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a b s t r a c t 

Distance-based methods for phylogenetic reconstruction are based on a two-step approach: first, pairwise 

distances are computed from DNA sequences associated with a given set of taxa, and then these distances 

are used to reconstruct the phylogenetic relationships between taxa. Because the estimated distances are 

based on finite sequences, they are inherently noisy, and this noise may result in reconstruction errors. 

Previous attempts to improve reconstruction accuracy focused either on improving the robustness of re- 

construction algorithms to this stochastic noise, or on improving the accuracy of the distance estimates. 

Here, we aim to further improve reconstruction accuracy by utilizing the basic observation that recon- 

struction algorithms are based on a series of comparisons between distances (or linear combinations of 

distances). We start by examining the relationship between the stochastic noise in the sequence data and 

the accuracy of the comparisons between pairwise distance estimates. This examination results in im- 

proved methods for distance comparison, which are shown to be as accurate as likelihood-based meth- 

ods, while being much simpler and more efficient to compute. We then extend these methods to improve 

reconstruction accuracy of quartet trees, and examine some of the challenges moving forward. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Reliable estimation of evolutionary distances from molecular

sequences is a core task in evolutionary inference, and particu-

larly in phylogenetic reconstruction. Distance-based phylogenetic

reconstruction is based on the following two-step approach: first,

sequence data from n taxa are used to estimate the number of

base substitutions between every pair of sequences in the evolu-

tionary path that connects them; then, the 
(

n 
2 

)
pairwise distances

are used to reconstruct the underlying phylogenetic tree. Distance-

based algorithms for phylogenetic reconstruction are extremely

popular due to their simplicity, reduced computational complexity,

and theoretical guarantees. The premise behind this approach is

that if the number of substitutions is accurately recovered in step 1

(up to a small tolerable error), then accurate reconstruction can be

guaranteed in step 2 ( Atteson, 1999 ). There have been numerous

attempts to increase the robustness of distance-based reconstruc-

tion algorithms to noise in distances estimated from molecular se-

quence data ( Erdos et al., 1999a,b; Gascuel, 1997; Gronau et al.,

2012; Huson et al., 1999 ). On the other hand, there have been rel-

atively few attempts to improve the accuracy of distance estimates.
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hese attempts are based on controlling the complexity of the as-

umed substitution model ( Zharkikh, 1994 ), or assuming that some

arameters of the substitution process are shared among branches

f the phylogeny ( Hoyle and Higgs, 2003 ). However, until recently,

he prevailing assumption has been that error in distance estima-

ion is strictly determined by the assumed substitution model. 

In a recent line of work, we showed that this basic assumption

bout noise in distance estimation is false ( Gronau et al., 2009;

010 ). We observed that while standard distance functions typi-

ally measure the total expected number of substitutions along an

volutionary path, weighted counts of different substitution types

re also valid for the purpose of phylogenetic reconstruction. We

uggested an adaptive approach for distance estimation, in which

hese weights are chosen to minimize the expected estimation er-

or. While the theory behind this approach is relatively new, it has

ctually been used in practice in a few special cases. For example,

n Kimura’s 2 parameter model ( Kimura, 1980 ), transition substitu-

ions (A ↔ G and C ↔ T) are typically assumed to occur at a higher

ate than transversion substitutions ({A, G} ↔ {C, T}). The standard

istance function suggested for this model by Kimura (1980) esti-

ates the total number of substitutions along a given evolution-

ry path. However, for very long evolutionary paths, in which sat-

ration of transitions leads to noisy estimates of their counts, it is

ommon practice to count only transversions using a formula from

avender (1978) ; Farris (1973) ; Neymann (1971) . Both formulas are

https://doi.org/10.1016/j.jtbi.2017.12.022
http://www.ScienceDirect.com
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(5) 
alid for the purpose of phylogenetic reconstruction because they

stimate additive substitution counts under the K2P model (all

ubstitutions versus only transversions). Consequently, every linear

ombination of these formulas is also additive, and may be con-

idered as a valid distance function. Gronau et al. (2009) extended

his basic observation to a wide range of substitution models, sug-

esting that distance functions should be adapted to the data being

nalyzed. The initial study focused on the estimation error of the

ength of a single evolutionary path, and Gronau et al. (2010) later

emonstrated ways in which this approach can be utilized to im-

rove the reconstruction accuracy for certain quartet trees. 

