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ABSTRACT

Three self-stabilizing protocols for distributed systems in the shared memory model are
presented. The first protocol is a mutual exclusion protocol for tree structured systems.
The second protocol is a spanning tree protocol for systems with any connected com-
munication graph. The third protocol is a self stabilizing protocol for mutual exclusion,
for systems with a general (connected) communication graph. This last protocol is
obtained by combining the previous two protocols. The combination employs a simple
technique called fair protocol combination, which is enabled by both the self-stability
and by the flexibility of dynamic protocols. The presented protocols improve upon pre-
vious protocols in two ways: First, it is assumed that the only atomic operations are
either read or write to the shared memory. Second, our protocols work for any con-
nected network and even for dynamic networks, in which the topology of the network
may change during the execution.
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1. Introduction

A self-stabilizingsystem which is started from an arbitrary initial configuration, regains its consistency and demon-

strates legal behavior by itself, without any kind of an outside intervention. Consequently, a self-stabilizing system

need not be initialized to any particular configuration , and can recover from transient bugs, bugs which change the

state of one or more components of the system but keep those components in working order. In this paper we present

self-stabilizing protocols for mutual-exclusion and for constructing a spanning tree. The presented protocols work

on connected networks of arbitrary topology which can change dynamically during execution. Communication

among neighboring processors is carried out by use of communication registers(called registersthroughout this

paper). The atomic operations that these registers support are readand write.

We model distributed self-stabilizing systems as a set of state machines called processors. Each processor can

communicate with some subset of the processors called its neighbors. The system’s communication graphis the

graph formed by representing each processor as a node and by drawing an edge between every two neighbors. A

protocol is a parameterized family of systems where the parameters can vary over the number of different state

machines used by the protocol, the various families of communication graphs, the set of atomic operations supported

by the communication registers, etc. A processor’s degreeis equal to the number of its neighbors. A protocol is uni-

form if all processors of the same degree are identical. If all processors of the same degree are identical except a sin-

gle processor in the entire system, then the protocol is semi-uniform. An atomic stepis the "largest" step that is

guaranteed to be executed uninterruptedly. A protocol uses compositeatomicity if some atomic step contains (at

least) a read operation and a write operation. A processor uses read/write atomicity if each atomic step contains

either a single read operation or a single write operation but not both. The behavior of the system is modeled by the

interleaving model in which processors are activated by a scheduler. Whenever an enabled processor is activated, it

executes a single atomic step. To ensure the correctness of a protocol, the scheduler is regarded as an adversary and

the protocol is required to be correct in all possible executions. The common schedulers are the central demonwhich

activates processors one by one and the distributed demonwhich activates subsets of processors.

The class of self-stabilizing protocols was defined by Dijkstra in his pioneering paper [Dij74]. In this paper

Dijkstra presents three semi-uniform, self-stabilizing, mutual-exclusion protocols for rings. Protocols in the same

setup but under the distributed demon are presented by Brown, Gouda and Wu in [BGW87], and by Burns in [Bu87].

Burns and Pachl in [BP87] present a uniform, self-stabilizing, mutual-exclusion protocol for rings with a prime
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number of processors. A semi-uniform, self-stabilizing protocol for some variant of the mutual-exclusion problem

which runs on tree systems is presented by Kruijer in [Kr79]. A self-stabilizing, mutual-exclusion protocol for sys-

tems with arbitrary communication graphs is presented by Tchuente in [Tc81]. Unlike the aforementioned protocols

the protocol presented in [Tc81] is not semi-uniform, in fact the program of each processor depends on the system’s

communication graph, for many communication graphs all processors are distinct. Furthermore, obtaining the proto-

col for each individual system requires an extensive programming work.

All previous self-stabilizing protocols use composite atomicity. In the work of Loui and Abu-Amara in

[LA87], it was shown that while there exists no consensus protocol for systems that use read/write atomicity, the

consensus task is solvable for systems that use composite atomicity. Since any system under composite atomicity

can trivially emulate an equivalent system that uses read/write atomicity, composite atomicity is strictly stronger than

read/write atomicity.

A protocol is dynamicif it tolerates changes in the communication graph during execution as long as the com-

munication graph remains connected. The changes we allow are processor addition or removal and link addition and

removal. Every self-stabilizing, uniform protocol that works on every communication graph is dynamic, since it sta-

bilizes after any topology change. A semi-uniform protocol that works on any communication graph is dynamic as

long as the (single) special processor is not removed from the system. In [Dij74], Dijkstra used symmetry considera-

tions and showed that for rings of composite size, there exists no uniform, self-stabilizing, mutual-exclusion proto-

col. Thus if one opts for dynamic, self-stabilizing, mutual-exclusion protocols then the best that can be achieved are

semi-uniform protocols.

Previous works assumed that one way communication from P1 to P2 is carried out by P1 changing its state

which is observable by P2 . This mode of communication is equivalent to the use of a single communication register

in which P1 writes and from which all processors to which it can communicate read. It is not hard to show that under

this communication mode, there exists no semi-uniform, self-stabilizing, mutual-exclusion protocol in many systems,

including systems with very simple communication graphs. There are two possible ways to remedy this problem:

The first one, which was chosen by Tchuente in [Tc-81], is to give up uniformity altogether and program each pro-

cessor individually. Since in this method each processor is programmed individually, it cannot yield dynamic proto-

cols. The alternative way, which we choose in this work, is to allow each processor to break the symmetry among its

neighbors locally. This is done by introducing a link between every pair of neighbors. Each link is composed of two
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registers and supports two-way communication. One neighbor writes in the first register and reads from the second,

the other neighbor reads from the second register and writes in the first. Each register is serializable (atomic) with

respect to read and write actions.

We present two semi-uniform, self-stabilizing protocols: The first protocol is a mutual-exclusion protocol for

tree structured systems. The second protocol constructs a spanning tree of the system’s communication graph; both

protocols are correct under read/write atomicity. We then present fair protocol combinationas a technique for com-

bining self-stabilizing protocols into another self-stabilizing protocol. The presentation is completed by combining

the two aforementioned protocols into a semi-uniform, self-stabilizing, mutual-exclusion protocol for systems with

any connected communication graph using fair protocol combination. The combined protocol, like both its building

blocks, is correct under read/write atomicity. Using this final protocol we show that any protocol which is self-

stabilizing under composite atomicity can be executed in a self-stabilizing fashion in the presence of read/write

atomicity.

Our protocols improve upon all previous protocols in two important aspects:

� Atomicity: All previous self-stabilizing protocols use composite atomicity. Our protocols use read/write

atomicity, hence they subsume all aforementioned self-stabilizing protocols.

� Topology: Almost all previous self-stabilizing protocols work only on restricted families of communication

graphs. In this respect our protocols improve upon all previous protocols except the protocol of [Tc81], since

they work in systems with arbitrary connected communication graphs. Furthermore, our protocols are semi-

uniform hence they are also dynamic and superior to the protocol of [Tc81].

The rest of this paper is organized as follows: in Section 2 the computational model and the requirements for

self-stabilization are discussed and formally defined. In Section 3 we present a simple self-stabilizing protocol called

the balance-unbalanceprotocol for mutual-exclusion in a two processor system and show how to adapt it to

read/write atomicity. In Section 4 we present a self-stabilizing mutual-exclusion protocol for tree-structured systems

which uses the balance-unbalance protocol as a building block. In Section 5 we present fair protocol combination,

then we proceed to present a self-stabilizing protocol for finding a spanning tree of the system’s communication

graph. Combining the spanning tree protocol with the mutual-exclusion protocol yields the final protocol. Conclud-

ing remarks are brought in Section 6.
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2. Model and Requirements

2.1. The Model. A distributed system consists of n processors, denoted by P1 , P2 , . . . , Pn. Each processor is a

(possibly infinite) state machine. Processor P1 is called special. All other processors are called normal. Normal pro-

cessors have no distinct identities, the subscripts 2, . . . ,n are used for ease of notation only. Two normal processors

with the same number of neighbors are identical. Neighbors, Pi and Pj communicate with each other by using two

shared registers, rij in which Pi writes and from which Pj reads and r ji in which Pj writes and from which Pi reads.

