
424 IEEE TRANSACTIONS ON  PARALLEL AND DISTRIBUTED SYSTEMS,  VOL. 8,  NO. 4,  APRIL  1997

Uniform Dynamic Self-Stabilizing
Leader Election

Shlomi Dolev, Amos Israeli, and Shlomo Moran

Abstract —A distributed system is self-stabilizing if it can be started in any possible global state. Once started the system regains its

consistency by itself, without any kind of outside intervention. The self-stabilization property makes the system tolerant to faults in which
processors exhibit a faulty behavior for a while and then recover spontaneously in an arbitrary state. When the intermediate period in
between one recovery and the next faulty period is long enough, the system stabilizes. A distributed system is uniform if all processors
with the same number of neighbors are identical. A distributed system is dynamic if it can tolerate addition or deletion of processors and
links without reinitialization. In this work, we study uniform dynamic self-stabilizing protocols for leader election under readwrite atomicity.
Our protocols use randomization to break symmetry. The leader election protocol stabilizes in O nD' loga f  time when the number of

the processors is unknown and O D'a f , otherwise. Here D denotes the maximal degree of a node, ' denotes the diameter of the

graph and n denotes the number of processors in the graph. We introduce self-stabilizing protocols for synchronization that are used as
building blocks by the leader-election algorithm. We conclude this work by presenting a simple, uniform, self-stabilizing ranking protocol.

Index Terms —Self-stabilizing systems, leader election, distributed algorithms, randomized distributed algorithms, synchronization.

——————————   ✦   ——————————

1 INTRODUCTION

EADER-ELECTION is one of the fundamental tasks in dis-
tributed computing. Roughly speaking, a protocol that

solves this task requires that when its execution terminates, a
single processor is designated as a leader and every processor
knows whether it is a leader or not. By definition, whenever a
leader-election protocol terminates successfully, the system is
in a nonsymmetric global state. In many cases, once a leader
is elected the distributed task is solved by means of a central
solution i.e., the leader controls the activity in the distributed
system. A partial list of distributed tasks that can be easily
realized in the presence of a leader include: consensus, re-
source allocation and synchronization. Therefore, it is not
surprising that the leader election problem has been exten-
sively studied (see for example, [18], [20], [23], [24], [25], [30]).

The number of processors and the sometimes noisy
communication media in a distributed system impose the
need for a fault tolerant design. One strong notion of fault
tolerance is self-stabilization. Roughly speaking, a self-
stabilizing protocol can cope with any kind of faults in the
history. A distributed system is self-stabilizing if it can be
started in any possible global state. Once started, the system
runs for a while until it reaches a legitimate global state in
which the system is consistent. The self-stabilization prop-
erty makes the system tolerant to faults in which proces-
sors exhibit a faulty behavior for a while and then recover

spontaneously in an arbitrary state. When the intermedi-
ate period between one recovery and the next faulty pe-
riod is long enough, the system stabilizes.

Any leader-election protocol that has a symmetric initial
state requires some means of symmetry breaking. In id-
based systems each processor has a unique identifier called
the processor’s id, hence the system has no symmetric
global-state. A semiuniform system has two kinds of proces-
sors: a unique predetermined processor of one type and all
other processors are of the other type. The unique processor
serves as a leader and prevents the existence of symmetric
configurations. In uniform1 leader-election protocols, all
processors are identical, the initial state is symmetric and
symmetry is broken by randomization. Such setting is very
useful when the processors are fabricated in a uniform
process without assigning each processor by a unique
identifier. Note that even in the semiuniform setting some
outside coordination is required to ensure that there exists a
unique processor in the system. This coordination is spe-
cially hard in dynamic environment where processor may
join and leave the system during the execution. Another
motivation for the uniform system setting is the possibility
of outside coordination mistakes such as assigning the
same identifier to two processors. A uniform system does
not rely on such outside coordination.

1.1 Previous Work
Self-stabilizing systems were introduced in the seminal pa-
per of Dijkstra, [14]. In that paper, Dijkstra presents three
semiuniform, self-stabilizing, ring protocols for mutual-
exclusion. Other semiuniform, mutual-exclusion, self-
stabilizing ring protocols which work under a stronger ad-
versary, called the distributed demon were presented by
Brown, Gouda, and Wu in [10] and by Burns in [12]. Two

1. Uniform systems are also referred to as anonymous.
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papers considered self-stabilizing, mutual-exclusion proto-
cols for general (connected) graphs: The first was authored
by Tchuente, in [31], who presented a nonuniform protocol
for that problem. A semiuniform protocol for the same
problem was presented by Dolev, Israeli, and Moran in
[15]. The work of [15] was the first to propose the read-
write atomicity model and their protocol is the first proto-
col that is self-stabilizing under this model. A self-
stabilizing, id-based protocol for mutual exclusion in com-
plete graphs is presented by Lamport, in [27]. This protocol
has exponential space complexity. Protocols for leader elec-
tion in the id-based model for a general graph are presented
by Arora and Gouda, in [5] and by Afek, Kutten, and Yung
in [6]. Both protocols assume read-write atomicity.

So far, there are very few uniform self-stabilizing proto-
cols: Burns and Pachl present a uniform, deterministic, self-
stabilizing, mutual exclusion protocol for rings of prime
size in [11]. Randomized, uniform, self-stabilizing protocols
for mutual exclusion in a general graph and for ring orien-
tation are presented by Israeli and Jalfon in [21] and [22]
respectively. If one could run id-based and semiuniform
protocols on a uniform system, the repertoire of uniform
self-stabilizing protocols would be considerably enlarged.
Let 35 be an arbitrary semiuniform, self-stabilizing proto-
col. To run 35 on a uniform system we employ a uniform,
self-stabilizing leader-election protocol and combine it with
35, using fair protocol composition—a technique pre-
sented in [15]. Our self-stabilizing ranking protocol assigns
the processors with unique identifiers. Similarly to a semiu-
niform self-stabilizing protocol, it is possible to combine an id
based protocol 35 with the ranking protocol. This combined
protocol can be applied to uniform systems.

Our protocol is the only protocol which solves the prob-
lem without any prior knowledge on the communication
graph. Assuming some known bound on the graph’s diame-
ter solutions to the same problem have been suggested inde-
pendently in [6], [4] and in [8]. The time complexity of all
these solutions is inferior to the time complexity of our proto-
col.

There are many non-self-stabilizing distributed protocols
for leader election. We now survey the most related ones:
Deterministic, leader-election protocols in id-based systems
are presented in [18], [20], [25], [24]. Uniform, randomized,
leader-election protocols are presented in [23], [30], [28].
Other protocols for uniform systems appear in [2], [1].

1.2 The Current Work
In [17] we presented the computation model, a proof tech-
nique for randomized algorithms and two uniform self-
stabilizing leader election protocols for complete communi-
cation graphs. In the current work we present a uniform,
dynamic, self-stabilizing, leader election protocol for gen-
eral graph systems.

The resources used for stabilization are execution time
and memory. The following complexity measures capture
the amount of resources required by our protocols:

• Stabilization time and
• Space.

The stabilization time of a self-stabilizing protocol is the

maximal time (measured in asynchronous rounds which is
precisely defined in the next section) it takes the system to
reach a legitimate configuration where the maximum is
taken over all possible executions. We consider stabilization
time a very important complexity measure and carefully
analyze our protocols’ stabilization time. To do that, we use
the sl-game method [17], for proving upper bounds on the
time complexity of randomized distributed protocols.
During the execution of our protocol each processor may
extend the amount of memory it uses. The space complexity
of our protocol is the expected number of extension bits per
a processor. According to the above definition, the space
complexity of our protocol is O(log n).

The rest of this paper is organized as follows: In Sec-
tion 2, we present the formal model and requirements for
uniform, self-stabilizing protocols. Section 3 presents the
general graph leader election protocol, and the self-
stabilizing synchronization protocols. Section 4 presents the
self-stabilizing ranking protocol. Conclusions are in Sec-
tion 5. The Appendix contains the notations and terms.

2 MODEL AND REQUIREMENTS

The model is identical to the one presented in [17]. A
uniform distributed system consists of n processors de-
noted by P1, P2, º, Pn. Processors are anonymous, they do
not have identities. The subscript 1, 2, º, n are used for
ease of notation only. Each processor communicates with
all other processors using a single writer, multireader
register which is serializable with respect to read and
write actions. For the sake of clarity, we assume that
every processor knows the exact contents of the register
that it is writing to.2

For ease of presentation, we regard each processor as a
CPU whose program is composed of atomic steps. An atomic
step of a processor consists of an internal computation fol-
lowed by a terminating action. The terminating actions are
read, write and coin toss. We assume that the state of a
processor fully describes its internal state and the value
written in its register. Denote the set of states of Pi by Si. A
configuration, c Œ (S1 ¥ S2 ¥ º Sn), of the system is a vector
of states of all processors.

Processor activity is managed by a scheduler. In any
given configuration, the scheduler activates a single proces-
sor which executes a single atomic step. To ensure correct-
ness of the protocols, we regard the scheduler as an adver-
sary. The scheduler is assumed to have unlimited resources,
and it chooses the next activated processor on line, using the
full information on the execution so far. An execution of the
system is a finite or an infinite sequence of configurations
E = (c1, c2, º) such that for i = 1, 2, º, ci+1 is reached from ci
by a single atomic step of some processor. A fair execution is
an infinite execution in which every processor executes
atomic steps infinitely often. A scheduler S is fair if, for any
configuration c, with probability one, an execution starting
from c in which processors are activated by S is fair.

In a distributed asynchronous system, each processor
may operate at any nonconstant rate and different proces-

2. One may assume that every processor refreshes the contents of its
register periodically.
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sors might be slow in different parts of the execution. The
following definition of round complexity attempts to give a
complexity measure in which the unfair behavior of the
adversary is neutralized, by capturing the rate of action of
the slowest processor in any segment of the execution.
Given an execution E, we define the first round of E to be the
minimal prefix of E, ¢E , containing atomic steps of every
processor in the system. Let ¢¢E  be the suffix of E for which
E = ¢ ¢¢E Eo . The second round of E is the first round of ¢¢E ,
and so on. For any given execution, E, the round complexity
(which is sometimes called the execution time) of E is the
number of rounds in E. Under this definition the time to
complete a single round is unbounded and depends on the
fairness of the adversary. Any self-stabilizing application that
uses our protocol as a subroutine would probably also require
fair behavior to stabilize and its complexity will be propor-
tional to the stabilization complexity of our protocol.