In this paper we use the adaptive distance approach to for-

ally examine the relationship between distance estimation noise

nd reconstruction accuracy. We do this by focusing on the fun-

amental problem of comparing two distances, which has been

hown to provide a useful analytical framework for assessing re-

onstruction accuracy ( Serdoz et al., 2017 ). This is because nearly

ll distance-based phylogenetic reconstruction algorithms can be

roken up into a sequence of comparisons between linear com-

inations of distances. For instance, when reconstructing the phy-

ogenetic tree over four taxa, a, b, c, d , the classical four-point

ethod (FPM) has to determine which of the following distance

ums is the smallest: d(a, b) + d(c, d) , d(a, c) + d(b, d) , or d(a, d) +
(b, c) ( Buneman, 1971 ). Another example is the Neighbor Joining

NJ) algorithm ( Saitou and Nei, 1987 ), which iteratively joins the

air of taxa i, j that maximize Q(i, j) = 

∑ 

k d(i, k ) + 

∑ 

k d( j, k ) −
(n − 2) d (i, j ) . An immediate consequence of the above observation

s that the quality of distance based reconstruction depends on the

ccuracy of comparison queries, rather than on the numerical ac-

uracies of the 
(

n 
2 

)
pairwise distances. 

The main objective of this work is to harness the framework of

daptive distances to enhance the accuracy of comparison queries

etween distances or their linear combinations. We start by ex-

mining the simple problem of comparing the lengths of two in-

ependent evolutionary paths ( Section 3 ). In that simple problem

e use our notion of distance measures to achieve essentially the

ame accuracy as methods based on maximum-likelihood, but do

hat with much lower computational complexity. We then discuss

xtensions of this simple framework to the more general prob-

em of comparing sums of distances and resolving quartet trees

 Section 4 ). 

. Background 

We start by presenting the required background on DNA sub-

titution models, distance estimation via SR functions, and noise

inimizing SR functions. 

.1. Kimura’s two parameter substitution model 

DNA sequence evolution is traditionally modeled using a pro-

ess of base substitution along evolutionary paths connecting a set

f taxa of interest. For a given path, this process is specified by a

 × 4 substitution rate matrix R whose off-diagonal entries R ij rep-

esent the (positive) rate of substitution from nucleotide i to nu-

leotide j along the path (diagonal elements are set to ensure rows

um up to 0). Here, we focus on Kimura’s two parameter (K2P)

odel ( Kimura, 1980 ), in which all transition substitutions (A ↔ G

nd C ↔ T) have the same rate ( α) and all transversion substitutions

{A, G} ↔ {C, T}) have the same rate ( β), which is typically smaller.

 rate matrix in the K2P model is specified by the two parame-

ers α, β > 0 and has the following form: (rows and columns are

ndexed by nucleotides A, G, C, and T, in that order) 
 (α, β) = 

⎛ 

⎜ ⎝ 

−α − 2 β α β β
α −α − 2 β β β
β β −α − 2 β α
β β α −α − 2 β

⎞ 

⎟ ⎠ 

. 

K2P is the simplest substitution model defined by more than

ne parameter, and a very commonly assumed model in molec-

lar evolution. Another common assumption made when consid-

ring a collection of evolutionary paths is that they are homoge-

eous . In the K2P model this implies that all paths share the same

ransition-to-transversion (ti-tv) ratio κ = 

α
2 β

. Thus paths in a ho-

ogeneous K2P model are often specified by the shared ti-tv ra-

io κ and the total substitution rate t = α + 2 β of every path. The

ubstitution probabilities associated with an evolutionary path are

iven by exponentiating the rate matrix R . In K2P, this implies that

he transition probability ( p ti ) and the transversion probability ( p tv )

re given by the following transformations : 

p ti = 

1 

4 

(
1 + e −4 β − 2 e −2 ( α+ β) 

)
; p tv = 

1 

4 

(
1 − e −4 β

)
. (1) 

he probability of observing an identical base on both sides of the

ath is given by 1 − p ti − 2 p tv . 

