots of c1
c1+c2

for various
SR-functions. The horizontal lines correspond to the standard SR function for K2P (where c2 = 2c1)
and the SR function considering only transversions (where c2 = 0). The other plots correspond to
predicted optimal SR coefficients computed using §18 and corresponding to different ti/tv ratios R (1,
2, 10, and 100). The X axis corresponds to the total substitution rate which is α + 2β.

An SR function using SR coefficients as in Lemma 5.1 is referred to as the predicted optimal SR
function for the parameters α, β. A closer look at §18 shows that whenever α ≥ β, cOPT ≥ 1

2 , and
when α = β (implying the JC model), cOPT = 1

2 . Note that cOPT = 1
2 corresponds to the logdet SR-

function, which is used by the standard distance formula of the K2P model. It can also be shown
that cOPT converges to 1

2 whenever the total substitution rate (α + 2β) converges to 0, regardless of the
ti/tv ratio R (see also Fig. 4). Similarly, if α > β and the total substitution rate goes to ∞, so does
cOPT. Note that cOPT = ∞ (c2 = 0) corresponds to the SR function which counts only transversions.
Intuitively, when α > β and the total substitution rate is large, the transversion count is less noisy
than the total substitutions count, and hence the weight c2 given to transition events is reduced. An
obvious consequence of this analysis is that the standard distance estimation formula of K2P (using the
logdet SR function) is predicted to be near optimal only in the extreme cases where either the total
substitution rate is very small or the ti/tv ratio R is close to 0.5 (i.e., α ∼= β).

5.2 Predicted and observed reduction in error.

The first thing we check about the predicted optimal SR function is the extent of reduction in error it
is predicted to yield. The error rate is measured by the normalized root mean square error (NRMSE)
which is the square root of the NMSE. NRMSE[d̃], given by the square-root of §17, is used as the
predicted error rate of an SR function, whereas NRMSE[d̂] denotes the actual error rate. The predicted
optimal SR function, given by §18, is compared under various settings of the model parameters α, β

5The complete proof of Lemma 5.1 appears in Appendix A.
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to the standard (or logdet) SR function (where c2 = 2c1) and the ‘transversions-only’ SR function
(where c2 = 0). The graphs in Fig. 5 describe the results of this comparison for R = 2 and R = 10.
Consider the extreme cases first. When the total substitution rate is high, the standard SR function
is predicted to be extremely noisy, and the optimal SR function (which converges to ‘transversions
only’) is predicted to be much more accurate. In the other extreme, when the total substitution rate is
very small, the standard SR function is predicted to be near optimal, and the ‘transversions-only’ SR
function is predicted to be much less accurate. Comparing the two graphs in Fig. 5 demonstrates that
these differences in predicted performance are enhanced when the ti/tv ratio R grows. It is also worth
noting that for intermediate substitution rates, the optimal SR function is predicted to perform better
than each of the other two.
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Figure 5: Predicted error rates (NRMSE[d̃]). The predicted error rates are given by the square-root
of §17, where the sequence length k is taken to be 500, and the ti/tv ratio R is taken to be 2 (left
graph) and 10 (right graph). The X-axis corresponds to the total substitution rate (α + 2β). Each
graph contains three plots: one corresponding to the standard SR function (where c2 = 2c1), one
corresponding to the ‘transversions only’ SR function (where c2 = 0), and one corresponding to the
predicted optimal SR function (where c1/c2 = cOPT as in §18). Note that the predicted optimal SR
function changes with the values of α and β along the x-axis (unlike the other two functions which are
constant).