We proceed by defining the self-stabilization require-
ments for randomized distributed systems. A behavior of a
system is specified by a set of executions. Define a task LE to
be a set of executions which are called legitimate executions.
A configuration c is safe with respect to a task LE and a
protocol 35 if any fair execution of 35 starting from c be-
longs to LE. Finally, a protocol 35 is randomized self-
stabilizing for a task LE, if starting with any system configu-
ration and considering any fair scheduler, the protocol
reaches a safe configuration within an expected number of
rounds which is bounded by some constant C (the constant C
may depend on n, the number of processors in the system).

3 LEADER ELECTION IN GENERAL GRAPHS

3.1 Informal Description of the Protocol
In this protocol each system configuration c encodes a di-
rected graph called the FSG (father-son relation graph) of c
and denoted by FSG(c). A safe configuration in this proto-
col is a configuration whose FSG is a single in-tree (called
tree in the sequel) which contains all processors and for
which during any execution that begins in that configura-
tion the tree is not changed; the root of the FSG is the
elected leader.

The protocol consists of two conceptual phases which
are called cycle elimination and tree fusion. During the cycle
elimination phase all cycles in the FSG are removed. In the
tree fusion phase the number of trees in the FSG is reduced
until it consists of a single tree. Coin tosses are used in the
tree fusion phase in order to break symmetry between trees.
Normal operation and completion of tree fusion depends
crucially on completion of the cycle elimination phase. By
the nature of self-stabilizing protocols the completion of the
cycle elimination phase is undetectable locally by the proc-
essors. Hence, the cycle elimination phase does not termi-
nate and is executed together with tree fusion phase.

The FSG is defined by a relation between neighbors
called father-son relation. Each processor can either be a root
or can have a father, which is one of its neighbors. If Pi is
the father of Pj in configuration c then there is a directed edge
from Pj to Pi in FSG(c). Thus, in any configuration c, there are
at most n edges in FSG(c). Each tree of FSG(c) is identified by a
binary string which is called tree-identifier, and abbreviated tid.
A root is the only processor which changes the tree’s tid; this is

always done by extending the tid with a randomly chosen bit.
Each non-root processor repeatedly copies its father’s tid.
Hence in every execution, eventually all processors in a tree T,
hold a prefix of the tid of the root of T.

To achieve cycle elimination each processor computes the
distance to the root of its tree. Every processor computes the
distance to the root of its tree by adding one to the distance of
its father from the root. Whenever the processor realizes that
this distance “grows” it (assumes that it is part of a cycle in
FSG and) cuts the edge to its father and becomes a separate
root. After this phase is completed FSG is a forest of trees.

To reduce the number of trees to one we first ensure that
eventually there is a unique tid in the system. Each proces-
sor repeatedly scans its neighbors tids. Whenever a proces-
sor Pi discovers a neighbor Pj whose tid is larger than its
own tid, Pi takes Pj to be its father. If previously Pi is a root,
the number of trees is reduced by one. We prove that taking a
new father never introduces new cycles in FSG(c). This how-
ever does not ensure that eventually there is a single tree since
there might be several trees with the same tid.

A root processor discovers that there are other roots with
the (same) maximal tid by repeatedly recoloring its tree us-
ing a global synchronization protocol. Each recoloring
starts from the root which chooses the new color randomly.
The root waits for each of its sons to confirm that every
node in its subtree is recolored. Once the entire tree is
recolored the root chooses a new color once more, and so
on. A processor of a tree T detects the existence of another
tree ¢T  with the same tid, by observing that one of its
neighbors is colored neither by the previous color of T, nor
by its current color. In this case the processor “returns” this
information to the root of T. Upon receipt of this informa-
tion the root of T extends its tid by a random bit which is
distributed again along the edges of T. At the same time ¢T
may also extend its own tid. Since each extension is done
randomly, symmetry is eventually broken and the system
reaches a leader configuration. A leader configuration is a
configuration with exactly one leader such that in any exe-
cution that starts with this configuration the leader is fixed.
Once there exists exactly one leader in the system the pro-
tocol ensures that this leader extends his tid at most once
(before a safe configuration is reached).

3.2 Formal Description of the Protocol
The code that appears in Fig. 1, Section 3.2, below, is writ-
ten for processor Pi that has D neighbors. Each processor, Pi,
owns a register in which it writes and all its neighbors read.
The register of Pi consist of the following fields: tidi, disi, fi,
colori, acki, and oti.

tidi The field tidi indicates the identity of the tree to
which Pi belongs in the FSG.

disi The field disi indicates the distance of Pi from the root of
the tree it belongs to. In case disi = 0, Pi is a root proces-
sor.

fi In case disi π 0, the value in the field fi indicates
which of the neighbors of Pi is its father. fi holds the
index of the link of Pi that connect Pi with its father.
Thus, the neighbor of Pi that is connected to Pi
through this link can determine by the value of fi
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and disi that Pi is its son3.
Color For the execution of the global synchronization

protocol, as we describe in the sequel, we use the
color field. color may contain eight colors which are
denoted by integers of values 0 to 7.

Ack The ack field is also used for the global synchroni-
zation protocol (below). ack is a boolean field.

Ot The field ot is assigned by true whenever a processor
notes that one of its neighbors has color that is differ-
ent from both its own current color and the new color
of its father.

Each time Pi reads the value of fj, disj, tidj, colorj, ackj, otj of
its neighbor Pj, Pi assigns those values in its internal vari-
ables fi[j], disi[j], tidi[j], colori[j], acki[j], and oti[j], respectively.

The function extend_tid chooses a random bit and con-
catenates it to the tail of the current tid. The function son(j)
executed by Pi is true only when Pj is the son of Pi, this is
indicated by the value of fi[j]. The function choose_color
chooses randomly between six (out of the possible eight)
colors that are not equal to the previous_color and to (the
current) color and assigns previous_color by the value of
(the current) color.

We define the lexicographic order between two values of
tid fields as follows: Let tid1 and tid2 be two values of tid

fields. The relation tid1 > tid2 is true when tid2 is a prefix of

tid1, or (when neither tid1 nor tid2 is a prefix of the other) if

tid¢1 and tid¢2 are derived from tid1 and tid2 by removing their
common maximal prefix and the first bit of tid¢1  is 1. Define
the relation % over pair of processors fields ( tid, dis) as fol-
lows: ((tid1, dis1) %�(tid2, dis2)) if tid1 > tid2 (as defined above)

or when tid1 = tid2, then dis1 < dis2. In such a case we say

that the pair (tid1, dis1) is greater than (tid2, dis2).

3.2.1 Description of the Code
The code of the protocol appears in Fig. 1 and Fig. 2. The
code consists of a single infinite do forever loop, the lines of
this loop are described below.

Line 2 - Pi  reads the registers of its neighbors.
Lines 3 to 10 - Using the values read, Pi calculates the

maximal tid among the tids of its neighbors. Then Pi
finds the minimal dis of a neighbor among the neigh-
bors holding the maximal tid. At last Pi finds the in-
dex of the first neighbor holding the above maximal
tid and minimal dis and updates the local variables F,
C, A, and OT accordingly.

Line 11 to 13 - If Pi finds that it has no neighbor Pj with
(tidj, disj) % (tidi, disi) then Pi becomes a root. Other-
wise, Pi updates the values of its tid and dis according
to the values it reads.

Line 14 - When Pi finds that for every neighbor it holds
that tidi = tidj and |disi – disj| £ 1, Pi assumes that the
cycle elimination is over and joins trees fusion.

3. It is assumed that Pi knows the indices given by its neighbors to every
of its links.

1 do forever
 (* Reading *)
2 for j:=1 to D do (tidi[j], disi[j], fi[j], colori[j], acki[j], oti[j])

:= read(rj);
3 max_tid := max(tidi[j]);
4 min_dis := min{disi[j] Ω tidi[j] = max_tid};
5 if (tidi[fi], disi[fi]) = (max_tid, min_dis) then

                                 (F, C, A, OT) := (fi, colori, acki, oti)
6 else
7 begin
8 F := {first j Ω tidi[j] = max_tid, disi[j]

                                                    = min_dis};
9 (C, A, OT) := (colori[F], false, false);
10 end
 (* Cycles elimination *)
11 if (tidi, disi) � (max_tid, min_dis)
12 then write (disi, fi) := (0, nil) (* become a root *)
13 else write (tidi, disi, fi, colori, acki, oti)
                         := (max_tid, min_dis + 1, F, C, A, OT);
14 if {> j Ω (tidi[j] = tidi) and (| disi – disi[j] | £ 1) then

                        tree_fusion;
15 end

Fig. 1. Leader election in general graph systems.

16 Procedure tree_fusion
 (* Root *)
17 if (disi = 0) and {"j Ω son(j) fi ((colori[j] = colori) and

                                                       acki[j])} then
18 begin
19 if {$ j Ω (oti[j] = true) or (colori[j] π colori)}
20 then write (tidi, acki)
                                                   := (extend_tid(tidi, false));
21 write colori := choose_color(previous_color,colori) ;
22 end
23 else if (dis π 0) then (* Nonroot *)
24 if (colori π colori[fi]) then
25 begin
26 if {$ j Ω colori[j] œ (colori, colori[fi])}
                                                           then write oti := true
27 else write oti := false;
28 write (colori, acki)

 := (colori[fi], false) ;
29 end
30 else if not acki and {" j Ω son(j) fi ((colori[j] = colori)

                                  and acki[j])} then
31 begin
32 if {$j Ω son(j) and oti[j] = true}

                    then oti := true;
33 write acki := true;
34 end
35 end

Fig. 2. Procedure tree_fusion.

Lines 17 to 22 - These lines consider the case in which Pi is
a root and discovers that it finished coloring its tree
with a single color. In this case Pi checks whether any
processor of its tree detected the existence of another
tree. If the existence of such a tree is detected Pi extends
its tid. Then Pi starts coloring its tree with a new color.



428 IEEE TRANSACTIONS ON  PARALLEL AND DISTRIBUTED SYSTEMS,  VOL.  8,  NO.  4,  APRIL  1997

Lines 23 to 29 - These lines consider the case in which Pi
is not a root and discovers that its father is colored
with a new color. If Pi finds that it has a neighbor Pj
for which colorj œ{colori, colori[f]} it concludes that Pj
belongs to another tree. Pi writes its conclusion in oti
and then sets colori to the color of its father.

Lines 30 to 34 - These lines consider the case in which Pi
is not a root and discovers that its sons finished col-
oring their subtrees with the color of colori. Pi collects
the indications on the existence of other trees and re-
port to its father that it finished coloring its subtree.