.2. Substitution rate (SR) functions 

The length of an evolutionary path (distance between its end

oints) is defined by mapping the rate matrix R to a non-negative

eal value d ( R ) ≥ 0. Phylogenetic inference requires these distance

easures to be additive , s.t. d( R 1 + R 2 ) = d( R 1 ) + d( R 2 ) . The stan-

ard additive measure used in most cases is the total substitu-

ion rate ( t ), which is simply the sum of all substitution rates (in

2P, t = α + 2 β). In a previous study we showed that in a large

lass of substitution models, any positive linear combination of the

igenvalues of the rate matrix is additive ( Gronau et al., 2009 ). We

alled these functions substitution rate (SR) functions , and examined

ays of selecting SR functions for different phylogenetic inference

asks (see also Gronau et al., 2010 ). In K2P, the non-zero eigenval-

es of a rate matrix R ( α, β) are −4 β and −2(α + β) , and thus

very linear combination of α and β that is positive is an SR func-

ion (and all SR functions are of that form). This linear combination

an be put in terms of the substitution probabilities p ti , p tv by ex-

onentiating the rate eigenvalues : 

�= e −4 β = 1 − 4 p tv ; μ
�= e −2(α+ β) = 1 − 2 p ti − 2 p tv , (2)

nd representing the linear combination as follows: 

c 1 log (λ) − c 2 log (μ) = (2 c 2 ) α + (4 c 1 + 2 c 2 ) β. (3)

ecause SR functions that are proportional to each other are equiv-

lent, we may associate each SR function with the coefficient ra-

io c = c 1 /c 2 , and restrict our consideration to SR functions with

 2 = 1 : 

 c (λ, μ) = −c log (λ) − log (μ) = 2 α + (4 c + 2) β. (4)

While valid SR functions might have a negative SR coeffi-

ient c (e.g. d − 1 
2 
(λ, μ) = 2 α), we restrict our study here to non-

egative SR coefficients. Thus, we consider SR functions ranging

rom d 0 (λ, μ) = − log (μ) = 2(α + β) to d ∞ 

(λ, μ) = − log (λ) = 4 β
the transversion count SR function). Another SR function of inter-

st is d 1 
2 
, which is proportional to the formula originally suggested

y Kimura (1980) for the total rate: 

 1 
2 
(λ, μ) = −1 

2 

log (λ) − log (μ) 

= 2 

(
−1 

4 

log (1 − 4 p tv ) − 1 

2 

log (1 − 2 p ti − 2 p tv ) 
)

= 2 t. 
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2.3. Inference from observed data 

In phylogenetic analysis, we wish to make inference from DNA

sequences observed at the leaves of an evolutionary tree (phy-

logeny). Thus for each path connecting two leaves we are given a

pairwise sequence alignment of length n , and we assume that ev-

ery aligned pair of bases was independently generated from the

same substitution process along the path. The likelihood of the

pairwise alignment can then be expressed as a product of the ap-

propriate substitution probabilities. In the K2P model, a pairwise

alignment of length n with n ti transition differences (e.g., [A,G])

and n tv transversion differences (e.g., [A,T]) has the following like-

lihood: 

L (p ti , p tv | n, n ti , n tv ) = p n ti 

ti 
p n tv tv (1 − p ti − 2 p tv ) 

n −n ti −n tv . (6)

Maximum likelihood estimates (MLEs) of the model parameters

can then be obtained by setting the substitution probabilities to

values that maximize the likelihood function, and then applying

the appropriate transformations (see Eq. (2) ) : 

ˆ p ti = 

n ti 

n 

, ˆ p tv = 

n tv 

2 n 

(7)

ˆ λ = 1 − 4 ̂

 p tv , ˆ μ = 1 − 2 ̂

 p ti − 2 ̂

 p tv (8)

ˆ α = −1 

2 

log ( ̂  μ) + 

1 

4 

log ( ̂ λ) , ˆ β = −1 

4 

log ( ̂ λ) . (9)

If the transformation in Eq. (8) leads to negative values for ˆ λ or

ˆ μ, then the path is considered to be saturated, and the parameter

estimates ˆ α and 

ˆ β are typically set to some arbitrary large value.