All links incident to each processor Pi are ordered by some arbitrary ordering α i which induces in a natural way an

ordering of the neighbors of Pi . The collection of all these orderings is denoted by α = (α1, . . . ,αn).

Every register r is associated with the set Σr of permitted valueswhich can be stored in r (the set Σr is not

necessarily finite). Each register r has a writer - a processor that can write in r, and a reader- a processor that can

read from r. A write operation to r stores a value from Σr in r. A readoperation retrieves the value (from Σr ) stored

in r. Each register is serializablewith respect to read and write operations. The registers in which processor P can

write are called the registers of P. We choose to look at a processor and its registers as a single entity, thus the state

of a processor fully describes the values stored in its registers. Denote by Si the set of states of Pi . A configuration

of the system is the vector of states of all processors. Denote by C =(S1 ×S2 × . . . Sn ) the set of all possible

configurations of the system.

An atomic step of a processor consists of an internal computation followed by a read or a write operation, but

not both. Processor activity is managed by a scheduler, which is also called the central demon. In any given

configuration the demon activates a single processor which executes a single atomic step. An execution E, of the sys-

tem, is an infinite sequence of configurations E =C1 , C2 , . . . where for every i> 0, Ci +1 is reached from Ci by a

single atomic step of a single processor. An infinite execution is fair if every processor executes steps infinitely

often.

2.2. Task Specification and Self-Stabilizing Protocols. A self-stabilizing system demonstrates legitimate

behaviorsome time after it is started from an arbitrary configuration. A natural way to specify a behavior in an

abstract way is by a set of sequences of configurations. We define tasksas sets of legitimate-sequences. The seman-

tics of any specific task is expressed by requirements on its sequences. Intuitively each legitimate sequence can be

thought of as an execution of a protocol but we do not require it formally. For instance, the mutual exclusion task is
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defined as the set of sequences of configurations which satisfy: Each processor has a subset of its states called criti-

cal section; in each configuration, at most one processor is in its critical section, and every processor is in its critical

section in infinitely many configurations.

To formally define a task T, one should specify for each possible system ST, a set of legitimate sequencesfor

ST. The task Tis defined as the union of the legitimate sequence set over all possible systems. A configuration C of a

system is safewith respect to a task T and a protocol Pr if any fair execution of Pr starting from C belongs to T. A

protocol and a scheduler determine the set of all possible executions of the protocol under this scheduler. In the non-

self-stabilizing model, a protocol implements a task if all its executions belong to the set of sequences which consti-

tutes the task. In the self-stabilizing model this requirement is relaxed, and the protocol is self-stabilizing for the task

if in each possible execution it eventually reaches a safe configuration. Hence we define a protocol to be self-

stabilizing with respect to a task T if the following definition holds:

[Self Stabilization]

A protocol is self-stabilizingif starting from any system configuration, it eventually reaches a safe configuration.

This definition separates the specific task which the protocol implements from the general requirements for

self-stabilization and allows self-stabilizing protocols for any task. It is natural (though not necessary) to require that

a task is closed under the suffix operation. When this requirement is adopted, any configuration which is reachable

from a safe configuration is also safe, therefore the set of safe configurations for task T with respect to protocol Pr is

closed under executions of Pr.

2.3. Protocol Description. A protocol is specified by describing two types of processors: A special processor and a

normal processor. A processor is entirely determined by its type and by the number of its neighbors. For convenience

we choose to represent each of our processors as a RAM executing a program. Since the system is dynamic the

number of neighbors of each processor may change during execution. This is modeled by assuming that each proces-

sor has access to a local constant called no_neighborsin which the number of the processor’s neighbors is stored.

This constant is assumed to be updated by the hardware whenever the number of neighbors is changed. (Later we

discuss the technique of protocol combination. In a combined protocol no_neighborscan be updated by a lower level

protocol)
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The program of each processor is partitioned to distinct atomic steps. It is assumed that each program is exe-

cuted step by step where each step is executed uninterruptedly. Each processor is assumed to be equipped with a pro-

gram counter (pc)whose value indicates the next atomic step to be executed. The partition of the program into

atomic steps is straight forward: Each atomic step consists of a sequence of internal operations which ends either

with a write operation or with a read operation. The state of a processor is determined by the internal state of the

RAM and the contents of its registers. The internal state of the RAM is fully described by the values stored in its

internal variables and by its next step (the pc). Each internal variable has a set of permitted values, a permitted state

of a processor is any assignment of permitted values to its internal variables and to its registers.

3. The Balance-Unbalance Protocol

3.1. The Basic Protocol. A processor is enabledif it can execute a state-transition. A mutual-exclusion protocol

under composite atomicity is designed such that in each legitimate configuration there exists a single enabled proces-

sor. The enabled processor is privileged, it has the right to enter its critical section. Presumably the enabled proces-

sor finds out that it is enabled by reading its neighbors’ registers, executes its critical section, and then passes the

privilege to one of its neighbors by executing a state transition which includes writing new values in some of its

registers. The composite atomicity ensures that this extended atomic step is executed uninterruptedly. The balance-

unbalanceprotocol is probably the simplest protocol for mutual-exclusion under composite atomicity. It is designed

for a system of two processors, which are connected by a link. The two processors are the unbalancingprocessor

UB and the balancingprocessor BA, Each processor has two states, denoted by 0 and 1. The configuration of a sys-

tem is defined by the states (s1,s2) of UB and BA respectively. Thus, the system has four possible configurations:

(0,0),(1,0),(1,1),and(0,1). Processor UB is enabled when the link is balanced. Its transition function unbalancesthe

link by transfering (0,0) to (1,0) and (1,1) to (0,1). Analogously, BA is enabled when the link is unbalanced. Its

transition function balancesthe link by transfering (0,1) to (0,0) and (1,0) to (1,1).

Consider an execution of the protocol under composite atomicity. In any possible configuration, exactly one

processor is enabled (and privileged); the enabled processor passes the privilege to the other processor by changing

its state. Thus, starting with any configuration of the system, and regardless of the specific behavior of the demon,

the system configuration is changed repeatedly according to the following cycle: ((0,0), [UB writes], (1,0), [BA

writes], (1,1), [UB writes], (0,1), [BA writes], (0,0)). Therefore, this protocol is a self-stabilizing, mutual-exclusion
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protocol in the strongest possible sense: There is a unique legitimate sequence of configurations, which is a suffix of

every possible execution of the protocol. In a way, this protocol is well known and is a simplified version of proto-

cols presented in [Dij74], [PF77], [Kr79], and [Bu87].

Under read/write atomicity an atomic step includes either a read action or a write action. For convenience we

place this single action by the end of the step including it. When an atomic step ends by a read action, the read value

may affect the next transition. Therefore the state of each processor should reflect the last value it read from the

(register of the) other processor. We use here the term stateto denote the full information describing the processor

behavior, while the balance-unbalanced bits are called colors. The state of UB is described by the following com-

ponents: {the color of UB, the last color of BA read by UB, the next action to be executed by UB}. The state of BA is

described analogously as follows: {the last color of UB read by BA, the color of BA, the next action to be executed

by BA}. (for better understanding, the two components of BA are switched) A configuration of the system is a pair

of the processor states.