3.3 Correctness and Complexity Proofs
Toward proving the correctness of the protocol we first de-
scribe the synchronization building blocks used by the
protocol. Then we prove that the system reaches a configu-
ration after which there is a single tree with a leader. The
proof is completed by showing that this tree is fixed.

3.3.1 Synchronization
In this subsection we present two self-stabilizing synchro-
nization protocols: a local synchronization protocol and a
global-synchronization protocol. The local-synchronization
protocol is designed for a two processor system. The global-
synchronization protocol is an extension of the local-
synchronization protocol and is designed for a tree struc-
tured system. These protocols are used as components in a
protocol for leader election in general graphs. Procedure
tree_fusion in Fig. 2 uses a global synchronization protocol.
Nevertheless, both synchronization protocols are of an in-
dependent interest. The global-synchronization protocol,
that stabilizes in O(D') rounds, may be used as an efficient
self-stabilizing synchronizer that implements self-
stabilizing synchronous protocols in an asynchronous sys-
tem. The global-synchronization protocol can also be used
as an efficient self-stabilizing snapshot and reset protocol
(see [26], [5]).

3.3.1.1 Self-Stabilizing Local-Synchronization Protocol
A local-synchronization protocol is designed for a system
that consists of two processors Pf and Ps and two registers
colorf and colors. Pf (Ps) writes in colorf (colors) and reads from
colors (colorf). The color of Pf (Ps) is the value stored in colorf
(colors), respectively.

Informally the task of the local-synchronization protocol
is to ensure that Pf changes its color infinitely often and to
ensure that following every time that Pf changes its color Ps
changes its color to the color of Pf and only then Pf changes
its color again. More precisely the task of the local-
synchronization protocol is defined by a set of executions in
which:

• Pf changes the value of colorf infinitely often.
• Immediately before any change of the value of colorf it

holds that colorf = colors.
• Immediately after any change of the value of colors it

holds that colors = colorf.

The local-synchronization protocol is defined below.
During the execution of the protocol whenever Pf (Ps) reads
the value of colors it assigns this value in colorf[s] (colors[f],
respectively). Therefore, the value of colorf[s] (colors[f]) is the

value obtained in the last time, if any, Pf (Ps) read colors
(colorf[s], respectively). The protocol uses three colors (or
more). Pf uses the function choose_color which always selects
a color that is different from both the current color and the
previous color of Pf. To do so Pf has an internal variable
called previous_color. Every time the choose_color function is
executed it chooses a color that is equal neither to previ-
ous_color nor to colorf then assigns previous_color := colorf and
at last returns the color that it chooses.

Program of Pf —Pf repeatedly executes:

(lf1) reads colors into colorf[s] and
(lf2) if colorf[s] = colorf then it assigns colorf :=

choose_color(previous_color, colorf).

Program of Ps—Ps repeatedly executes:

(ls1) reads colorf into colors[f] and
(ls2) if colors[f] π colors then it assigns colors := colors[f].

In the following lemma we show that any execution of
the local synchronization protocol stabilizes after Ps exe-
cutes a constant number of atomic steps. The lemma uses
the following definition which will be used throughout the
paper.

DEFINITION 1. Let Q be a program that consists of exactly one
infinite do forever loop such that the first (last) line of Q is
the first (last) line of this loop. A processor that executes Q
completes a loop iteration during an execution E if it exe-
cutes the first line of the loop during one atomic step of E and
executes the last line of the loop in a later atomic step of that
execution.

Let l be a bound on the number of atomic steps executed
during arbitrary execution E, that starts with an atomic step
in which the processor executes the first line of the loop of
Q and ends with the first successive execution of the last
line of the loop of Q. By the nature of self-stabilizing proto-
cols a processor might start with any atomic step in the
loop of Q. Thus, the number of atomic steps needed to
complete a loop iteration is bounded by 2l – 1.

The next Lemma uses k (and not 2) for the number of
atomic steps needed to complete a loop iteration by Ps. This
choice prepares the way for future reasoning.

LEMMA 1. If k is the number of atomic steps needed to complete a
loop iteration by Ps then after at most 4k atomic steps of Ps
the local synchronization protocol is stabilized.

PROOF. First we observe that a configuration in which colorf
= colors[f] = colors is a safe configuration for the local
synchronization protocol. Once such a configuration
is reached and until Pf changes the value of colorf, Ps
cannot change the value of colors[f] and colors. When Pf
changes the value of colorf, Pf does not change the
value of colorf again before the system reaches a con-
figuration ¢c  in which colorf = colors[f] = colors, and so
forth. Thus, it is sufficient to prove that such a con-
figuration is reached within 4k atomic steps of Ps.

First we assume that colorf is not changed during k
successive atomic steps of Ps. In this case during these
k atomic steps Ps reads colorf and writes this color in
colors. Thus, a configuration in which colors= colors[f] =
colorf is reached and the system is stabilized.
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Now consider executions in which colorf is changed
every at most k atomic steps of Ps. Consider such exe-
cution, E, that contains 4 successive changes of colorf.
Let colori be the color assigned to colorf in the ith color
change of colorf. Note that E contains at most 4k
atomic steps of Ps. E contains the following steps, in
the specified order:

1) Pf writes color1 to colorf
2) Pf reads color1 in colors
3) Pf writes color2 to colorf
4) Pf reads color2 in colors
5) Pf writes color3 to colorf
6) Pf reads color3 in colors

   By the programs of Pf and Ps it holds that: Between
Step 2 and Step 4, Ps must write color2 in colors and be-
tween Step 4 and Step 6, Ps must write color3 in colors.
Hence, between Step 2 and Step 6, Ps must read color3 in
colorf. Since color1, color2, color3 are distinct, that read op-
eration of Ps must occur after Step 5 (and before Step 6).
Thus, between Step 5 and Step 6, Ps reads color3 in colorf
and then writes color3 in colors. Immediately after this
write operation, colorf  = colors[f] = colors as required.      �

3.3.1.2 Self-Stabilizing Global-Synchronization Protocol
A directed graph is an in-tree if the undirected underlying
graph is a tree, and if every edge of the tree is directed to-
wards a common root. For the sake of readability we use
the term tree instead of in-tree. A global synchronization
protocol is a protocol for a tree structured system, with a
root Pr. The global-synchronization protocol uses two fields
of a register for each processor. A processor, Pi, writes in
two fields called colori and acki that are read by any of its
neighbors in the tree.

Informally the task of a global-synchronization protocol
is to ensure that Pr changes its color infinitely often. Fol-
lowing every time that Pr changes its color all the proces-
sors in the tree change their color to the color of Pr and only
then Pr changes its color again. More precisely the task of a
global-synchronization protocol is defined by a set of exe-
cutions in which:

1. Pr changes the value of colorr infinitely often.
2. For any processor Pi, immediately before any change

of the value of colorr it holds that colori = colorr.
3. For any processor Pi, immediately after any change of

the value of colori it holds that colori = colorr.

The global-synchronization protocol is defined below.
During the execution of the protocol whenever Pi reads the
value of colorj (ackj) it assigns this value in colori[j] (acki[j],
respectively). To determine a new color Pr uses the
choose_color function that was defined above.

Program of Pr—Pr repeatedly executes:

(gr1) Reads the fields colori and acki of each of its sons Pi
and

(gr2) If for every son it holds that colorr[i] = colorr and
ackr[i] = true then it sets colorr := choose_color
(previous_ color, colorr).

Program of Pi i π r—Let Pf be the father of Pi in the tree. Pi
repeatedly executes:

(gi1) Reads the field colorf of its father and the fields colors
and acks of each of its sons Ps, and

(gi2) If colori[f] π colori then Pi assigns colori := colori[f] and
acki := false, otherwise

(gi3) If for each of its sons, Ps, colori[s] = colori and acki[s]
= true, then Pi assigns acki := true.

LEMMA 2. For any tree of depth ', in which D is the maximal
degree of a node, the global-synchronization protocol stabi-
lizes within O(D') rounds.

PROOF. The program of each processor in the global-
synchronization protocol consists of one infinite do
forever loop. There is a constant k1 such that a loop it-
eration of a processor with D neighbors in the tree is
completed within k1D atomic steps. Hence k1D is an
upper bound on the number of atomic steps needed
for a processor to complete at least one loop iteration
of the global synchronization protocol.
   First we show that requirement 1 of a global syn-
chronization protocol holds. In fact we show that Pr
changes its color at least once every 2k1D' + k1D
rounds: Assume that colorr is not changed during an
execution E of 2k1D' + k1D rounds. Let Pi be a neigh-
bor of Pr. During the first k1D rounds of E Pi executes
(gi1) and then (gi2) at least once. Immediately after Pi
executes (gi1) and (gi2) it holds that colori = colori[r] =
colorr (the color of Pi (colori) is equal to the color Pi
read from its father (colori[r]) and equal to the color of
its father (colorr)). Any further execution of (gi1), (gi2)
or (gi3) does not change the color of colori. Since Pi is
an arbitrary neighbor this equation hold for every
neighbor of Pr while Pr does not change its color. The
same arguments holds during the second k1D rounds
of E for processors that are in distance two from Pr.
Continuing this way, following the ith k1D rounds of E
all the processors whose depth is less than or equal to
i read the color of Pr from their father and are colored
with the color of Pr. Thus, following k1D' rounds the
entire tree is uniformly colored.
   Let ¢E  be the suffix of E that follows the first k1D'
rounds of E. During the first k1D rounds of ¢E  every
leaf, Pi, executes (gi1) and then (gi3), hence sets acki =
true. While the tree is uniformly colored any further
execution of (gi1), (gi2) or (gi3) does not change the
value of acki. Hence, after the first k1D rounds of ¢E
acki = true for every leaf Pi. The same argument holds
during the second k1D rounds of ¢E  for every proces-
sor Pi whose sons are leaves. Continuing this way,
following the ith k1D rounds of ¢E  it holds that ackj =
true for every processor Pj, such that the subtree
rooted at Pj is of depth less than or equal to i. Thus,
following 2k1D' rounds the entire tree is uniformly
colored and for every processor Pi in the tree, acki =
true. Hence, in the next k1D rounds Pr executes (gr1)
and (gr2) and assigns a new color to colorr.            �

Now we show that requirements 2 and 3 of a global syn-
chronization protocol hold too. Let E be an execution start-
ing from arbitrary configuration, c0. Let Pr, P1, º, Pi, º, Pl
be a path from a root of a tree Pr to a leaf in that tree, Pl. Let
Ei be a suffix of E that starts immediately after 4k1Di rounds
of E. We prove by induction on i that during Ei it holds that:
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ASSUMPTION 1. Immediately before Pr changes its color it
holds that colorr = color1 = º = colori.