For instance, if ˆ λ is negative, n tv might be set to the largest possi-

ble value given the sequence length n , such that ˆ λ is positive (i.e.,

n tv = � n −1 
2 � ), and then, if ˆ μ is negative n ti can be set to the largest

possible value such that ˆ μ is positive (i.e., n ti = � n −1 
4 � ). 

2.4. Distance estimation noise 

Estimation of parameter values from data is an inherently noisy

process. The noise, which is the difference between the true and

inferred values, is determined by the parameter values and the

length of pairwise alignment used in inference. This inherent noise

transforms to distance estimation noise when applying an SR func-

tion to the estimated parameters. Gronau et al. (2009) showed

that different SR functions have different noise patterns, and then

demonstrated that this property can be used to improve the accu-

racy of phylogenetic reconstruction. These observations are based

on two central derivations (see Gronau et al., 2009 for more de-

tails). The first is an expression approximating the mean square

error (MSE) of a distance estimate obtained from 

ˆ λ, ˆ μ and an SR

coefficient c : 

˜ MSE (c; ˆ λ, ˆ μ) = 

1 

n 

(
c 2 

(
1 

ˆ λ2 
− 1 

)
+ 2 c 

(
1 

ˆ λ
− 1 

)

+ 

1 

2 

(
1 

ˆ μ2 
+ 

ˆ λ

ˆ μ2 
− 2 

))
. (10)

The second is an expression for the SR coefficient that approx-
imately minimizes the relative distance estimation noise defined by

the normalized root MSE ( 
√ ˜ MSE (c; ˆ λ, ˆ μ) /d c ( ̂ λ, ˆ μ) ): 

c opt 
(

ˆ λ, ˆ μ
)

= 

ˆ λ
(

ˆ λ log ̂  λ + ̂

 λ2 log ̂  λ − 2 ̂  μ2 log ˆ μ − 2 ̂ λ ˆ μ2 log ̂  λ + 2 ̂ λ ˆ μ2 log ˆ μ
)

2 ̂  μ2 

(
1 − ˆ λ

)(
log ˆ μ − ˆ λ log ̂  λ + ̂

 λ log ˆ μ
) . 

(11)

h  
This noise-minimizing SR coefficient ( c opt ) also plays a central

ole in our analysis here. 

. Comparing two paths 

.1. The two-path model 

In this section we examine the fundamental task of inferring

hich of two independent evolutionary paths is longer. We as-

ume that both paths obey the K2P substitution model and de-

ote by ( λ1 , μ1 ) and ( λ2 , μ2 ) the exponentiated eigenvalues asso-

iated with the two K2P paths (see Eq. (2) ). To avoid ambiguity as

o which path is longer, we assume that the rates of both transi-

ions and transversions are higher in one path than in the other.

pecifically, we assume that path 1 is inherently longer than path

, meaning that λ1 < λ2 and μ1 < μ2 . We refer to two indepen-

ent K2P paths satisfying these requirements as a two-path model ,

nd our objective is to infer which path is longer by observing as

nput four DNA sequences of length n corresponding to the tips of

he two paths. 

Inference starts by examining the pairwise sequence alignment

or each of the two paths and obtaining maximum likelihood esti-

ates (MLEs) for the four model parameters: ˆ λ1 , ˆ μ1 , ̂
 λ2 , ˆ μ2 . These

stimates are obtained by a simple application of the MLE formula

o each alignment separately ( Eqs. (7) and ( 8 )). What makes the

nference problem complicated is that the estimated parameters

ight be ambiguous as to which path is longer. For instance, if
ˆ 

1 < ̂

 λ2 and ˆ μ1 > ˆ μ2 , then inference will depend on the SR func-

ion we use to measure path length. In this section we examine

his problem and suggest methods for selecting SR functions for

his task. 