Next, we compare the predicted error rates (NRMSE[d̃]) with actual error rates (NRMSE[d̂]) using
empirical observations. The empirically observed NRMSE[d̂] was computed using 10,000 repetitions of
sequence evolution simulations for each sampled value of the model parameters α, β. Results are shown
in Fig. 6 for R = 2, but a similar picture is observed for other values of R. This comparison indicates
that NRMSE[d̃] approximates NRMSE[d̂] very tightly in most cases. The cases where there is deviation
can be explained by ‘small eigenvalue distortion’. Recall that small eigenvalue distortion occurs when an
SR function gives non-negligible weight to a base function ∆t = − ln(λt) where the eigenvalue λt is very
small. Now, since in these simulations λ2 is always smaller than λ1 (implied by the fact that β < α),
then the base function ∆2 is more prone to distortion than ∆1. In fact, it is apparent that when the
total rate does not exceed 2, the ‘transversions-only’ SR function (which is proportional to ∆1) shows
no distortion (distortion there appears only for higher rates). On the other hand, the standard SR
function (which puts 2

3 of its weight on ∆2) does show significant distortion. Distortion of lower extent
is also observed for the predicted optimal SR function. Although the weight it puts on ∆2 reduces as
the total substitution rate increases, it is not reduced enough to avoid distortion altogether.

There is another consequence of ‘small eigenvalue distortion’ visible in this graph, other than de-
viation of the predicted error rate from the observed one. Small eigenvalues (especially λ2) also cause
the unstable behavior of the empirically observed NRMSE[d̂]. This behavior is caused by simulation
instances which produce values of λ̂2 that are extremely small. These outliers imply a very high
estimation error ((d̂ − d)2), which significantly influences the observed NRMSE, resulting in the ob-
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served spikes in the plots. One apparent flaw of the predicted optimal SR functions is that, unlike
the ‘transversions-only’ SR function, it is rather sensitive to these outliers (leading after some point to
inferior performance). A more basic problem in using this SR function is that its SR coefficients depend
on the unknown model parameters α, β. In Section 5.3 we present a solution to the second problem
which also (somewhat surprisingly) provides a solution to the first.
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Figure 6: Predicted vs. empirically observed NRMSE. The predicted values of NRMSE[d̃] (plotted
in dotted lines) are given by the square-root of §17. The empirically observed error rates (plotted in
solid lines) are computed using 10,000 independent simulations of sequence evolution (with R = 2 and
k = 500). Simulations in which one of the eigenvalues of P̂ (λ̂1 or λ̂2) was non-positive were discarded
and replaced by ‘valid’ simulations.

5.3 Fitting the SR function to the input sequences.

Recall that our goal is to fit an SR function to the observed taxon sequences (rather than to the
unknown model parameters). A natural way to achieve this goal is to use an SR function which is
optimal w.r.t. the model parameters estimated from the input sequences. In the case of K2P, this
means obtaining the SR coefficients by plugging in α̂ and β̂ (which correspond to the matrix P̂) in
§18. We refer to this as the adaptive optimal SR function, as it adapts itself to the observed sequences.
Although this adaptive strategy seems natural, it is not a priori obvious that it yields reasonably
accurate distance estimates. Fig. 7 contains results of experiments which test the accuracy of this
approach. Again, 10,000 repetitions were used to compute the empirical values of the NRMSE. Three
strategies of distance estimation were considered: the adaptive strategy suggested above; the predicted
optimal SR function obtained by plugging in §18 the true model parameters α, β (usually unknown to
the user); and the a posteriori optimal SR function which is the ‘non-adaptive’ SR function which in
hindsight minimizes the observed NRMSE over the 10,000 simulations. The SR coefficients of the latter
function were set by scanning the ratio c1

c1+c2
in the interval [0, 1] in steps of 0.01, and choosing the

ratio which a posteriori leads to minimal observed NRMSE. Note that in the adaptive strategy the SR
function changes throughout the 10,000 simulations according to their outcome. Hence, in this strategy
(unlike the other two) the reference distance d changes from one simulation to another.