ASSUMPTION 2. In any configuration of Ei that appears after
Pi changes its color for the first time (and in the same
time, assigns acki := false) it holds that if acki = false then
colorr = color1 = º= colori.

BASE CASE, I = 1. For every father-son pair (Pr, P1), the exe-
cuted protocol is the local-synchronization protocol:
(gr1) and (gr2) includes (lf1) and (lf2), (gi1) and (gi2)
includes (ls1) and (ls2). Thus, by Lemma 1 following
4k1D rounds it holds that colorr = color1 immediately
before any color change in colorr. Thus, Assumption 1
above is proven. Now we prove Assumption 2. By
Lemma 1 during the first 4k1D rounds of E a configu-
ration c in which colorr = color1[r] = color1 is reached.
Following c, color1 is not changed till colorr is changed.
Let ¢c  be a configuration that immediately follows the
first change in colorr after c i.e., ¢c  follows an atomic
step during which Pr changes colorr and sets ackr :=
false. By the fact that the local-synchronization proto-
col is stabilized it holds that following ¢c  the father-
son pair (Pr, P1) may repeatedly change their color and
ack values only in the following order:

1) P1 changes color1 to the color of colorr and sets ack1
:= false

2) P1 sets ack1 := true
3) Pr changes colorr.

Thus, following the first time P1 executes Step 2, above, the
equation ack1 = false holds only during subexecutions that
start immediately after Step 1 and end immediately before
the next Step 2. During these subexecutions colorr = color1.

INDUCTION STEP. We first prove that following 4k1Di rounds
the father-son pair (Pi, Pi+1) executes the local syn-
chronization protocol:

LEMMA 3. Following 4k1Di rounds the father-son pair (Pi, Pi+1)
executes the local synchronization protocol.

PROOF. To prove the lemma, it is sufficient to show that
when the induction hypotheses 1 and 2 hold for i then
in Ei it hold that:

1) Pi+1 repeatedly reads colori and whenever colori+1[i]
π colori+1, Pi+1 assigns colori+1 := colori.

2) between any two changes of colori, Pi reads colori+1
and finds colori = colori[i + 1].

3) the sequence of colors that is assigned to colori is equal
to the sequence of colors that is assigned to colorr.

   (gi1) and (gi2) of the global synchronization proto-
col imply 1. To prove 2, we show that during Ei Pi as-
signs acki := true between any two successive changes
in the value of colori. Whenever Pi changes its color it
sets acki := false. By Assumption 2 while acki = false it
holds that colorr = color1 = º = colori. Hence Pi does not
change its color thereafter before it assigns acki := true.
This latter operation is done only after Pi finds that
colori[i+1] = colori, as required by the local synchroni-
zation protocol. This proves 2, above.
   By Assumption 1, between any two changes in col-
orr, there is a configuration in which colori = colorr. By

Assumption 2, and the fact that whenever Pi assigns a
color to colori, it sets acki = false, it holds that colori is al-
ways changed to the color of colorr. Hence, 3. �

By Lemma 3 and by Lemma 1 it must hold that in the
first 4k1D rounds of Ei a configuration c is reached in which
colori = colori+1[i] = colori+1. Hence, the local synchronization
protocol executed by Pi and Pi+1 is stabilized during those
4k1D rounds. Thus, following c the father-son pair (Pi, Pi+1)
may repeatedly change their color and ack values only in the
following cyclic order:

1) Pi changes colori and sets acki := false
2) Pi+1 changes colori+1 to the color of colori and sets acki+1

:= false
3) Pi+1 sets acki+1 := true
4) Pi sets acki := true.

We now prove that following c the induction assumptions
hold for i + 1:

ASSUMPTION 1. We claim that following c, colorr is changed
only when colori = colori+1. Let ¢c  be the configuration
that follows c and immediately precedes the atomic
step in which Pr changes the color of colorr. Assume
toward a contradiction that in ¢c  colori π colori+1. Then
Pi changed its color at least once after c. Consider the
last such change before ¢c . We now show that acki
must be false in ¢c . acki is true only during sub-
executions that start immediately after 4 and end im-
mediately before the next 1. During these sub-
executions colori = colori+1, and hence acki = false in ¢c .
Thus, by Assumption 2 colorr is not changed. Hence
there is a contradiction.

ASSUMPTION 2. First, we show that whenever acki+1 = false
then acki = false, then we apply the induction assump-
tion on acki: following c Pi and Pi+1 change the value of
colori, colori+1 and acki, acki+1, according to Steps 1 to 4,
above. Pi+1 changes its color, according to 2 above,
only after Pi executes step 1 in which Pi changes its
color and sets acki=false. After executing 1, Pi does not
change the value of acki to true unless colori = colori+1
and acki+1 = true. Thus, during any subexecution that
starts immediately after 1 and ends immediately after
the next 2, acki = false. acki+1 = false only during subexecu-
tions that start immediately after 2 and ends immedi-
ately before the next 3. During these subexecutions acki =
false and colori = colori+1. Now we complete the proof by
the use of the induction assumption applied to Pi: if acki
= false then colorr = color1 = º = colori.

3.3.2 Single Tree With a Leader
First we prove that in every fair execution eventually FSG
becomes a forest and once this happens FSG remains a for-
est for the rest of the execution. Then we prove that FSG is
converted to a single tree and in the end we prove that this
tree is fixed forever.

LEMMA 4. For any processor Pi and any execution E the value of
(tidi , disi) does not decrease during E.

PROOF. The value of ( tidi, disi) is changed only in lines 12,
13, 20 of Fig. 1 and Fig. 2. It is easy to see that when
either line 12 or 20 is executed, the value of (tidi, disi)
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does not decrease. By the nature of read write
atomicity line 13 is included in the same atomic step
with the test of line 11. This test ensures that (tidi, disi)
never decreases.

DEFINITION 2.

1) A processor completes a loop iteration during an execu-
tion if it executes line 2 and then executes lines 3 to 15 of
the protocol.

2) A processor completes a read iteration during some execu-
tion of our protocol if it executes line 2 and then lines 3 to
10 of the protocol.

As described before, an edge (Pf,Ps) belongs to FSG(c) if
in configuration c, fs points to Pf and diss > 0. In this case we
say that (Pf, Ps) is a father-son pair in c.

LEMMA 5. Let ¢E  = (c0, º, c) be (a prefix of) an execution of the
protocol in which each processor completes a loop iteration.
The following hold for any father-son pair (Pf, Ps) in c:

1) Following the first read iteration in ¢E , Ps executes the
write operation in line 13 at least once.

2) Let ci be the configuration reached by the system immedi-
ately after Ps executes the write operation of line 13 for
the last time during ¢E . In ci the following relation holds:

(tidf, disf) � (tids[f], diss[f]) % (tids, diss)

PROOF. Since Ps completes a loop iteration, it executes the if
statement (Line 11) at least once before c is reached.
Within this if-statement Ps either declares itself a root
(Line 12) or declares some processor as its father (Line
13). Consider the last time this if-statement is exe-
cuted before c: In FSG(c), Ps is the son of Pf, therefore
in the last time line 11 was executed Ps chose to exe-
cute line 13. This proves 1.
   The value of tids[f], diss[f] in ci, is obtained by read-
ing (tidf, disf) (in line 2) at an earlier step. By Lemma 4
(tidf, disf) does not decrease, hence the leftmost rela-
tion holds. Configuration ci immediately follows the
last execution of Line 13 by Ps, in which Ps declares Pf
to be its father. This is done by Ps writing (tids[f], diss[f]
+ 1) in (tids, diss), which implies the rightmost relation,
hence 2 is proven.            �

LEMMA 6. Let ¢E  = (c0, º, c) be an execution in which each
processor completes a loop iteration. For every father-son
pair (Pf, Ps) in c, relation (*) holds.

PROOF. Consider an arbitrary father-son pair (Pf, Ps). Let ci
be the configuration reached after the last time Ps exe-
cutes the if statement of line 11 before c. By Lemma 5,
the relation (*) holds in ci. To complete the proof we
show that the relation (*) is preserved during ¢¢E  = (ci,
ci+1, º, c). Throughout ¢¢E , Ps is the son of Pf hence it is
not a root. The only instruction in which a nonroot
processor changes its (tid, dis) is the if statement of
line 11. Since ci follows the last time Ps executes this if
statement, (tids, diss) is constant and Pf is the father of
Ps throughout ¢¢E . To complete the proof we observe
that (tids[f], diss[f]) is updated by Ps copying (tidf, disf).
By Lemma 4 this pair only grows, hence the proof.   �

LEMMA 7. If c is a configuration in which the relation (*) holds
for every father-son pair then FSG(c) is a forest of trees.

PROOF. To prove the lemma we have to show that the out-
degree of each node is at most 1 and the underlying
graph has no cycles. Each nonroot processor has at
most one father (defined by the value of f). By
Lemma 6 the relation (*) holds for every father-son
pair in FSG(c), hence FSG(c) contains no cycles.        �

DEFINITION 3. Configuration, c, is a forest configuration if the
relation (*) holds for every father-son pair (Pf, Ps) in c,
and for every pair of neighbors Pi and Pj (tidi, disi) �
(tidj[i], disj[i]).

COROLLARY 8. In every execution E:

1) A forest configuration is reached following O(D) rounds.
2) If ci is a forest configuration and ci Æ ci+1 then ci+1 is a

forest configuration.

PROOF. By Lemma 6, a forest configuration is reached in
every execution after each processor has completed at
least a single loop iteration. By the definition of loop
iteration and by the code there exists a constant k1
such that processor Pi with D neighbors takes k1D
steps to complete a loop iteration. Hence in any exe-
cution, the system reaches a forest configuration
within O(D) rounds which proves 1. The proof of 2 is
by arguments similar to the arguments of Lemma 6.   �

DEFINITION 4. R(c) is the set of the root processors in configura-
tion c.

LEMMA 9. For any two forest configurations, ci, ci+1, such that ci+1 is
reached by an arbitrary atomic step a from ci, R(ci)   R(ci+1).