.2. Experiments on homogeneous models 

We used experiments on simulated data to evaluate different

nference methods for the two-path problem. In these simulations,

e used homogeneous substitution models, which are commonly

ssumed in phylogenetic analysis. A homogeneous two-path model

s defined by three parameters: the shared ti-tv ratio κ , and the to-

al rates of the two paths t 1 , t 2 . In our simulations path 1 is longer

han path 2, hence t 1 > t 2 . We simulated the substitution process

n this homogeneous model using sequences of length n = 500 bp.

n cases where a simulated path is saturated, we adopted the strat-

gy described in the end of Section 2.3 . We then applied a series

f inference methods to the four sequences and recorded whether

he method successfully inferred that path 1 is longer than path

. We repeated this process using 10 0,0 0 0 independent simula-

ions to obtain an estimated success rate for each tested inference

ethod on the two-path model in question. By using 10 0,0 0 0 in-

ependent simulations, an estimate of p for the success ratio has

 standard error that is approximately 
√ 

p(1 − p) / 10 0 , 0 0 0 . This

tandard error is bounded from above by 0.16% (maximum ob-

ained at p = 0 . 5 ). 

One of the benefits of using homogeneous models in our ex-

eriments is that homogeneous models have a statistically opti-

al, yet computationally intensive, inference method. Notice that if

he estimated model parameters ˆ λ1 , ˆ μ1 , ̂
 λ2 , ˆ μ2 are consistent with

 homogeneous model, then they are unambiguous as to which

ath is longer, because 
log ( ̂ μ1 ) 

log ( ̂ λ1 ) 
= 

log ( ̂ μ2 ) 

log ( ̂ λ2 ) 
implies that { ̂ λ1 , ̂

 λ2 } and

 ̂  μ1 , ˆ μ2 } are ordered the same way. This ordering directly deter-

ines the inference outcome regardless of the chosen SR function.

he problem with this approach is that MLEs under a homoge-

eous restriction no longer have closed-form solutions and they re-

uire applying computationally intensive optimization techniques.

his is because the ti-tv ratio κ is shared between the two likeli-

oods of the two alignments that make up the data. Nonetheless,
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Fig. 1. Basic methods for inference of longest path applied to homogeneous two-path models with κ = 2 and t 2 / t 1 = 0 . 9 . Success ratios were estimated for the two standard 

SR functions (Kimura’s formula and the transversion only formula) and the 3ML method. Notice that the success ratios of all methods fall within the ambiguous range 

bounded from below by the number of unambiguous correct cases (lower dashed line) and from above by the number of cases that are not unambiguously incorrect (upper 

dashed line). Results are based on 10 0,0 0 0 independent experiments run for each model using 500 bp long sequences. Standard errors for success ratio estimates are less 

than 0.16% (See Section 3.2 ). 
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LEs for the three free parameters of a homogeneous two-path

odel ( ̂  κ, ̂  t 1 , ̂  t 2 ) can be inferred by numeric optimization, and the

ath inferred to be longer is the one whose total rate ( ̂ t i ) is es-

imated to be larger. We refer to this method of inference as the

ML method and use it as a point of comparison for the methods

e propose. Our objective is thus to propose inference methods

hat: (1) do not assume that the model is homogeneous, (2) are

uch more efficient than 3ML, and (3) whose accuracy is compa-

able to that of the 3ML method in homogeneous models. 

.3. Resolving ambiguity 

Consider a two-path model with path 1 inherently longer than

ath 2, meaning that λ1 < λ2 and μ1 < μ2 . We obtain the four

arameter MLEs ˆ λ1 , ˆ μ1 , ̂
 λ2 , ˆ μ2 and are interested in using them

o determine which path is longer. This is done by choosing an

R coefficient ( c ≥ 0) and comparing the two distances d c ( ̂ λi , ˆ μi ) =
c log ( ̂ λi ) − log ( ̂  μi ) for i ∈ {1, 2}. Notice that in some cases, the re-

ult of this comparison depends on the choice of c , whereas in

thers it does not. For instance, if ˆ λ1 < ̂

 λ2 and ˆ μ1 < ˆ μ2 , then for

ll c ≥ 0 we have d c ( ̂ λ1 , ˆ μ1 ) > d c ( ̂ λ2 , ˆ μ2 ) and path 1 is always in-

erred to be longer. We refer to such cases as being unambiguously

orrect . We similarly define unambiguously incorrect cases as ones

n which 

ˆ λ1 > ̂

 λ2 and ˆ μ1 > ˆ μ2 , and refer to the remaining cases,

here { ̂ λ1 , ̂
 λ2 } and { ̂  μ1 , ˆ μ2 } are ordered differently, as ambiguous .