One observation which was already apparent in Fig. 6 is that the SR function predicted to be optimal
(through §18) is not always optimal. Indeed, in some cases the a posteriori optimal SR function is
much more accurate. However, the most important (and encouraging) observation is that the adaptive
strategy, which is the only one that can be implemented in practice, outperforms even the a posteriori
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Figure 7: Fitting SR functions to the input sequences. The solid plots describe the empirically
observed NRMSE of three distance estimation strategies: the predicted optimal SR function, obtained
by plugging α, β in §18; the a posteriori optimal SR function which is the ‘non-adaptive’ one that
in hindsight has the minimal error rate; and the adaptive strategy obtained by plugging α̂, β̂ in §18.
Computations were done using 10,000 independent simulations of sequence evolution with R = 2 and
k = 500. The dotted plot corresponds to NRMSE[d̃] of the predicted optimal SR function (as in Fig.
6).

optimal SR function. In fact, the adaptive strategy seems to behave very much as we predict the optimal
SR function to behave (dotted plot in Fig. 7). This is probably due to the fact that the adaptive strategy
is much less sensitive to outliers than the other strategies: when it encounters an outlier in which α̂ is
extremely large (and hence also very ‘noisy’), it decreases c2 in a way which significantly reduces the
contribution of α̂ to the estimated distance in that simulation. In this sense, the adaptive SR function
is self correcting. The comparison of the adaptive strategy to the a posteriori optimal SR function
indicates that the adaptive strategy actually outperforms any constant SR function. This strong result
was consistently observed in other settings as well.

5.3.1 A Bayesian approach.

One possible way to explain the good performance of the adaptive approach is to view it through
a Bayesian setting [9]. In the Bayesian setting, the observed taxon sequences induce a probability
distribution over the space of all possible substitution matrices in the substitution model M. Hence,
the estimated distance d̂ is considered to be constant and the reference distance d is considered to be
random. For instance, assuming that, a priori, all K2P model parameters are equally likely (i.e., a flat
prior), sequences with observed parameters (p̂nil, p̂α, p̂β) imply an a posterior probability distribution
for (pnil, pα, 2pβ) which is the Dirichlet distribution [7] with parameters (kp̂nil + 1, kp̂α + 1, 2kp̂β + 1).

Now denote pnil = kp̂nil+1
k+3 , pα = kp̂α+1

k+3 , pβ = kp̂β+ 1
2

k+3 . Then the expectation of (pnil, pα, pβ) under this
posterior distribution is (pnil, pα, pβ), and the covariance matrix of these random variable can also be
easily expressed using k, pnil, pα, pβ . Consequently, a similar process to the one detailed in Section 4.2
can be applied to approximate E[(d̂− d)2] via serial application of Lemma 4.1 (where d is the random
variable). The expression obtained is actually very similar to the one in §16:

MSE[d] ≈ 1
k + 4

(
c2
1(e

8β − 1) + 2c1c2(e4β − 1) +
1
2
c2
2(e

4α(e4β + 1)− 2)
)

. (19)
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The rate parameters α, β are the ones associated with the K2P substitution matrix with entries
pnil, pα, pβ . The predicted optimal SR function in this setting is thus obtained by plugging α, β in
§18. Now, since α, β are very close to α̂, β̂ for k À 1, (implied by the fact that pnil, pα, pβ are very
close to p̂nil, p̂α, p̂β), this (‘Bayesian’) SR function is indeed very similar to the one obtained by our
adaptive strategy. The Bayesian approach can be useful if we wish to introduce prior beliefs on the
space of substitution matrices in M which are different from the flat (equiprobable) one. The choice
of SR function is then made according to the combined information in these priors and the observed
sequences.

6 Discussion.

In this paper we introduced an adaptive approach for selecting distance functions on sequence data.
This was done by introducing the concept of SR functions, which define distances under stochastic
substitution models. We showed how SR functions can be constructed using the generalized logdet
technique, and characterized the sets of SR functions available for certain types of substitution models.
Then we presented a general framework for analyzing the stochastic noise introduced by the computation
of SR functions from input sequences (which evolved according to the assumed model). Finally, we used
this analysis for finding near optimal distance functions for the K2P model, and introduced simulations
which demonstrated the advantages of these functions over the SR functions which are commonly used
for this model.