PROOF. Assume in contradiction that during a there is a
nonroot processor Ps that assigns 0 in diss. Let Pf be
the father of Ps just before the execution of a. Since a
must contain a write operation of line 12 a starts by
the execution of line 3 to 11 by the processor Ps, when
Ps executes line 11 Ps finds that the condition (tids, diss)
� (max_tid, min_dis) is true, and a ends with Ps exe-
cuting the atomic write of line 12. During the execu-
tion of a following the execution of lines 3 to 10 it
holds that (max_tid, min_dis) � (tids[f], diss[f]). By the
definition of forest configurations the relation (*)
holds in ci. Thus, (max_tid, min_dis) % (tids, diss) and
hence the write operation of line 12 is not executed,
contradiction.            �

Lemma 7, Corollary 8, and Lemma 9 show that if E is an
execution that starts with a forest configuration, then
FSG(c) is a forest in every configuration c of E and no proc-
essor becomes a root during E. In the following lemmas we
show that when an execution starts with a forest configura-
tion the number of roots decreases to one in O(D' log n)
expected number of rounds. Where ' is the diameter of the
communication graph. The following definitions are used
in the sequel:

DEFINITION 5.

1) In any configuration c, tidi(c) is the tid of Pi in c. fi(c),
disi(c) and the other value of c are defined similarly.

2) In any configuration c, MTID(c) = max{tidi Ω 1 ≤ i ≤ n} in c.
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3) A uniform tid configuration c, is a configuration in which
for every processor Pi tidi = MTID(c) and for every neigh-
bor of Pi, Pj, tidi[j] = MTID(c).

LEMMA 10. If MTID is not changed during an execution that starts
with a forest configuration and contains at least k1D(' + 1)
rounds then a uniform tid configuration is reached.

PROOF. Let E = (c0, c1, º) be an execution that contains at
least k1D(' + 1) rounds throughout which MTID re-
mains constant and in which c0 is a forest configura-
tion. Since c0 is a forest configuration, there exists a
non empty set, denoted Rm(c0), of root processors in c0
whose tid is equal to MTID(c0). By Lemma 4, the tid of
a processor never decreases, on the other hand MTID
remains constant throughout E. Therefore once a
processor’s tid becomes equal to MTID(c0) it remains
constant throughout E.
   To prove the lemma we first show that during the
first k1D' rounds of E, the tid of every processor in
the system becomes equal to MTID(c0). This is proved
by induction on d, the distance of a processor from
(the closest processor in) Rm(c0) ; Where distance is
measured on the communication graph. Denote the
distance of Pi from Rm(c0) by di. We prove that after
k1Dd rounds tidi of any processor Pi in distance di £ d is
equal to MTID(c0).

INDUCTION BASE  (d = 0): Clearly, the tid of processors in
Rm(c0) is equal to MTID(c0) throughout E.

INDUCTION STEP:  We assume that after k1 Dd rounds, tidi =
MTID(c0) for any processor Pi in distance di = d and
we prove that following the next k1D rounds tidj =
MTID(c0) for any processor Pj in distance dj = d + 1.
During the rounds dk1D through the (d + 1)th k1D, Pj
completes at least one loop iteration. In the first such
loop iteration Pj reads the tid of a processor in dis-
tance d from Rm(c0) in case tidj < MTID(c0) Pj assigns
MTID(c0) to tidj. Hence, following k1D(d + 1) rounds
the induction hypothesis holds for every processor Pj
in distance dj(c0) = d + 1.
   We proved that following the first k1D' rounds of E
tid = MTID(c0) for every processor. During the fol-
lowing k1D rounds each processor reads the tid of
every neighbor hence for every j tidi[j]: = MTID(c0).

LEMMA 11. Let E = (c0, º, c) be an arbitrary execution of at least
2k1D' rounds that is started with a uniform tid forest
configuration and during which MTID is not changed. The
following assertions hold for every configuration ¢c  in the
suffix of E, ¢E , that starts following the first 2k1DD rounds
of E:

1) R c R c0c h a f= ¢ .

2) for any processor Pj, dis c d cj j¢ = ¢a f a f , where d cj ¢a f  is

the distance of Pj to a closest root in ¢c .
3) f c f cj j¢ = ¢0c h a f  and the value of f cj ¢a f is the index of a

neighbor which is on a shortest path to one of the closest
roots in R c¢a f .

PROOF. By Lemma 9 and the fact that c0 is a forest configu-
ration, the set of roots may only be decreased follow-
ing c0. Thus, to prove Assertion 1 we only have to
show that during E a root processor does not become
nonroot. By the fact that MTID is not changed during
E it holds that every configuration c in E is a uniform
tid configuration. Thus, whenever a root, Pi, calculates
max_tid it assigns max_tid: = MTID. A root processor,
Pi, becomes nonroot only if max_tid > tidi. Since tidi =
MTID throughout E Assertion 1 holds.
   Assertions 2 and 3 are implied by the following
stronger claim which is proved by induction on d the
distance of a processor from R(c0): In any configura-
tion ¢c  that appears following the first 2k1Dd rounds
of E,

1) For any processor Pj with distance

d c d dis c d cj j j0 0c h a f c h£ ¢ = .

2) For any processor Pj with distance dj(c0) £ d the
value of f cj ¢a f is not changed throughout ¢E . The

value of f cj ¢a f is the index of the link that connects

Pj with one of Pjs neighbors which is on a shortest
path to one of the closest roots.

3) For any processor Pl that is in distance dl(c0) ≥ d it
holds that disl ≥ d.

INDUCTION BASE. dj(c0) = 0. The proof of Assertion 1
implies 1 and 2, above. By the fact that for every proc-
essor Pi disi ≥ 0 Assertion 3 holds too.

INDUCTION STEP. By the induction assumption fol-
lowing no more than 2k1Dd rounds of E, Assertions 1,
2, and 3 hold for any processor Pj in distance dj(c0) £ d.
Let cd be the configuration that immediately follows
the first 2k1Dd rounds. We now prove that 1, 2, and 3
hold for d + 1, 2k1D rounds following cd. Every proces-
sor completes a loop iteration every k1D rounds. Thus,
by assertion 3, k1D rounds following cd any processor
Pk that is in distance dk(c0) > d + 1 assigns disk by a
value that is ≥ d + 1. Following additional k1D rounds
any processor Pm that is in distance dm(c0) = d + 1
reads the values of the dis fields of all the neighbors
that are in distance d and then (executes line 13 in
which it) assigns dism := d + 1 and assigns fm by the right
value. From this point on, Pm finds that (tidm[fm], dism[fm])
= (max_tid, min_dis) and hence does not change the value
of dism or fm (see lines 3-5 and line 13 of the code)             �.

DEFINITION 6. A utff-execution (uniform tid fixed forest exe-
cution) is an execution in which all the configurations are
uniform tid configuration and during which FSG is a con-
stant forest. Such that, each tree in FSG is of depth less
than or equal to '.
   Let k2 be a constant that is bigger than k1(3 + 1/'). By the
above two lemmas any execution that starts with a forest
configuration and in which MTID is constant reaches, fol-
lowing 3k1D' + k1D = k1D'(3 + 1/') < k2D rounds, a
uniform tid fixed forest execution, abbreviated utff-execution.
   To prove that a root discovers the existence of other roots
with equal tid we use the global-synchronization protocol
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(described in the previous section) on every tree of the fixed
forest. During a utff-execution every root executes (gr1)
and (gr2) of the global synchronization protocol by exe-
cuting line 2 (for (gr1)), and lines 17 and 21 (for (gr2)). A
nonroot processor executes (gi1), (gi2) and (gi3) of the
global synchronization protocol by executing line 2 (for
(gi1)), lines 24, 28 (for (gi2)), and lines 30, 33 (for (gi3)).
Thus, the global synchronization protocol is executed on
every tree in the fixed forest.

COROLLARY 12. There exist constant k3 such that if E is a utff-
execution and ¢E  is the suffix of E that follows the first
k3D' rounds of E, then during ¢E  a root processor chooses
a new color only when its tree is uniformly colored.

PROOF. During any utff-execution FSG defines a fixed forest
of trees (with depth less than or equal to '). Thus,
during any utff-execution we may apply the arguments
of Lemma 2 to our protocol. The arguments of
Lemma 2 consider the number of rounds needed for a
processor to complete at least one loop iteration of the
global synchronization protocol. By the fact that any
configuration of an utff-execution is a uniform tid con-
figuration in which the value of the dis field of every
processor is the minimal distance to its root the con-
dition (in line 14) for executing lines 17, 21, 24, 28, 30,
and 33 holds. Namely, the condition for executing the
global synchronization protocol. In such an execution
every processor completes a loop iteration in the
global synchronization protocol every k1D rounds.
Hence following 4k1D' = k3D' rounds a root chooses a
new color only when all its tree is uniformly colored. �

LEMMA 13. There is a constant k4 such that every execution that
starts in a forest configuration c reaches in expected num-
ber of k4D' rounds a configuration ci which is either a
leader configuration or MTID(ci) > MTID(c).4

PROOF. The proof is by presentation of a (7, k D')-strategy for
luck by the game defined by the protocol, for some con-
stant k, and by the use of Theorem 5 of [17]. The strategy
of luck is as follows:
   Luck waits (k2 + k3)D' rounds (the constant k2 is
defined right after Lemma 11). If a safe configuration
is reached or a configuration ci for which MTID(ci) >
MTID(c) is reached then luck wins the sl-game. Other-
wise, by Lemma 10, Lemma 11, and Corollary 12 a
utff-execution is started, in which the root chooses a
new color only when the tree is uniformly colored.
   Furthermore, by Lemma 2, in the utff-execution that
starts following these (k2 + k3)D' rounds every root
indeed chooses a new color every at most 2k1D' +
k1D rounds.
   Let P1 and P2 be two root processors during a utff-
execution such that there are neighbors Pi and Pj and Pi
(Pj) belongs to the fixed tree of P1 (P2). Once luck
waited (k2 + k3)D' rounds the strategy of luck contin-
ues as follow: If P1 (P2) chooses a new color luck inter-
venes and set its new color to be in {0, 1, 2, 3} ({4, 5, 6, 7},
respectively).5

4. It should be noted that MTID could grow and at the same time the
length of MTID could become shorter i.e., assume that MTID = 100 and
then a root processor Pi with tidi = 1 extends its tid to hold 11.

5. Note that every such intervention is done by fixing only the most sig-
nificant bit of the color.

   We now show that this strategy leads to at least one
extension of the tid of either P1 or P2 within O(D')
rounds.
   We start with any combination of colors for Pi and
Pj. W.l.o.g let Pi be the first processor that changes its
color for the fourth time i.e., changed colori from its
original color to color1, then to color2, and to color3,
and, at last, to color4 .