Lemma 3.1: Under read/write atomicity the balance-unbalance protocol is not a self-stabilizing mutual-exclusion

protocol.

proof: Consider the configuration ({0,0,write} {1,0,write}), in which the colors of UB and BA are both 0, but as a

result of a transient bug, BA "thinks" that the color of UB is 1. In this configuration both processors are enabled (and

hence privileged).

({0,0,write}{1,0,write})[BA writes],

({0,0,write}{1,1,read})[BA reads],

({0,0,write}{0,1,write})[UB writes],

({1,0,read}{0,1,write})[UB reads],

({1,1,write}{0,1,write})[BA writes],

({1,1,write}{0,0,read})[BA reads],

({1,1,write}{1,0,write})[UB writes],

({0,1,read}{1,0,write})[UB reads],

({0,0,write}{1,0,write})[BA writes],

Figure 3.1: A Prefix of a Non-Stabilizing Execution
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In Figure 3.1 we bring a prefix of an execution, starting and ending with the above configuration. In this prefix

each processors is activated and both processors are simultaneously privileged. Since this prefix starts and terminates

with the same configuration it can be duplicated infinitely often to obtain an infinite fair execution. In half of the

configurations of this infinite execution UB and BA are both privileged, hence the system does not stabilize. �

3.2. Adaptation for Read/Write Atomicity. In this section we modify the balance-unbalance protocol to be

correct under read/write atomicity. The modification implements several ideas which are helpful in general for self-

stabilizing protocols under read/write atomicity. The code for the modified protocol appears in Figure 3.2. The regis-

ters of UB and BA are called rub and rba respectively. Processor UB has two internal variable called my_colorand

ba_color. These variable constitute the viewof UB, the values it ‘‘thinks’’ rub and rba have. In case the colors of rub

and rba are equal to the values of variables my_colorand ba_colorrespectively, we say that ub has a correct view.

Analogously, processor BA has two internal variables called my_colorand ub_colorwhich constitute BA’s view. In

case the colors of rba and rub are equal to the values of my_colorand ub_color respectively, we say that BA has a

correct view.

The program for each processor in the modified protocol consists of a loop which is executed repeatedly. The

loops for both processors have a similar structure. Each loop consists of two blocks: a refreshblock and a main

block. In the refresh block each processor unconditionally copies its internal variable my_colorto its register. In this

way the processor ensures that the color of its register is equal to the processor’s ‘‘belief’’. The unconditional write

is called the refreshingwrite. Following the first refreshing write the value of the register can always be inferred

from the values of the processor’s internal variables, hence the only refreshing write which may change the value of

a register is the first write in an execution.

After refreshing its register each processor proceeds to its main block which includes the processor’s critical

section. Unlike the refresh block, execution of the main block is conditional. The first atomic step in the main block

is a read action. The value read in this action is used as a guard for the rest of the main block in which the critical

section is executed. The problem depicted in Figure 3.1 is caused by the nature of read/write atomicity. A processor

may read the color of the other processor, then the second processor may write and change its color. After that, the

first processor may use the color it read, which is already outdated at this point, and enter its critical section. Conse-

quently mutual-exclusion might be violated. In order to overcome this problem, some additional synchronization
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1 UB: repeat forever
rub := write(my_color, 0) refresh

2 ba_color := read(rba)
if my_color= ba_color link seems balanced
then begin main loop

CRITICAL SECTION
3 rub := write(my_color, 1) close link
4 ba_color := read(rba) reread ba_color

my_color:= 1−ba_color complement your color
5 rub := write(my_color, 0) unbalance and open link

end

BA: repeat forever
6 rba := write(my_color) refresh

repeat
7 (ub_color,close) := read(rub)

until close= 0
if ub_color≠ my_color link seems open and unbalanced
then begin main loop

CRITICAL SECTION
my_color:= ub_color complement ba_color

8 rba := write(my_color) balance link
end

Figure 3.2: The Modified Balance-Unbalance Protocol

between the processors is required. For this purpose UB is allowed to closethe link for BA using the binary close

field with which rub is augmented. Using the closefield UB controls the number of times BA executes its main block

between every consecutive executions of UB’s main block. Eventually the system is stabilized as proved below.

A system configuration is specified by the values of the variables my_color(of both processors), the values of

ba_colorand ub_color, the values of the registers and the next step each processor is about to execute (the pc of both

processors). After both registers are refreshed the values of the my_colorvariables are the same as the values of the

corresponding registers. In this situation and when the values of the pc-s are implied by the context, we describe a

configuration by a 5-tuple (ba_color, rub.color, rub.close→rba, ub_color) which is called the link descriptor. The

arrow in the link descriptor stands for the link that separates the variables and register values of UB (at the tail) from

those of BA.

Under composite atomicity a non-enabled processor which is activated by the demon does not execute any

state transition. The situation is different under read/write atomicity where a processor can always execute some

action. This action may be a read action after which the processor may find that it cannot execute any write action.

Another possibility is that the processor finds out that it can execute a write action, but the written value is equal to

the value which is stored in the register before the write action is executed. In order to accommodate these situations
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we define some segment of a processor’s execution as a stutteringsegment if the only changes in the processor’s

state are in its pc. A stuttering section that starts and ends with the same system configuration is called a cyclic

stuttering section. A cyclic stuttering section might be removed from an execution, except the first (or last)

configuration, and the resulting sequence is also an executions. We say that two executions are equivalent up to

stutteringif when all cyclic stuttering sections are removed the resulting system executions are equal.

Consider a configuration C in which the registers are refreshed, the value of rub is (0,0) and the value of rba is

0. The link descriptor of C is (0,0,0 → 0,0). In such a configuration, the only possible subsequent changes in the

value of the link descriptor are given by the legitimate cyclewhich appears in Figure 3.3: (In the legitimate cycle the

refreshing writes are omitted)

(0, 0, 0 → 0, 0)
[UB writes],(0, 0, 1 → 0, 0),
[UB reads],(0, 0, 1 → 0, 0),
[UB writes],(0, 1, 0 → 0, 0),
[BA reads],(0, 1, 0 → 0, 1),
[BA writes],(0, 1, 0 → 1, 1),
[UB reads],(1, 1, 0 → 1, 1),
[UB writes],(1, 1, 1 → 1, 1),
[UB reads],(1, 1, 1 → 1, 1),
[UB writes],(1, 0, 0 → 1, 1),
[BA reads],(1, 0, 0 → 1, 0),
[BA writes],(1, 0, 0 → 0, 0),
,[UB reads],(0, 0, 0 → 0, 0),

Figure 3.3: The legitimate cycle

Define BUB′ to be the set containing the sequence l obtained by a repeated execution of the legitimate cycle

and all suffixes of l. The task BUB is now defined as the set of all sequences which are equivalent to some task in

BUB′ up to stuttering. Note that BUB is a subtask of the mutual-exclusion task. By this definition, each configuration

in the legitimate cycle is safe for the set BUB. Observe that when the system is in the legitimate cycle the processors

access their critical section in a mutually exclusive (and fair) fashion. In the following lemmas we prove that the

protocol is self-stabilizing by showing that in every fair execution some configuration in the legitimate cycle is

reached.

Lemma 3.2: In every fair execution E of the protocol in which the color of no register is changed, there is a

configuration Ct after which the link is always open.
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proof: Execution E is fair, therefore UB is activated infinitely often, in particular rub is refreshed infinitely often.