Our analysis and experiments focused on the problem of finding the best SR function for a given
evolutionary path. We argue that this result provides a basic tool for significantly improving the
performance of distance-based phylogenetic reconstruction methods. Preliminary evidence for this can
be found in experiments we ran over quartet trees, which were already mentioned in Section 1. These
experiments considered symmetric quartets in different scales (as described in Fig. 1). The main
objective was to test the effectiveness of various distance formulae in reconstructing quartets, using the
common four-point method (see Section 1 for more details on the experimental setting). Alongside the
standard K2P formula and the ‘transversions only’ formula (which both use non-adaptive SR functions),
we tested an adaptive formula which we call ‘max-optimal’. This formula is based on an adaptive SR
function defined as follows: (1) α̂ij , β̂ij are estimated for every taxon pair {i, j} ⊆ {A,B,C,D}; (2)
the adaptive optimal coefficient-ratio cij is obtained for every pair by plugging α̂ij , β̂ij in §18; (3) the
chosen adaptive SR function is the one using SR coefficients c1, c2 s.t. c1

c2
= max{cij}. The motivation

behind this heuristic solution is to minimize the maximal noise within the 6 estimated distances: the
SR coefficients chosen in the third step are optimal for the longest observed path in the quartet, which
also induces the maximal expected noise.
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Figure 8: Reconstructing Symmetric Quartets. The performance of various distance formulae was
tested in reconstructing symmetric quartets using FPM. These graph, which are a sequel to the one in
Fig. 1, present results for simulations done using ti/tv ratios of R = 1

2 , 10.
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Although ‘max-optimal’ is purely heuristic, it yields very good results in our experiments. Fig.
1 presents results of simulations where the ti/tv ratio R is 2, and Fig. 8 presents additional results
obtained for R = 1

2 , 10 . We note that similar results were obtained for other values of R and for
non-symmetric quartets. As already mentioned in Section 1, the standard formula performs well for
small-scale (or short) quartets, and the ‘transversions only’ formula preforms well on large-scale (or
long) quartets. Our ‘max-optimal’ heuristic outperforms both of them in most cases. The only clear
exception is when the ti/tv ratio is 1

2 (implying th JC model). Recall that when R = 1
2 , the logdet

SR function (used by the standard formula) yields minimal expected noise for all evolutionary paths
(regardless of their total rate). Hence, in this case we expect the standard formula to perform optimally,
regardless of the scale of the quartet. The ‘max optimal’ heuristic provides a coarse fit of the SR function
to the scale of the quartet (or tree, in general), but it is probably not the optimal adaptive strategy.
Searching for better strategies remains the main open question from this work. This and other future
research topics suggested by our results are discussed below.

• Lemma 3.6 characterizes some substitution models in which all SR functions are spanned by
generalized logdet functions. It is interesting to figure out whether this result can be generalized for
other substitution models. This question is closely related to the following well studied problem:
what are the real valued functions f for which f(AB) = f(A)f(B) for all non-singular matrices
A,B (see [1], pp. 349-353). The main difference is that in our context, the equality is required
to hold only for limited subsets of matrices.

• Our framework for analyzing the stochastic error introduced by SR functions is based on the
assumption that the entries of the substitution matrix P̂ij which is most likely to produce a given
sequence-pair Si, Sj , are obtained by linear transformations of the observed joint distribution
F̂ij . This assumption is not valid for some common (and unified) models, (namely ones in which
the stationary distribution is non-uniform, e.g., the Tamura Nei model). In such cases a different
approach may be needed, or alternatively good SR functions should be found by heuristic methods.

• Our quartet experiments demonstrate the potential of the adaptive approach in improving the
accuracy of distance based methods. This suggests that finding good (near optimal) SR functions
for more general substitution models and/or larger sets of input sequences is potentially of high
practical importance. Similarly, modifying existing distance based reconstruction algorithms so
that they select SR functions which are good for the given input has the potential to significantly
improve their performance.