6
 Let al Æ l + 1 be the atomic step in

which Pi changes the color of colori from colorl to col-
orl+1. Between any two successive color changes al Æ l + 1
and al+1 Æ l + 2 Pi reads colorj and set oti := true when col-
ori[j] œ {color1, color2}. If Pi did not assign oti := true
following any of those changes then it read:

• That the value of colorj Œ {color1, color2}, between the
write operations of color1 in colori and a1 Æ 2

• That the value of colorj Œ {color2, color3}, between a1 Æ 2
and a2 Æ 3

• That the value of colorj Œ {color3, color4}, between a2 Æ 3
and a3 Æ 4

   Now we show that the above yield that Pj changes its
color. Assume towards a contradiction that colorj is not
changed: since color1, color2, and color3 are three differ-
ent colors, and since color2, color3, and color4 are also
three different colors, then by the first two reads colorj
must be color2 however by the last two reads colorj must
be color3, a contradiction. Thus, Pj changed its color.
   By our strategy Pj changes its color to be in 4, 5, 6, 7.
Thus, before the forth color change of Pi oti is assigned
by true. Thus, in our sl-game a tid of a root processor is
extended in O(D') rounds and with at most seven
intervention i.e., at most four intervention for P1 and 3
for P2. Theorem 5 of [17] implies that if luck has an (f, r)-
strategy then the protocol reaches a leader configura-
tion within at most r2f expected number of rounds.
Thus, the expected number of rounds till MTID grows
is constant number of D' (i.e., k4D') rounds.           �

LEMMA 14. There is a constant k5 such that every execution that
starts in a forest configuration c reaches in k5D' rounds a
configuration ¢c  in which for every root processor Pi in ¢c ,
tidi( ¢c ) ≥ MTID(c).

PROOF. The proof is similar to the proof of Lemma 10.        �

COROLLARY 15. There is a constant k6 such that every execution
that starts in a forest configuration c reaches in expected
number of k6D' rounds a leader configuration ¢c  or the tid
of every root processor in ¢c  is longer than its tid in c by at
least 2 log n bits.

PROOF. Let k5 be the constant of Lemma 14. First we show
that during the k5D' rounds that immediately fol-
lows the growth of MTID, every root Pi such that tidi π
MTID extends its tid by at least one bit. Let c be a con-
figuration that immediately follows a growth of
MTID. Let Pi be the root processor that extended its
tid to MTID(c) immediately before c.
   For any other root processor Pj π Pi it holds that
tidj(c) < tidi(c). By Lemma 14, k5D' rounds after c the

6. Note that the other case in which Pj is the first processor to change its
color for the first time is symmetric-exchange Pi with Pj and 4, 5, 6, 7, with 0,
1, 2, 3.
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value of the tid of any root is at least the value of
MTID(c). Since our protocol guarantees that when-
ever a root processor finds a neighbor with greater tid
it becomes nonroot processor the only way Pj could
survive as a root processor is by extending its tid.
   By Lemma 13 if the execution starts with a forest
configuration then either a leader configuration is
reached or MTID grows in expected k4D' rounds.
Therefore, every expected (k4 + k5)D' rounds either
the system reaches a leader configuration or the tid of
every root processor is extended by one bit. If a leader
configuration is not reached following the first
growth then during additional expected (k4 + k5)D'
rounds either the system reaches a leader configura-
tion or the tid of every root processor is extended by 1
more bit, and so on and so forth. The proof is com-
pleted by the fact that expectation of a sum is a sum of
expectations.            �

The proof is completed by the following corollary:

COROLLARY 16. The system elects a leader in expected O(D'�log n)
rounds.

PROOF. By Corollary 15 there exists a constant k6 such that
whenever the system starts in a forest configuration c
the system reaches in expected k6D' log n rounds a
configuration ¢c  which is either a leader configuration
or the tid of every root in ¢c  is longer than its tid in c
by at least 2 log n bits. Let Pi and Pj be any two arbi-

trary root processors in c. Let bk ¢bkc h  be the kth bit of

tidi( ¢c ) (tidj( ¢c )) (where b1, ¢b1 , is the most significant

bit). W.l.o.g assume that tidi( ¢c ) is not longer than

tidj( ¢c ). By Corollary 15 in the execution that starts

with c and ends with ¢c  at least 2 log n last bits bl, bl+1,

..., bl–1+2 log n of tidi( ¢c ) were randomly chosen. By

Lemma 14 if Pi and Pj survives as root processors

during the next k5D' rounds then it must hold that

b bi i= ¢  for every l ≥ i ≥ l – 1 + 2 log n.

   The probability that Pi choose randomly a bit, bk,
that has the same value as ¢bk  is 1/2. Thus, the prob-

ability that Pi choose randomly 2 log n bits, bl, bl+1, ...,

bl–1+2 log n, that are equal to the 2 log n bits,

¢ ¢ ¢+ - +b b bl l l n, , , log1 1 2K  of Pj is (1/2)2logn = 1/n2. The

probability that there is at least one pair Pi and Pj such

that those bits of their tid equal is less than n2/2 ¥ 1/n2

= 1/2 i.e., the number of all possible pairs multiplied
by the probability that the value of the bits bl, bl+1, ...,

bl–1+2 log n,, and the bits ¢ ¢ ¢+ - +b b bl l l n, , , log1 1 2K  is equal

for any given pair of root processors.
   Hence, the probability to reach a safe configuration
following expected k6D' log n + k5D' rounds is
greater than 1/2. Similarly, the probability to reach a
safe configuration following l(k6D' log n) + k5D'
rounds is greater than (1 - (1/2)l). Thus, the expected

number of rounds until a leader configuration is
reached is less than

k l k n
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rounds which is O(DD log n).            �

Until this stage we proved that after expected O(D' log
n) rounds the system reaches a forest configuration with a
single leader and this leader is fixed forever i.e., the system
reaches a leader configuration. To complete the proof and
show that the system reaches a safe configuration we will
show that the (single) root does not repeatedly extend its
identity (due to wrong information on the existence of other
trees). In the sequel we prove that such extension could
happen at most once. We show that the root executes
propagation of tid in the system and gets feedback after the
propagation is terminated.

3.3.3 Propagation of Information and Feedback
In this stage of the proof we show that our protocol exe-
cutes propagation of information (propagation of the new
id of the root) and feedback (similarly to the protocol de-
scribed in [29]) in O(D') rounds (where ' is the diameter
of the communication graph). Note that the application of
the protocol described in [29], to a shared memory system,
requires O(Dn) rounds. Unlike the protocol in [29] our pro-
tocol construct a breadth first tree (BFS tree) during the
propagation of the new identity of the root and the feed-
back stage. The propagation and the feedback uses the tree
to ensure that the time complexity is O(D') rounds.

Let E be an execution that starts with a leader configura-
tion in which Pr is the single root processor. By Lemma 9 no
processor becomes a root and by Lemma 7 and Corollary 8
every configuration in E define a forest, thus the single root
processor is fixed throughout E. Informally, if Pr extends
tidr during E then following the first extension of the tid, the
root floods the system with the new tid. Whenever a proc-
essor, Pi, assigns the new tid in tidi for the first time in E, Pi
simultaneously assigns the color of the root in colori and
assigns false in acki and in oti (lines 5 to 13 of the code). We
show that immediately before the root decides that the en-
tire system is flooded with the new identifier (i.e., the con-
dition in line 17 holds) the system reaches a leader configu-
ration, c, that is called BFS configuration in which the fol-
lowing assertions hold:

• (bfs-1) FSG(c) is a BFS tree of the entire communica-
tion graph, with a single root processor Pr, and

• (bfs-2) for every nonroot processor Pl with father Pf it
holds:

 tidl(c) = tid[f](c) = tidf(c),
 disl(c) = disl[f](c) + 1 = disf(c) + 1,
 colorl(c) = colorl[f](c) = colorf(c), ackl(c) = true,

 and
 ot(c) = false.

• (bfs-3) for every neighbor Pl of Pr it holds that otr[l] = false.

DEFINITION 7. Define a flooding subexecution,

¢ =E c cb0 , . . . ,c h ,
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to be subexecution that starts with a leader configuration,
c0, that immediately follows an atomic step during which
Pr extends its tid (by executing line 20 of its program) and
ends immediately before the next atomic step during which
Pr discovers that the flooding is over (the condition in
line 17 holds).

Notice that by the definition of ¢E , during ¢E , Pr does not
extend its tid and does not change its color. Thus, for every
configuration c in ¢E , MTID(c) = MTID(c0). Define MT(c) to
be the set of processors, Pi, in the configuration c for which
tidi(c) = MTID(c0). For instance MT(c0) is the set of proces-
sors that includes Pr solely. In the sequel we show that
during E¢, the father-son relation in MT(c) induces a sub-
tree with root Pr in FSG(c) that includes all the processor
with tid = MTID(c).

LEMMA 17. If during flooding subexecution, ¢ =E c cb0 , . . . ,c h , a
nonroot processor Pj changes its tid to MTID(c0), then after
this change and till the end of E¢ the following assertions
hold:

1) The tid of any processor in the directed path from Pj to Pr
in the FSG is MTID(c0).

2) The value of disj does not increase.
3) Every time Pj changes its father in FSG, Pj simultaneously

decreases the value of disj.
4) colorj = colorj[f] = colorr, where Pf is the father of Pj.
5) otj = false.
6) In any configuration in which ackj = true it hold for every

neighbor Pk of Pj that tidk = tidj[k] = MTID(c0) and disk £
disj[k] £ disj + 1.

7) Every time Pj changes the value of ackj to false, Pj simulta-
neously decreases the value of disj.

PROOF.

1) By Lemma 4 during flooding subexecution ¢E , after a
processor Pj that is not a root changes the value of tidj
to MTID(c0) it holds that tidj = MTID(c0). Hence by the
(*) relation of Lemma 6, the tid of every processor in
the directed tree from Pj to the root of the tree is equal
to MTID(c0).

2) By Lemma 4 when tidj is not changed disj may only be
decreased, hence 2.

3) The value in tidj is not changed after the assignment
of MTID(c0) in tidj. Pj changes its father (following the
execution of lines 8 to 13 of the code) only when the
value of (tidj,disj) grows, hence 3.

4) We prove that during E it holds for every nonroot
processor in MT, Pj, with father Pf that colorj = colorj[f]

= colorr. The proof is by induction on i, the index of
the configuration in the execution. The induction base
is by the fact that in c0 the root processor is the only

processor in MT(c0). We assume that the induction as-

sumption holds for ci and we prove that it holds for

ci+1 where c ci

a

i

i

Æ +
+1

1. Clearly, the induction assump-

tion holds in ci+1 when during ai+1 no processor in MT
writes in its color field and no processor joins MT. If
during ai+1 a processor in MT(ci) writes in its color field

then it must copy its father’s color that is in MT(ci)
and hence by the induction assumption it holds that
colorj(ci+1) = colorj[f](ci+1) = colorr(ci+1). Whenever a
processor joins MT the processor chooses one of the
processors in MT(ci) to be its father and copies its
color. Hence, also in that case the induction assump-
tion hold in ci+1.