Consider configuration Ct right after rub is refreshed for the first time. In Ct the link is open since it was opened in

the refreshing write of UB. In its next activation UB reads rba; since during E the color of no register changes, after

this read action UB has a correct view which is constant throughout E. In case the link is unbalanced in this constant

view, UB does not enter its loop and therefore never closes the link. In case the link is balanced in the constant view,

UB executes the loop and unbalances the link, contradiction to the assumption that no color is changed during E. �

Lemma 3.3: In every fair execution of the protocol both registers are refreshed infinitely often.

Proof: The Lemma holds trivially for rub. Assume towards a contradiction that E is a fair execution in which rba is

never refreshed. This is possible only if whenever BA executes step 7, it finds that the link is closed. By Lemma 3.2

this implies that the content of some register is changed infinitely often. If register rba is changed infinitely often then

we are done, so it must be the case that only the content of register rub is changed infinitely often. In particular, it

implies that there is a suffix E′ of E in which the content of rub is changed infinitely often, but the content of rba is

never changed. We complete the proof by showing that this latter scenario is impossible.

Consider two successive changes of rub in E′, which are done after rub is refreshed. The first change is done

after UB executes step 4, and learns that the link is balanced. Since BA never writes in E′, after UB writes (in step 5),

the link becomes unbalanced. The next time UB executes step 2 it finds that the link is unbalanced, and hence it does

not change the value of rub anymore - a contradiction. �

Corollary 3.4: In every fair execution E, UB closes the link, by executing step 3, infinitely often.

Proof: Let E′ be a suffix of E in which both registers are refreshed, as guaranteed by Lemma 3.3. Assume for con-

tradiction that the link is never closed during E′. In particular this implies that UB never changes the color of rub dur-

ing E′, and also that infinitely often during E′, the color of rba is not equal to the (constant) color of rub. This implies

that eventually, BA balances the link by changing the color of rba. Once BA have done this, it does not change the

color again, unless the link becomes unbalanced. This means that the next time UB executes step 2, it will find out

that the link is balanced, and hence it executes step 3 and closes the link - a contradiction. �

Lemma 3.5: In every fair execution E of the protocol, the system reaches a configuration in the legitimate cycle.

Proof: By Lemmas 3.3 and 3.4, there is a suffix E′ of E during which both processors are refreshed, and during E′

UB closes the link. After closing the link, UB reads the value of rba, changes the color of rub (if necessary), and
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opens rub for reading. Call the sequence of configurations during which UB executes these operations the close

period of rub. Consider the behavior of the link during the close period of rub. Whenever BA reads rub during the

close period, it repeats executing line 7 until rub is opened. Therefore BA can change the color of rba (by executing

step 8) at most once, during the close period, since after any such change, BA reads rub. During the close period UB

reads rba once, the following three cases sum up the possible ways in which the link descriptor might be changed by

BA, during the close period of rub:

Case 1: BA does not change rba during the close period.

Case 2: BA changes rba before UB reads from it.

Case 3: BA changes rba after UB reads from it.

In the first two cases UB reads the updated value of rba and unbalances the link (if it is not already unbalanced)

hence the link descriptor in the configuration that immediately follows the close period is equal to either (1, 0, 0 → 1,

?) or (0, 1, 0 → 0, ?) (the question mark stands for either 0 or 1), which are all in the legitimate cycle. The third case

starts as follows: UB reads rba, then BA changes the color of rba to be equal to ub_color. At this stage the link

descriptor is either (0, ?, 1 → 1, 1) or (1, ?, 1 → 0, 0). At the end of the close period, UB tries to unbalance the link

using the last (not updated) color it read from rba. Thus the value of the link descriptor in the configuration that

immediately follows the close period is either (0, 1, 0 → 1, 1) or (1, 0, 0 → 0, 0) which are both in the legitimate

cycle. �

4. A Mutual-Exclusion Protocol for Dynamic Tree Systems

In this section we present a self-stabilizing, mutual-exclusion protocol for systems whose communication graph is a

directed tree, rooted at the (special) root processor. The protocol is dynamic as long as the topology changes preserve

the tree structure. The tool by which the privilege is passed along links is the balance-unbalance protocol. Each link

e, is regarded as directed from UB to BA. The registers of e are called the unbalanceregister of e and the balance

register of e, respectively. Thus in the tree protocol a processor with no_sonssons plays the role of UB no_sons

times, and each normal processor plays the role of BA once. A processor is privileged in the tree protocol if it is

privileged in all the balance-unbalance protocols in which it participates, that is when all its outgoing links are bal-

anced and its incoming link (for a non-root processor) is unbalanced.
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After stabilizing, an execution of the protocol proceeds in phases. Execution of a phase corresponds to a DFS

tour of the whole tree, where the DFS’s ‘‘ center of action’’ is at the node of the privileged processor. The first

privileged processor in each phase is the root. Following its first activation the root (recursively) passes the privilege

to (the subtrees rooted at) its sons in a left to right order. A processor P that becomes privileged for the first time in

some phase, passes the privilege to its leftmost son. Once the privilege is passed to all processors in the subtree

rooted at this son it is returned to P. Subsequently the privilege is passed to P’s second son from the left, and so on.

The phase ends when the rightmost son of the root returns the privilege to the root itself. In each phase the privilege

is passed twice along each edge, once in each direction. Consequently, each processor becomes privileged d times

where d is the processor’s degree.

At the beginning of each phase all registers in the tree are colored by one color (say 0), during the phase the

tree is recolored by the complementing color (in this case 1). For each edge e, its unbalance register is recolored

whenever the privilege is passed through e, and its balance register is recolored when the privilege is returned back

through e. Thus in every intermediate configuration the tree is partitioned by a path of unbalanced edges that goes

from the root to the DFS’s ‘‘center of action’’, which is the node of the privileged processor. Every unbalance regis-

ter on this path is colored with the new color (1), while all balance registers on this path are colored with the old

color (0). All edges left of this path are colored with the new color (1) while all edges right of the path are colored by

the old color (0).

Each processor P has two internal variables called new_colorand border, where new_coloris binary and

border ranges between 0 and no_sons. The value of new_colorindicates the color in which the tree is recolored, the

value of border indicates the border between outgoing links of P which are already recolored with new_colorand

those whose color is yet to be changed along the phase. In addition each processor has the internal variables needed

for all instances of the balance-unbalance protocol in which it participates. The state set of Pi is Si . The set Si con-

tains every possible assignment of permitted values to the variables of Pi . The set C of system configurations con-

sists of all possible combinations of processor states and register values.

The protocol for the root and for a normal processor is written for processor P with no_sonssons. The unbal-

ance register of P’s incoming link (which is written by P’s father and which is read by P) is denoted by qub, the bal-

ance register of P’s incoming link (which is written by P and which is read by P’s father) is denoted by rba. The

registers of P’s outgoing links are denoted as follows: for each outgoing edge em, 1≤m≤no_sons, the unbalance
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register of em, (which is written by P and which are read by P’s son) is denoted by rub[m] and the balance register of

em (which is written by P’s son and which is read by P) is denoted by sba[m]. A picture of a node and the registers

on its links appear in Figure 4.1 .