• A subcase of the previous item which is of special interest is that of non-homogeneous model trees.
When the model tree is homogeneous, the different metrics induced on the tree by different SR
functions are all proportional to each other. Hence, the only thing that makes a difference in that
case is the noise induced by the SR function (normalized by some scaling factor). However, when
the model tree is non-homogeneous, then different SR functions might induce non-proportional
metrics. This further enhances the difference between different SR functions.
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A Proof of Lemma 5.1.

Lemma 5.1. Let α, β > 0 be the K2P parameters associated with a certain evolutionary path. Then
the SR-function which minimizes NMSE[d̃] along this path is given by SR coefficients c1, c2, s.t.

c1

c2
= cOPT

4
=

e4β+1
e4β−1

(e4α − 1)β − α

(e4β − 1)β + (e4β + 1)α
(20)

Proof. Any SR function which minimizes NMSE[d̃] is given by SR coefficients c1, c2 s.t. c = c1
c2

minimizes

the expression for NMSE[d̃] given in §17:

NMSE[d̃] =
(e8β − 1) c2 + 2(e4β − 1) c + 1

2 (e4α(e4β + 1)− 2)
k(4β c + 2(α + β))2

.

Before turning to show that cOPT is the global minimum of NMSE[d̃], we show that cOPT > 0, implying
that it corresponds to a valid SR function. Since the denominator of §20 is clearly positive, all we have
to do is show that the numerator is positive. This is established by the fact that e4α − 1 > 4α for all
α > 0, and e4β+1

e4β−1
β > 1

2 for all β > 0, which imply together that the numerator is always greater than

α. Now in order to find the minimal point of NMSE[d̃] as a function of c, we take the partial derivative
of NMSE[d̃] according to c:

∂(NMSE[d̃])
∂c

=
(4β c + 2(α + β))2

(
2(e8β − 1) c + 2(e4β − 1)

)

k(4β c + 2(α + β))4
−

8β(4β c + 2(α + β))
(
(e8β − 1) c2 + 2(e4β − 1) c + 1

2 (e4α(e4β + 1)− 2)
)

k(4β c + 2(α + β))4

=
(2β c + α + β)

(
(e8β − 1) c + (e4β − 1)

)

2k(2β c + α + β)3
−

2β
(
(e8β − 1) c2 + 2(e4β − 1) c + 1

2 (e4α(e4β + 1)− 2)
)

2k(2β c + α + β)3

=
2β(e8β − 1) c2 +

(
(α + β)(e8β − 1) + 2β(e4β − 1)

)
c + (α + β)(e4β − 1)

2k(2β c + α + β)3
−

2β(e8β − 1) c2 + 4β(e4β − 1) c + β(e4α(e4β + 1)− 2)
2k(2β c + α + β)3

=

(
(α + β)(e8β − 1)− 2β(e4β − 1)

)
c − (

β(e4α(e4β + 1)− 2)− (α + β)(e4β − 1)
)

2k(2β c + α + β)3

=

(
(e8β − 2e4β + 1) β + (e8β − 1) α

)
c − (

(e4α+4β + e4α − e4β − 1) β − (e4β − 1) α
)

2k(2β c + α + β)3

=

(
(e4β − 1)2β + (e8β − 1)α

)
c − (

(e4β + 1)(e4α − 1)β − (e4β − 1)α
)

2k(2β c + α + β)3
. (21)

Clearly, cOPT of §20 is the only point where this derivative is nullified. Also note that NMSE[d̃] is a
continuous and differentiable function of c in the range of c which leads to positive substitution rates
(4βc + 2(α + β) > 0). Therefore, in order to establish that cOPT is a global minimum, all we have to do
is show it is a local minimum. The derivative in §21 is negative when c = 0, due to the positivity of
the numerator of §20 which was established earlier. Furthermore, when c goes to ∞ the derivative also
goes to ∞, due to the positivity of the denominator of §20. Therefore, cOPT provides a local, and hence
a global, minimum for NMSE[d̃].
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