5) Now we show that during E otj = false for every non-
root processor in MT. When a processor joins MT the
processors assigns ot: = false. Assume for a moment
that there is a processor Pj that assigns otj: = true after
joining MT. Let Pj be the first processor in MT that as-
signs otj: = true. Pj does not have sons in MT with ot =
true, hence Pj must discover a neighbor with different
color from its own color (and its father color). The
condition to check the neighbors’ color (line 24) is that
the color of the father of Pj is different from the color
of Pj, however by Assertion 4 above that condition
does not hold.

6) After Pj changes the value of tidj to hold MTID(c0) Pj
assigns ackj: = true only when for every neighbor Pk of
Pj it holds that tidj[k] = MTID(c0) and disj[k] £disj + 1
(line 14). Thus, all the neighbors of Pk joined MT and
Pj read the value of (tidk, disk) at least once after Pk
joined MT. Hence every further read of Pj keeps the
relation tidj[k] =  MTID(c0). Following the assignment
ackj: = true Pj changes the value of disj only if it simul-
taneously assigns ackj: = false. Thus while ackj = true
the relation disk £ disj[k] £ disj+1 that was true when Pj
assigns ackj: = true is preserved.

7) A nonroot processor Pj may assign ackj: = false only if
it simultaneously increases the value of (tidj, disj)
(line 13 of the code) or when colorj π colorj[f] (line 28).
By Assertions 1 and 4 above colorj = colorj[f] and tidj =
MTID(c0) during E¢ and hence disj must decrease si-
multaneously with the assignment of ackj: = false.      �

LEMMA 18. Let ¢ =E c cb0 , . . . ,c h  be a flooding sub-execution,
and ¢c  a configuration in ¢E , that immediately follows
atomic step during which a processor Pj with tidj =

MTID(c0) changes the value of ackj to true. Then for every

son, Ps, of Pj in FSG c ack c trues¢ ¢ =a f a f, .

PROOF. Let Ps be an arbitrary son of Pj in ¢c . Whenever Pj
joins MT, Pj assigns ackj: = false. After each time Pj as-
signs ackj: = false Pj does not change ackj to true before
it reads and finds that tids = MTID(c0) and diss £ disj + 1.
   We prove that acks = true in ¢c . Let cr be a configura-
tion that immediately follows the last read operation
of Pj from Ps before ¢c . In cr tids(cr) = MTID(c0) and
diss(cr) £ disj(cr) + 1. Now we show that in cr Ps is the
son of Pj and acks(cr) = true.
   First we prove that Ps is a son of Pj in cr. Assume
towards a contradiction that Ps is not a son of Pj in
cr but is the son of Pj in ¢c . By Lemma 17 (3) Ps
changes its father after cr only when it simultane-
ously decreases the value of diss. By the definition
of cr it holds that diss(cr) £ disj(cr) + 1, thus if Ps
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changes its father to be Pl then disl( ¢c ) < diss(cr) - 1 £
disj(cr) = disj( ¢c ) and hence Pl π Pj contradiction.
   Now we show that acks( ¢c ) = true by the definition
of cr and the fact that Ps is the son of Pj in cr it must
hold that acks(cr) = true. Assume towards contradic-
tion that Ps assigns acks: = false during the subexecu-
tion ¢¢E  that starts with cr and ends with ¢c . By lemma
17 (7) during ¢¢E  Ps changes the value of acks to false
only when it simultaneously decreases the value of
diss. Now we show that the value of diss does not de-
crease during ¢¢E . By the definition of ¢¢E  disj is not
changed during ¢¢E . Since it holds in cr that diss(cr) =
disj(cr) + 1 and since Ps is the son of Pj in ¢c  it holds that
diss( ¢c ) = disj( ¢c ) + 1. Thus, the value of acks is not
changed during ¢¢E .            �

LEMMA 19. In every flooding subexecution, ¢ =E c cb0 , . . . ,c h , cb

is a BFS configuration.

PROOF. Define legal path in a configuration c to be a directed
path in MT(c), 3(c) = (P1, P2, ... Pl) from the root P1  ∫
Pr, to a leaf, Pl that have the following property: there

exist 0 £ j £ l such that for every 1 £ k £ l it holds that if
k £ j then ackk(c) = false, and if k > j then ackk(c) = true.
   First we prove by induction on i, the index of a con-
figuration c in a flooding subexecution ¢E , the fol-
lowing claim:

INDUCTION CLAIM. Every path 3(c) = (P1, P2, ... Pl) from

the root, P1  ∫  Pr, to a leaf, Pl, of MT(c) is a legal path.

INDUCTION BASE, i = 0. c0 immediately follows an

atomic step during which Pr extends its tid to

MTID(c0) and in the same time assigns ackr := false. It is

easy to see that in c0, the induction assumption holds.

INDUCTION STEP. we assume that the induction as-
sumption is true till c, the ith configuration in ¢E , and
we prove that it is true in ¢c  the i + 1th configuration
of ¢E . The only atomic steps that have influence on
the induction assumption are atomic steps that in-
cludes a write operation that changes the values of f,
tid, dis or ack. Changes in the values of f, tid, dis and
ack of the processors in MT during ¢ =E c cb0 , ,Kc h
can occur by the execution of lines 12, 13, 28, and 33 of
the code. By the fact that c0 is a forest configuration,
line 12 is not executed during ¢E . By Lemma 17 (4) the
color of a processor in MT is equal to the color the proc-
essor read from its father and hence by the condition of
line 24, line 28 is not executed either. Thus, the only
atomic steps that changes the values of f, tid, dis, and ack
in MT are the atomic steps during which:

• Case 1: a new processor joins MT (executes line 13 of
the code)

• Case 2: a processor in MT changes its father in the tree
(executes line 13 of the code)

• Case 3: a processor in MT changes the value of ack to
true (executes line 33 of the code)

We consider each of the above cases:

   Case 1. a new processor, Pm, joins MT as the son of a

processor Pf: since tidm(c) π MTID(c0) then by lemma

17 (6) ackf(c) = false (i.e., Pf does not assigns ackf: = true

before Pm assigns MTID(c0) in tidm). Therefore, by the
induction assumption it holds in c for every proces-
sor, Pk in the path P1 ∫ Pr,º,Pl-1 ∫ Pf that ackk(c) = false.

Whenever Pm joins MT, Pm assigns ackm: = false, hence
the induction assumption holds for any path that in-
cludes Pm in MT c¢a f . All the other paths in MT c¢a f  are
identical to the paths in MT(c), thus by the induction
assumption they are legal paths in ¢c  too.
   Case 2. a processor Pm in MT changes its father in the

tree to be Pf: Let P be a path in MT( ¢c ). If P is a path in
MT(c) too then by the induction assumption P is a le-
gal path. Otherwise, if P is a prefix of a path in MT(c)
then since every prefix of a legal path is a legal path
the path P is legal.
   We still have to check a path 3 which is a concate-

nation of two parts of legal paths 3 = 3 1 ∞ 3 2, when

3 1 is a prefix of a legal path in MT(c) that is ended in

Pf, and 3 2 is a suffix of a legal path in MT(c), that be-

gins in Pm. By Lemma 17 (3) it holds that such a con-

catenation occurs only when dism(c) > disf(c) + 1. In

such a case, by Lemma 17 (6), ackf(c) = false, and by the

induction assumption for every Pk Œ 3 1 it holds that

ackk(c) = false. 3 2 is a suffix of legal path in c that be-

gins in Pm. Hence, in c 3 2 is a concatenation of a pre-
fix with zero or more processors with ack = false and a
suffix of zero or more processors with ack = true.
Hence in ¢c  the concatenation 3 = 3 1 ∞ 3 2 starts with
two or more processors with ack = false that are fol-
lowed by zero or more processors with ack = true and
hence 3 is a legal path. Thus, the induction claim is
true in c also in that case.
Case 3: a processor Pm in MT changes the value of ackm

to true: By Lemma 18, it holds in ¢c  for every son, Ps,

of Pm that ack c trues ¢ =a f . Hence, every path that was
a legal path in c is also a legal path in ¢c , and the in-
duction assumption is true in ¢c .
   Now we complete the proof of the lemma: For every
neighbor, Pk, of the root it holds in cb that tidk(cb) =

MTID(c0), disk(cb) = 1 and ackk(cb) = true. Since, all the

paths in MT(cb) are legal paths and begins with a

processor with ack = true then for every processor Pi

that is not a root in MT(cb), it holds that acki(cb) = true.

Thus, by Lemma 17 (6) it holds for every processor, Pi,

in MT(cb) that all its neighbors are in MT(cb) too. By

the definition of cb every neighbor of the root is in

MT(cb), thus MT(cb) is a spanning tree of the entire com-
munication graph.
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   Now we prove that FSG(cb) is a BFS tree. We show

that the value of dism of every processor, Pm, is equal

to the distance dm of Pm from Pr. Notice that by the

fact that cb is a uniform tid configuration and by

Lemma 6 it holds that dism(cb) ≥ dm. The proof is by in-

duction on dm. The induction base is due to the fact

that disr(cb) = 0. We assume that the induction as-

sumption holds for every processor Pm for which dm £
d and we prove that it is true for every processor Pl

such that dl = d + 1. By the induction assumption Pl

has a neighbor Pm with dism(cb) = d = dl – 1. By

Lemma 17 (6) disl(cb) £ dism(cb) + 1, it holds that disl(cb)

£ d + 1 and hence disl(cb) = d + 1.

   By the above FSG(cb) is a BFS tree, thus property (bfs – 1)

of a BFS configuration holds. By the facts that in cb all

the processors with tid = MTID(c0) and FSG(cb) is a

BFS tree that includes all the processors it holds in cb

for every processor that is not the root, Pl, with father

Pf, that:

   tidl(cb) = tid[f](cb) = tidf(cb), (due to Assertions 1 and 6

of Lemma 17), disl(cb) = disl[f](cb) + 1 = disf(cb) + 1, (due
to Assertion 6 of Lemma 17 and the fact that for every
processor Pm dism(cb) = dm), colorl(cb) = colorl[f](cb) = col-

orf(cb), (due to assertion (4) of Lemma 17), ackl(cb) =

true (by the induction assumption above) and otl(cb) =
false, (due to Assertion 5 of Lemma 17). Thus, prop-
erty (bfs – 2) of a BFS configuration holds in cb too.