Figure 4.1: A pictorial description of a node in the system.
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Root: repeat forever
1 REFRESH
2 for m := 1 to no_sonsdo ba_color[m] := read (sba[m]);
3 if (all_out_links_balanced) {you are privileged}

then
CRITICAL SECTION
if border = 0
then

new_color:= 1−new_color
border := 1

end
4 unbalance_border_link

end

Other: repeat forever
5 REFRESH

repeat
6 <ub_color,close >:= read(qub) {read unbalanceregister}

until close= 0
for m := 1 to no_sonsdo ba_color[m] := read( sba[m])

7 if (all_out_links_balanced) and (in_link_unbalanced) {you are privileged}
then

CRITICAL SECTION
if border = 0
then

8 rba := write(new_color)
new_color:= 1−new_color
border := 1

else
9 unbalance_border_link

end
end

Procedure unbalance_border_link {pass privilege to your border son}
10 rub[border] := write(<1−new_color, 1>)
11 ba_color[border] := read (sba[border])

if (border_link_balanced)
then

12 rub[border] := write (<new_color, 0>)
border := border+1 mod (no_sons+1)

else
13 rub[border] := write (<1−new_color, 0>)

end

Procedure REFRESH: {refresh register values}
14 for m :=1 to border−1 do rub[m] := write (<new_color, 0>)
15 for m := border to no_sonsdo rub[m] := write (<1−new_color, 0>)
16 if not_rootthen rba := write (1−new_color)

Figure 4.2: The Mutual-Exclusion Protocol for Dynamic Tree Systems.
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The code of the protocol, for the root and for a normal processor appears in Figure 4.2. The program for a

processor is a loop which is executed forever. Analogous to the balance-unbalance protocol the loop is divided to a

refresh block and a main block. The refresh block consists a subroutine called REFRESHin which all the processor’s

registers are refreshed. After REFRESHis executed entirely once, the processor is refreshedand the colors in all its

registers can be deduced by the values of borderand new_color.

After a processor is refreshed it proceeds to execute its main block. Processor P starts its main block by read-

ing all the balance registers of its sons. In addition a non-root processor reads the unbalance register of its father and

waits until its incoming link is open. Analogous to the balance-unbalance protocol a processor proceeds to execute

its main block only if it is privileged. A processor checks that it is privileged by use of two predicates called

all_out_links_balancedand in_link_unbalanced(the root only checks predicate all_out_links_balanced). Both predi-

cates are checked using local valuesonly, no additional read actions are required. Predicate all_out_links_balanced

holds if the processor’s internal variables indicate that all its outgoing links are balanced. Predicate

in_link_unbalancedholds if ub_color= 1−new_color. Since the processor only checks its internal variables it may

get an erroneous indication, in the correctness proof below we show that this situation happens only finitely many

times.

In order to prove that the protocol is self-stabilizing we first define the set ME of legitimate sequences of sys-

tem configurations. Any sequence s∈ ME satisfies the following:

[Exclusion]: In each configuration C of s at most one processor is privileged.

[Fairness]: During s each processor is privileged infinitely often.

A subtree T is uniformly coloredin some configuration C, if in C, all the processors in T are refreshed, all

registers of T have the same color and all links of T are open. To get some intuition on how the protocol stabilizes

note that after a processor is refreshed, it is privileged only if all its outgoing links are balanced. When the processor

is privileged it ‘‘assumes’’ that all its subtrees left of the border link are colored with new_colorand that the border

subtree itself and all the subtrees right of the border link are colored with the complementing color. When any of its

outgoing links is not balanced the processor ‘‘waits’’ until its son balances the link. As the execution proceeds larger

subtrees become uniformly colored until the entire tree is uniformly colored. In the sequel we prove that any

configuration in which the entire tree is uniformly colored is a safe configuration for the protocol.
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Lemma 4.1: Let E be an arbitrary fair execution. If during E the colors of all registers in the system are constant

then there exists a configuration Ct in E such that for every subsequent configuration Cu (u≥t) all the system links are

open.

Proof: We prove the lemma by showing that for every processor Pi in the system there is an index t (i ) (t (i ) depends

on E) such that starting in Ct (i ) and subsequently throughout E all the outgoing links of Pi are open. The proof

proceeds by induction on d, the distance of Pi from the root.

Base Case: d=0. In this case Pi is the root processor. Since E is fair the root refreshes its registers infinitely often.

Let Ct (i ) be the configuration reached by the system after the root executes REFRESHentirely for the first time. (a

processor may start in the middle of REFRESH, in this case we only consider the second time in which REFRESHis

executed.) In Ct (i ) all the root’s outgoing links are open. Following Ct (i ) the root reads all the balance registers of its

sons. Since in E all colors are constant, by the time this read step is over the root has a correct view. The proof

proceeds now by assuming that the root closes a link. Applying Lemma 3.1 to show that whenever the root closes a

link it subsequently changes the color of the link’s unbalance register, contradiction.

Induction Step: We assume correctness of the lemma for all processors at distance d from the root. Let Pi be an

arbitrary processor at distance d+1 from the root. We show the existence of a configuration Ct (i ) after which all Pi ’s

outgoing links are open. Let Pf be the ‘‘father’’ of Pi . The distance of Pf from the root is d. By the induction

hypothesis there exists a configuration Ct (f ) after which Pi ’s incoming link is open throughout E. Therefore follow-

ing Ct (f ) Pi ’s behavior is similar to the root’s behavior and the same proof applies. �

Lemma 4.2: Eventually, the color of at least one register in the system is changed.

Proof: Assume towards a contradiction that E is a fair execution during which no processor changes the color of any

of its registers. By Lemma 4.1 there exists a configuration Ct (t≥0) in E such that for every configuration Cu (u≥t) all

the system links are open.

Case 1: In Ct all the links of the root are balanced.

Following Ct and after the root is refreshed, it reads the balance registers of all its sons, discovers that it is

privileged and subsequently changes the color of its border link, contradiction.
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Case 2: In Ct at least one of the root’s outgoing links is not balanced.

By the assumption no color field is changed. Hence any unbalanced (balanced) link in Ct remains unbalanced

(balanced) during E. Consider an unbalanced link (Pf→Pi ) of maximal distance from the root. The incoming

link of Pi is unbalanced and all the outgoing links of Pi are balanced in any configuration of E. Following Ct ,

Pi ’s behavior is similar to the root’s behavior and the proof for case 1 applies. �

Corollary 4.3: In every fair execution the color of at least one register is changed infinitely often.

Proof : The proof is immediate by a repeated application of Lemma 4.2. �

Lemma 4.4:

(a) If a processor P changes the color of one of its registers infinitely often, then P executes its loop infinitely

often.

(b) Once a processor P executes its loop entirely, P is refreshed.

Proof: (a) follows by the observation that during one execution of its loop, P may change the color of each of its

registers at most twice (at most once after the first time P completes its loop). (b) is implied immediately by (a) since

REFRESHis part of P’s loop. �

Lemma 4.5: Let P be an arbitrary processor, let e1 be P’s incoming link and let e2 be an arbitrary outgoing link of

P. Let rub
1 and rub

2 be the unbalance registers of e1 and e2 respectively, and let rba
1 and rba

2 be the balance registers of

e1 and e2 respectively. The following claims hold:

(a) If the color of rba
1 is changed infinitely often, so is the color of rub

2 .

(b) If the color of rba
1 is changed infinitely often, so is the color of rub

1 .

(c) If the color of rub
2 is changed infinitely often, so is the color of rba

2 .

(d) If the color of rub
2 is changed infinitely often, so is the color of rba

1 .

Proof: By Lemma 4.4 each of the conditions in items a-d implies that P executes its loop infinitely often and in par-

ticular P is eventually refreshed in E.

(a) Once P is refreshed and throughout E it holds that right before the color of rba
1 changes, the color of rba

1 is not

equal to the color of rub
2 . This last assertion implies that between any two successive changes of the color of

rba
1 , the color of rub

2 is changed too.
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(b) If rba
1 is changed infinitely often, then eventually it is changed only after P executes line 7 and finds that the

incoming link e1 is unbalanced. Assume for contradiction that rub
1 is never changed from some point on.

After this point, whenever P writes to rba
1 the link becomes balanced, and it remains so until the next time P

checks the condition in line 7. Since the link remains balanced, this condition does not hold. Hence, P never

changes rba
1 again, contradiction.