Since after the root extends tidr for the first time it

holds for every neighbor with tid = tidr = MTID(c0)

that ot = false, and by the fact that Pr reads from each

of its neighbors Pm tidm = MTID(c0) before cb, property
(bfs – 3) of a BFS configuration holds too.            �

THEOREM 20. During any execution E, that starts with a leader
configuration, the root extends its tid at most once.

PROOF. Assume towards a contradiction that the root ex-
tends its tid more than once. By Lemma 19 after the
first time that Pr extends its tid and before the second

time that Pr extends its tid during E, a BFS configura-

tion, cb, is reached. In cb it holds for every neighbor Pl

of Pr that otr[l] = false. Thus, during the atomic step

that follows cb, Pr chooses a new color (line 21 of the
code) and does not extend its tid.
   Now we trace a subexecution ¢E  that starts in a BFS
configuration, ¢c , (in particular, cb) and ends just be-
fore the next atomic step of the execution during
which Pr finds that the next coloring is finished (the
condition in line 17 holds). We will show that during

¢E  the tid of the root is not extended and ¢E  terminates

in a configuration ¢cb  that is a BFS configuration. Hence
the subexecution, that begins with ¢cb  and ends exactly

before the following atomic step in which Pr discovers
that the coloring is finished, reaches a BFS configura-
tion without extending the tid of the root. In such a way
we can repeatedly use the same claims forever.
   We prove that during ¢E  the FSG is fixed and the
global synchronization protocol is stabilized and exe-
cuted in the right fashion on the fixed FSG. Notice
that by the definition of ¢E , during ¢E , Pr does not
extend its tid and does not change its color. Thus for
every configuration c in ¢E , the tid of a processor
equals MTID c¢a f . Moreover, since ¢c  is a BFS configu-
ration the value of dis of every processor is the dis-
tance of the processor from the root. Thus, it holds for
every two neighbors Pi and Pj that

dis c dis cj i¢ - ¢ £a f a f 1. A processor changes its father

only when the processor finds that there is a neighbor Pj

such that tidi > tidj, or when tidi = tidj and disi < disj – 1.
Since the tid of all the processors is equal to MTID c¢a f
and since the value of dis of every processor is the
distance of the processor from the root no processor
changes its father in the FSG during ¢E . Thus, during

¢E  FSG is a fixed BFS tree.
   Since during ¢E  the tree that is defined by FSG c¢a f  is

not changed and since for every processor Pl with fa-

ther Pf in ¢c  it holds that

color c color f c color cl l f¢ = ¢ = ¢a f a f a f ,
the global synchronization protocol is already stabi-
lized during ¢E . Therefore whenever the root finds
that all its sons acknowledge that they finished the
coloring the system is in configuration ¢cb  in which for

every nonroot processor Pl with father Pf in the sys-
tem it holds that ack c truel b¢ =c h  and

color c color f c color cl b l b f b¢ = ¢ = ¢c h c h c h.
As mentioned above, during ¢E  no processor changes

its tid, dis and f, thus in order to prove that c¢
b is in-

deed a BFS configuration it remains to show that for
every nonroot processor Pl it holds that ot c falsel b¢ =c h .
   By Lemma 2 during ¢E  the color of every processor
is changed exactly once. The color is changed from
color cr ¢a f  to color cr b¢c h . In ¢c  it holds for every processor
that ot c false¢ =a f . We now show that no processor as-
signs true in ot during ¢E . Assume towards a contra-
diction that there is a processor that assigns ot: = true
during ¢E . Let Pl be the first processor that assigns otl:
= true during ¢E . Again by Lemma 2 during ¢E Pl  exe-
cutes that assignment only after it finds that its fa-
thers’ color is color cr b¢c h  while color color cl r= ¢a f
(line 24). Hence, if Pl assigns otl: = true then during

¢E Pl  reads from one of its neighbors a color that is
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different from color cr b¢c h  and from color cr ¢e j  (line 26).

Contradiction, since during ¢E  the color of a processor
is either color cr b¢c h  or color cr b¢c h . Hence Pl does not as-

sign otl: = true and hence the last configuration of E¢ is
a BFS configuration.            �

Note that by Lemmas 10, and 11, and Corollary 12 it
holds that O(D') rounds after the root extends its tid the
flooding of the new tid is ended. Thus the time complex-
ity of the propagation of information and feedback pro-
tocol is O(D') rounds.

4 RANKING

In this section we present a self-stabilizing protocol which
ranks the systems’ processors. First we present a self-
stabilizing ranking protocol that works on systems whose
communication graph is an in-tree. This protocol assigns
each processor a rank which equals its DFS number. The
time complexity of this protocol is O(DD) rounds, and its
space complexity is O(D log n). Then we use the technique
of fair protocol combination of [15], and achieve a uniform
self-stabilizing ranking protocol for general graphs by
composition of this protocol with the protocol presented in
the previous section. The time and space complexities of the
combined protocol are the sum of the complexities of the
two protocols.

The ranking protocol, for a tree system, is also a compo-
sition of two other protocols that are composed by a fair
protocol composition. In one of those protocols each proc-
essor Pj computes the number of processors, nj, in the sub-
tree rooted at Pj, this protocol is called counting protocol. The
second protocol is called the naming protocol. The naming
protocol provides a distinct name for every processor. Each
of those protocols stabilizes within O(DD) rounds and the
space complexity of a processor is O(D log n).

4.1 Counting Protocol
Every processor P has a register in which P writes to its
father in the tree. A leaf processor writes in every atomic
step the value 1 to its father. A non leaf processor repeat-
edly reads its sons’ registers, sums their values, adds one to
this sum, and writes the result to its father. Define the height
of a processor Q in a tree to be the maximal number of
processors in a path that starts in a leaf and ends in Q. The
correctness and complexity proof of the counting protocol
is by induction on the height of the processors. The induc-
tion assumption is that following O(Dh) rounds the register
of a processor, Q, that is in height less than or equal to h,
holds the number of processors in the subtree rooted at Q.
The induction base is by the fact that every processor that is
in height 0 is a leaf. The induction step is derived from the
induction assumption for processors in height h and the
way processors in height h + 1 calculate the number of
processors in their subtree.

4.2 Naming Protocol
Every processor, P, orders its sons, (P1, P2, º, Pi) and uses a
register to write to each of his sons. Let n1, n2, º, ni be the
number assigned by the counting protocol for P1, P2, º, Pi,

respectively, and read by P. The root chooses the identity 1
and repeatedly writes it to its sons. The root writes the
value 2 + n1 + n2 +º + nj–1 to its j son. A nonroot processor
Q repeatedly reads the number in its father register and
choose its identity to be that value, say the value x. Q re-
peatedly writes to each of its sons. Q writes the value x + 1
+ n1 + n2 + º + nj–1 to its j son. Define the depth of a proces-
sor Q in an in-tree to be the number of processors in the
directed path that starts in Q and ends in the root. The cor-
rectness and complexity proof of the naming protocol is by
induction on the depth of the processors. The induction
assumption is that following O(Dd) rounds every processor,
Q, that is in depth less than or equal to d, chooses an iden-
tity that is equal to its DFS index in the tree. The induction
base is by the fact that the root processor chooses the iden-
tity 1. The induction step is derived from the induction as-
sumption for processors in depth d and the way processors
in height d and height d + 1 communicate.

5 CONCLUSIONS

We presented a uniform self-stabilizing leader election
protocol. In a uniform system processors do not have
unique identifiers. The protocol uses randomization in or-
der to break symmetry. Our protocol is the only protocol
which solves the problem without any prior knowledge on
the communication graph. Self-stabilizing local and global
synchronization protocols are used as building blocks for
the leader-election protocol. Those protocols can be used to
implement many distributed tasks as synchronizers and
reset protocols. Part of the self-stabilizing leader election is
a new propagation of information with feedback protocol
that terminates within W(D') rounds.

The self-stabilizing leader election protocol and ranking
protocols can be combined, by the fair protocol combina-
tion method introduced in [15], with other self-stabilizing
protocols that assume either a unique leader or unique
identifiers. Thus, the vocabulary of self-stabilizing protocols
for uniform distributed systems is enriched.

Throughout the presentation of the leader election pro-
tocol in Section 3 it is assumed that a processor can toss a
single coin in a single atomic step. Under this restriction it
is proven that a leader is elected in O(D' log n) rounds. It
is easy to verify that when O(log n) coin tosses are executed
in a single atomic step then the protocol stabilizes in W(D')
rounds. Note that W(D') rounds are required to convey
information from one side of the system to the other and
thus to elect a leader.

Note that following the stabilization phase of our leader
election protocol the protocol repeatedly colors a spanning
tree of the system communication graph. Hence, the proto-
col can be used as a self-stabilizing synchronizer (b syn-
chronizer in the terms of [9]) that converts self-stabilizing
synchronous protocols to work in asynchronous system.
One of the anonymous referees point out the relation to
gossiping algorithms e.g. [13], [19], where processors com-
municate information among themselves. Our protocol can
sport self-stabilizing gossiping easily by repeatedly col-
lecting the information to the elected leader through the
spanning tree and then broadcasting it along the tree. An-
other possibility is to use the virtual ring defined by a DFS
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tour on the spanning tree to forward information to the
destination and to use hop-counter to eliminate corrupted
information from the system.

APPENDIX—NOTATIONS AND TERMS

1 D the maximal degree of a node in the graph.
2 ' the diameter of the graph.
3 n the number of processors in the graph.
4 loop iteration see definition 1 and 2.
5 read iteration see definition in 2.
6 FSG(c) the father-son relation graph of the configura-

tion c. FSG consist of a directed edge from
each non-root processor to its father.

7 tid the tree identifier to which a processor be-
longs.

8 dis the distance of a processor from its root.
9 color the variable used to repeatedly color a tree.
10 ack a variable used to acknowledge the termina-

tion of the coloring procedure in the subtree of
the processor.

11 ot Boolean indication on the existence of other
trees.

12 leader configu-
ration

a configuration with exactly one leader such
that in any execution that starts with this con-
figuration the leader is fixed.

13 forest configura-
tion

see definition 3.

14 R(c) the set of root processors in configuration c.
15 MTID see definition 5.
16 uniform tid con-

figuration
see definition 5.

17 utff-execution uniform tid fixed forest execution,
18 flooding

subexecution
see definition 7.
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