(c) The proof here is similar to the proof of (b).

(d) The proof is identical to the proof of (a).

Lemma 4.6: In every fair execution of the protocol the color of every register is changed infinitely often.

Proof: By Corollary 4.3, the color of some register is changed infinitely often. By a repeated application of (b) and

(d) of Lemma 4.5, this implies that the color of a register of the root processor is changed infinitely often. Assume

that the root has no_sonssons. Whenever the root colors a register, the value of border is increased by 1 (mod

no_sons). This means that the color of all the root’s registers is changed infinitely often. The proof is now completed

by a repeated application of (a) and (c) of Lemma 4.5. �

Since the color of every register in the system changes infinitely often we can now use Lemma 3.5. For this we

consider a fair execution of the tree protocol, E, and regard the color changes on the registers of any link during E, as

a separate execution of the balance-unbalance protocol. Using this method we get:

Corollary 4.7 In every fair execution every link descriptor reaches a configuration in the legitimate cycle (of Figure

3.3).

We proceed by combining the above results in order to show that eventually the system converges to a

configuration in which the entire system tree is uniformly colored.

Lemma 4.8: There are configurations in E in which the entire system tree is uniformly colored.

Proof: Let E′ be a suffix of E in which all registers are refreshed and all link descriptors follow the legitimate cycle.

Consider an arbitrary link e = (Pf→Ps): In E′ the predicate all_out_links_balancedholds for Ps only when all its out-

going links are indeed balanced. Thus in E′, after e is unbalanced, Ps rebalances e (by changing the color of its bal-

ance register) only when e is open and after Ps’s outgoing links are balanced and colored by the color of the unbal-

ance register of e. Using this fact, we prove the following:
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Claim: Eventually, for each link e = (Pf→Ps), Ps writes 0 in the balance register of e only when the subtree rooted

at Ps is uniformly colored by 0.

Proof of claim: The proof is by induction on h, the height of the subtree rooted at Ps. The claim holds trivially if Ps

is a leaf. Assume it holds for any processor P such that the height of the subtree rooted at P is smaller then h. Let the

height of the subtree rooted at Ps be h. Consider a configuration in which Pf writes 0 into the unbalance register of e,

setting the link descriptor to (1, 0, 0 -> 1, 1). It was already proved that Ps rebalances the link only after the registers

of all its outgoing links are balanced and colored 0. Since the link descriptors are changed according to the legiti-

mate cycle, those outgoing links are balanced by the sons of Ps. By the induction hypothesis, each son of Ps rebal-

ances its incoming link only after its subtree is informally colored with 0, hence when all links outgoing from Ps are

balanced with 0 the entire subtree rooted at Ps is colored with 0. This proves the claim.

The proof of the lemma is completed by applying the claim to the links emanating from the root processor. For

this, consider a configuration C in which all the root registers are colored 0 (there are infinitely many such

configurations in E - see proof of Lemma 4.6), and all the link descriptors are changed according to the legitimate

cycle. There is a configuration C′ following C in which all the root’s outgoing links are balanced to 0 (otherwise the

root never colors any of its registers). But C′ could be reached only by having all the root sons balancing their

incoming links to 0, which by the claim means that all the subtrees rooted at the root’s sons are uniformly colored by

0, and hence the entire tree is uniformly colored. �.

We proceed by showing that eventually, in any configuration at most one processor is privileged.

Lemma 4.9: Eventually there is a single privileged processor in every configuration.

Proof: Recall that a privileged processor in our protocol is a processor P which is about to execute either line 3 or

line 7 of the code and for which the predicates in_link_unbalancedand all_out_link_balancedare true. Once every

link descriptor is in the legitimate cycle, those predicates are true for P only if indeed the incoming link of P is

unbalanced and its outgoing links are balanced. To prove the lemma it suffices to prove that eventually there is at

most one processor for which the incoming link is unbalanced (or it is the root) and all its outgoing links are unbal-

anced. We will prove the following stronger result:

Claim: Eventually, in every configuration there is at most one processor, say P, whose incoming link is unbalanced

(or it is the root), and all its outgoing link are balanced. Moreover, all the links in the system are balanced, except the
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links on the path from the root to P.

Proof of Claim: By induction on the order of configurations in E. The induction base is a configuration Ct in which

all registers and variables are colored 0. By Lemma 4.8 this configuration, which satisfies the claim, is reached in

every fair execution. Assume that the claim holds for a certain configuration Cu (u ≥ t). We have to show that the

claim holds for Cu+1.

Let P be the only privileged processor in Cu. If the atomic step between Cu and Cu+1 does not change the

value of any register then we are done. If the atomic step changes the value of some register say r, then r is a register

of P (since P is the only privileged processor, and only a privileged processor may write). The fact that every link

descriptor is in the legitimate cycle, implies that if r is the unbalance register of an outgoing link then P unbalances

the link, and the claim holds for P’s son. If r is the balance register of P’s incoming link, then P balances the link,

and the claim holds for P’s father. This completes the proof of the claim, and hence of the Lemma. �

Corollary 4.10: The protocol is self-stabilizing relative to the set ME.

Proof: By Lemma 4.9 at most one privileged processor exist hence the [exclusion] requirement holds.

By Lemma 4.6 each processor is privileged infinitely often hence the [fairness] requirement holds. �

5. A Mutual-Exclusion Protocol for Dynamic Networks

In this section we present a mutual exclusion protocol for dynamic networks. Consider a semi-uniform system in

which each link is augmented by two read onlyregisters called the tree-registers. The tree registers encode a span-

ning tree of the communication graph rooted at the special processor as follows: The registers for each link should

specify whether the link belongs to the spanning tree; in case the link belongs to the spanning tree its registers should

specify its direction; these parameters can be obtained by the processors on the link’s endpoints. In this case a self-

stabilizing, mutual exclusion protocol for a system with any (static) communication graph can be derived simply by

pre-computing a spanning tree for this system’s communication graph and encoding it into the tree registers. The

tree registers can be hardwired and therefore constant throughout any execution. The protocol is obtained by execut-

ing the mutual exclusion protocol for tree systems where links which are not in the spanning tree are ignored.

This however falls short of our aim in this paper since the resulting protocol is not dynamic and it requires

some pre-computing. On the other hand this protocol motivates the following ideas:
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(1) A rooted spanning tree of the communication graph will be computed by a self-stabilizing protocol whose

registers are eventually constant.

(2) The registers of the spanning tree protocol will be used as tree registers for the mutual exclusion protocol.

(3) Both protocols will be combined to achieve a dynamic, self-stabilizing, semi-uniform protocol for mutual

exclusion on general graphs.

In the rest of this section we show how these ideas are implemented.

5.1. A Rooted Spanning Tree Protocol. The spanning tree protocol produces a BFStree of the system’s commun-

ication graph. Let G (V, E) be a graph with orderings α = (α1,α2, . . . αn) of the edges incident to each node vi ∈ V.

Define the First BFS Treeof G relative to v1 and α to be a BFStree, rooted at v1. In case a node, vi of distance d+1

from v1 has more than a single neighbor of distance d from v1, vi is connected to its first neighbor, according to α i ,

whose distance from v1 is d. The protocol always produces the First BFS Tree of the system’s communication

graph, with respect to the node of the special processor and to the (arbitrary) orderings α = (α1,α2, . . . αn) in which

the neighbors of all processors are ordered. The special processor is called the root processor.

Essentially the protocol is a distributed BFSprotocol. Each processor is continuously trying to compute its dis-

tance from the root and report it to all its neighbors by writing it in its registers. At the beginning of an arbitrary exe-

cution the only processor which is guaranteed to compute the right distance is the root itself, once this distance is

written in all the root’s registers, the value stored in these registers will never change. Once all processors of dis-

tance d from the root have completed to compute their distance from the root correctly and write it in all their regis-

ters, their registers remain constant throughout the execution and processors of distance d+1 from the root are ready

to compute their own distance from the root and so on and so forth. The spanning tree protocol bears some similarity

to the ARPANET routing protocol [Ta77,Ta81] (that latter protocol assumes a different model).

The output tree is encoded by means of the registers as follows: Each register rij , in which Pi writes and from

which Pj reads, contains a binary father field denoted by rij .father. If Pj is the father of Pi in the output BFS tree

then the value of rij .father is 1, otherwise the value of rij .father is 0. In addition each register rij has a distancefield,

denoted by rij .distancewhich holds the distance from the root to Pi .
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The code of the protocol, for the root and for the other processors, appears in Figure 5.1. In this code the

number of the processor’s neighbors is given by the parameter no_neighbors. The program for the root is very sim-

ple: It keeps ‘‘telling’’ all its neighbors that it is the root by repeatedly writing the values <0,0> in all its registers.

The first 0 is the distance from the root to itself, the second 0 tells each neighbor that it is not the father of the root.

The program for a normal processor consists of a single loop. In this loop the processor reads all the registers of its

neighbors. Processor Pi which has no_neighborsneighbors keeps no_neighborsinternal variables corresponding to

the no_neighborsregisters from which Pi reads. The internal variable, corresponding to register r ji is denoted by

ir ji . This variable stores the last value of r ji read by Pi . Its two fields are denoted by ir ji .father and ir ji .distance

respectively. Once all these registers are read, Pi computes a value for the variable distwhich represents Pi ’s current

idea of its distance from the root. The purpose of the boolean variable first_foundis to make sure by the end of each

pass of the loop that each processor has a single father. The minimum in line (*) is taken over m,

1 ≤ m ≤ no_neighbors.

The task ST of legitimate sequences is defined as the set of all configuration sequences in which every

configuration encodes the first BFStree of the communication graph. In the following lemma we characterize the set

of safe configurations for the protocol:

Root: do forever
for m:=1 to no_neighborsdo write rim:=<0,0> ;

od

Other: do forever
for m:=1 to no_neighborsdo irmi:= read (rmi);
first_found:=FALSE;

(*) dist:= min (irmi.dist)+1;
for m:=1 to no_neighbors
do

if not first_foundand irmi.distance=dist−1
then

write rim:=<1,dist >;
first_found:=TRUE;

else
write rim:=<0,dist >;

od
od

Figure 5.1: The Spanning Tree Protocol for Pi .
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Lemma 5.1: Let c be a system configuration which satisfies:

(a) The processors registers encode the first BFStree of the system’s communication graph rooted at the root.

(b) For each normal processor Pi and for each of its neighbors Pj , ir ij =rij .

(c) For each normal processor Pi , the local variable dist stores the distance of Pi from the root and the value of the

local variable first_foundsatisfies: If the value of the local variable m is m0 and Pi has a neighbor of distance

dist−1 from the root whose rank according to α i i <m0 then first_found=TRUE, otherwise

first_found=FALSE.

Configuration c is safe for the protocol.

Proof: It is not hard to verify that following c the value of no register ever changes hence all subsequent

configurations encode the first BFStree of the system’s communication graph as required by the definition of the set

ST. �

The following lemma shows that in every execution a safe configuration is reached.

Lemma 5.2: Let Pi be an arbitrary processor whose distance from the root is l and let Pj be an arbitrary neighbor of

Pi . Let E=c0,c1, . . . be an arbitrary fair execution of the protocol. For every integer d≥0 there exist td such that:

For every integer t, t≥td, the configuration ct satisfies the following assertions:

(a) If l ≤ d then rij .distance= l.

(b) If l ≤ d then rij .father has the “right” value. That is: if Pj is the first neighbor of Pi (using α i ) of distance l −1

from the root then rij .father = 1, and otherwise rij .father = 0.

(c) If l < d then ir ji = r ji .

(d) If l > d then rij .distance > d.

Proof: We prove the theorem by induction over d. In the proof we use the fact that due to the fairness of E every

processor is activated in E infinitely often.

Base Case: (d=0) The only node of distance 0 from the root is the root itself. Assume that the root has

no_neighborsneighbors. After no_neighborsactivations of the root, all its registers store the value < 0,0 > . The

values stored in the registers of the root will not be changed any more. This completes the proof of assertion (a).

Assertion (b) is also satisfied since no processor is the “father” of the root. Assertion (c) holds vacuously for the base
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case, since there are no processors of distance < 0 from the root. Assertion (d) is trivially satisfied since the permit-

ted values of the distance field are the natural numbers which are all positive.

Induction Step:(d > 0) Let td be an integer such that for every t ≥ td, configuration ct satisfies assertions (a) – (d) for

some integer d, d > 0. We show the existence of some integer td+1 such that for every integer t ≥ td+1 configuration

ct satisfies assertions (a) – (d) for d+1.

If the distance of Pi from the root is d+1 then all its neighbors are of distance ≥ d from the root. Moreover Pi

has at least one neighbor, whose distance from the root is exactly d. By assertion (a) of the induction hypothesis, for

every Pk of distance d from the root, it holds that the value stored in rki .distance in ctd and all subsequent

configurations is d. By assertion (d) of the induction hypothesis, for every Pl of distance > d from the root, it holds

that the value stored in rli .distancein ctd and all subsequent configurations is > d. Therefore, whenever Pi executes

line (*) after ctd , the value assigned to the variable dist is exactly d+1. Once this value is written in all registers of Pi ,

assertions (a) and (b) hold for Pi . The same holds for all processors of distance d+1 from the root. Hence there is a

configuration c1 reached by the system, such that for every configuration c following c1, assertions (a) and (b) are

satisfied for all processors of distance d+1 from the root.

It is easy to see that from c1 and onwards forever, the values stored in the registers of all processors of dis-

tance d+1 from the root will not be changed any more. In particular all neighbors of all processors of distance d from

the root will not change the values stored in their registers any more. If Pi is a processor of distance < d +1 from the

root then each read action after c1 sets one of its internal variables to its final stationary value. Thus there is a

configuration c2 reached by the system, such that every configuration c following c2 satisfies assertion (c) for d+1.

Let Pi be an arbitrary processor of distance > d +1 from the root. The neighbors of Pi are all of distance

≥ d+1 from the root. By assertion (d) of the induction hypothesis starting from ctd and onwards each neighbor Pj of

Pi satisfies r ji .distance > d. Therefore, whenever Pi executes line (*) after ctd the value assigned to the variable dist

is > d +1. Once this value written to all registers of Pi assertion (d) is satisfied for Pi . The same holds for all proces-

sors of distance > d +1 from the root. Hence there is a configuration c3 reached by the system, such that every

configuration following it satisfies assertion (d) for d+1. Let ctd+1
be the later configuration among c2 and c3. It is

easy to see that indeed every configuration c following ctd+1
satisfies assertions (a)–(d) for d+1. �
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Corollary 5.3: The protocol presented above is self-stabilizing relative to the set ST.

5.2. Fair Combination of Self Stabilizing Protocols. A self-stabilizing mutual exclusion protocol for general

graphs can be obtained by combining the self-stabilizing rooted spanning tree protocol presented in subsection 5.1

with the self-stabilizing mutual exclusion protocol for dynamic tree-structured systems, presented in section 4, as fol-

lows: The combined protocol runs both protocols alternately, such that the later protocol uses the tree encoded by the

tree registers written by the former protocol. By the correctness of the spanning-tree protocol, the tree registers

eventually encode a spanning tree, and are subsequently constant throughout the execution. By the correctness of the

mutual exclusion protocol, it eventually converges to a legitimate execution of mutual exclusion on this spanning

tree, and hence on the entire graph.

We now formalize and extend this idea to a general technique of fair protocol combination.In this technique

two simple protocols, called a ‘‘slave ’’ protocol and a ‘‘master’’ protocol, are combined to obtain a more complex

protocol. In the formal definition we assume that both protocols are shared memory protocols but we do not impose

any restriction on either the exact model (register or non-register) or on the specific communication graph or on the

protocols’ atomicity level. Using proper definitions can also eliminate the shared memory assumption.

Assume that the "slave" protocol is called Pr 1, for a task T1 and that the ‘‘master’’ protocol is called Pr 2 for a

task T2. The state set of a processor Pi in the combined protocol is Si = Ai ×Bi , where Ai is the state set of Pr 1 and

Ai ×Bi is the state set of Pr 2 but we assume that Pr 2 modifies only the Bi components. The state transition function

of the slave protocol Pr 1 for processor Pi is a function f : Ai → Ai , while the state transition of the master protocol

Pr 2 for Pi is a function g : Ai × Bi → Bi . These transition functions are extended to functions over Si as follows: For

(a,b)∈ S, f ((a,b)) is (f (a),b) and g ((a,b)) is (a,g (a,b)). In the combined mutual-exclusion protocol, Pr 1 is the

spanning tree protocol and the Ai ’s are the states modified by this protocol, including the tree registers; Pr 2 is the

version of the mutual exclusion protocol which uses the tree registers to encode the tree edges on which it operates.

The next definitions formalizes the concept of an execution of the master protocol which assumes a self-

stabilized execution of the slave protocol. Let Si , Ai , Bi and Pr 2 be as above, and let T1 be a task in which the states

of processor Pi are in Ai . Assume that T1 is closed under stuttering (i.e., for each sequence L in T1, the sequence

obtained from L by duplicating each entry finitely many times is also in T1). For configuration C, C ∈ S1 × . . . × Sn

define the A−projection of C as the configuration (a1, . . . ,an) ∈ A1× . . . ×An. For a sequence of configurations
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L = (C1,C2, . . . ), the A-projection of L is the sequence (A1,A2, . . . ), where Ai is the A-projection of Ci .

A fair execution of Pr2 given T1 is a sequence of configurations E = (C1,C2, . . . ) such that

(a) For every two consecutive configurations Ci = (Ai ,Bi ) and Ci +1 = (Ai +1,Bi +1), either Ai = Ai +1 or Bi = Bi +1.

(b) If Bi ≠ Bi +1 then the transition from Ci to Ci +1 is a transition of Pr 2, and the sequence of these transitions is

fair (i.e., each processor is activated in it infinitely often).

(c) The A-projection of E belongs to T1.

Condition (b) says that the modifications of the states in the Bi ’s are done by Pr 2 in a fair manner, while condition

(c) says that the sequence of states in the Ai ’s forms a legitimate sequence of task T1.

We say that protocol Pr2 is self-stabilizing for task T2 given task T1 if any fair execution of Pr 2 given T1 has

a suffix in T2. Finally, a protocol Pr is a fair combinationof Pr 1 and Pr 2 if in Pr every processor executes steps of

Pr 1 and Pr 2 alternately. Note that for an execution E of Pr, the A-projection of E is a sub-execution of E

corresponding to a fair execution of the slave protocol Pr 1.

The following theorem gives sufficient conditions underwhich the composition of two self-stabilizing protocols

is also self-stabilizing:

Theorem 5.4: Assume that Pr 2 is self-stabilizing for a task T2 given task T1. If Pr 1 is self stabilizing for T1, then

the fair combination of Pr 1 and Pr 2 is self-stabilizing for T2.

Proof: Consider any execution E of Pr, the fair combination of Pr 1 and Pr 2. By the self-stabilization of Pr 1, E has

a suffix E′ such that the A−projection of E′ is in T1. By the assumption that Pr 2 is self-stabilizing given T1, E′ has a

suffix in T2. �

Theorem 5.4 provides a general methodology to construct self-stabilizing protocols for complex tasks: Given a

task T2 for which we wish to construct the protocol, first define a task T1 and construct a protocol Pr 2 which is self

stabilizing for T2 given T1, and then construct a protocol Pr 1 which is self-stabilizing for T1. The fair combination

of Pr 1 and Pr 2 is the desired protocol. Note that this methodology does not require that the protocol Pr 1 reaches a

"steady state", in which the communication registers (or any other component in the state ai of processor Pi ) are

never changed.
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Corollary 5.5: The fair composition of the spanning tree protocol with the mutual exclusion protocol is a mutual

exclusion protocol on systems with an arbitrary dynamic communication graph. This protocol is self-stabilizing in

the presence of the distributed demon under read/write atomicity.

We conclude this section by observing that the notion of fair combination of protocols can be further extended,

by allowing the protocol Pr to interleave the executions of the protocols Pr 1 and Pr 2 in an arbitrary way, and not

necessarily in alternating manner. In this more general setting, each processor switches from executing protocol Pr 1

to executing protocol Pr 2 and vice versa according to some internal conditions, which should guarantee fair execu-

tion of both protocols. This adds extra flexibility to the way by which one can achieve composite protocols by com-

bining simpler ones. We demonstrate this by the following general theorem, concerning the fair combination our

mutual exclusion protocol with any arbitrary self-stabilizing protocol. In this theorem we assume the register model

used in the previous sections.

Theorem 5.6: For any semi-uniform protocol Pr 2 which is self-stabilizing under composite atomicity there is a

semi-uniform protocol Pr which is self-stabilizing (for the same task) under read/write atomicity.

Proof: We describe a protocol Pr which simulates Pr 2 under read/write atomicity. Pr is a fair composition of Pr 2 as

the master protocol and the mutual exclusion protocol presented above, as the slave protocol Pr 1. We describe Pr by

describing the rules by which it switches from executing Pr 2 to executing Pr 1 and vice-versa.

Each state transition of Pr 2 under composite atomicity can be written as a sequence of atomic steps under

read/write atomicity. Whenever a processor Pi is scheduled to operate, it first checks if it is in its critical section

according to Pr 1. If not, then Pi executes a step of Pr 1. If Pi enters its critical section in Pr 1, it stops executing Pr 1

and executes steps of Pr 2, until it completes one state transition of Pr 2 under the composite atomicity (this may take

many atomic steps under the read/write atomicity). Once this is done, Pi transfers the privilege to one of its neigh-

bors, according to Pr 1, and so on and so forth. The mutual exclusion property ensures that as long as Pi does not

complete its state transition in Pr 2, no other processor (and in particular no neighbor of Pi ) executes any state transi-

tion of its own. The fair combination ensures that each processor enters its critical section infinitely often. Thus,

each execution of Pr has a suffix which is equivalent to a fair execution of Pr 2 under composite atomicity.
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6. Concluding Remarks

A semi-uniform, dynamic, self-stabilizing, mutual-exclusion protocol for systems with an arbitrary communication

graph was presented. The protocol is correct in the presence of read/write atomicity under the distributed demon.

(For protocols that use read/write atomicity the distributed demon and the central demon are equivalent) Using this

protocol we showed that any self-stabilizing protocol which is correct under composite atomicity can be executed

under read/write atomicity in a self-stabilizing fashion.

Although this paper does not concern itself with complexity measures it is worth mentioning that when time is

measured by some appropriately defined round complexity, the stabilization time of the mutual exclusion protocol is

O (n2). The stabilization time of the spanning tree protocol is O (D), where D is the diameter of the system’s com-

munication graph.
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