ur study naturally focuses on ambiguous cases, where the path

nferred to be longer depends on the choice of SR function. To bet-

er understand ambiguity, we examine the difference between the

wo inferred path lengths as a function of c : 

(c; ˆ λ1 , ˆ μ1 , ̂  λ2 , ˆ μ2 ) = d c 

(
ˆ λ1 , ˆ μ1 

)
− d c 

(
ˆ λ2 , ˆ μ2 

)
= log 

(
ˆ λ2 

ˆ λ1 

)
c − log 

(
ˆ μ1 

ˆ μ2 

)
. (12) 

Because this difference is a linear function of c , then it has a

ingle X-intercept at c switch = log ( 
ˆ μ1 
ˆ μ2 

) / log ( 
ˆ λ2 
ˆ λ1 

) . SR functions on one

ide of the intercept result in correct inference and SR functions on

he other side result in incorrect inference. In ambiguous cases one

ide is represented by d 0 (λ, μ) = − log (μ) and the other is rep-

esented by the transversion count d ∞ 

(λ, μ) = − log (λ) . Our ob-

ective is thus to develop methods for determining which ‘side’ of

 switch is more likely to be correct. 

We ran a series of experiments to examine the effect of am-

iguity on the inference task. We considered a series of homoge-

eous two-path models with κ = 2 and 

t 2 / t 1 = 0 . 9 , and recorded

he number of data sets that fall in each of the three types. In
ddition, we recorded the accuracy of two standard SR functions:

imura’s formula ( d 1 
2 

) and the transversion only formula ( d ∞ 

) as

ell as the 3ML method. All models considered in these simula-

ions resulted in 31%–42% ambiguous cases ( Fig. 1 ; size of inter-

al between the two dashed lines). As expected, the success ratio

f all methods was bounded from below by the number of un-

mbiguous correct cases and bounded from above by the num-

er of cases that were not unambiguous incorrect (dashed lines in

ig. 1 ). As observed in previous studies for other phylogenetic in-

erence tasks, Kimura’s SR function performs well when the paths

re short, the transversion-based distance performs well for long

aths ( Gronau et al., 2009 ), and the ML-based approach provides

n upper bound in terms of accuracy. 

.4. Choosing a discriminating SR function 

One way to address the issue of ambiguity is to measure how

uch an SR function discriminates between the two path lengths.

he measure we use for discrimination is based on Fisher’s linear

iscriminant ( Fisher, 1936 ) and takes into consideration the differ-

nce between the two distances and the magnitude of noise in-

olved in their estimation (see Eqs. (12) and (10) ). 

iscScore (c) = 

(
�(c; ˆ λ1 , ˆ μ1 , ̂  λ2 , ˆ μ2 ) 

)2 

˜ MSE ( c; ˆ λ1 , ˆ μ1 ) + 

˜ MSE ( c; ˆ λ2 , ˆ μ2 ) 
. (13) 

An SR function that maximizes this discrimination score is ex-

ected to result in a large difference between estimated path

engths relative to the distance estimation noise, and is thus rel-

tively likely to lead to accurate inference. We tested this asser-

ion on the simulated data from Fig. 1 and saw that the success

ates of this inference method (select the function which maxi-

izes DiscScore ) were typically higher than those of the standard

R functions, but somewhat lower than the success rates of the

ML method ( Fig. 2 ). We then tested what would happen if we in-

er the shorter path by an SR function maximizing the discrimina-

ion score computed with the true model parameters λi , μi . While

his approach does not constitute a valid inference method be-

ause it makes use of the unknown true parameters values, we

iew it as an ‘oracle’ suggesting an SR function for a given two-

ath model. As such, it provides insight into what makes a good SR

unction. We see that for nearly all models, the SR function chosen

y DiscScore -oracle has a success rate that is practically identical to

hat of the 3ML method. This fact was further confirmed by check-

ng that for each model examined in these simulations, no single

R function had a success rate that was significantly higher. Thus
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Fig. 2. Inference methods based on Fisher’s linear discriminant applied to homogeneous two-path models with κ = 2 and t 2 / t 1 = 0 . 9 . Success ratios were estimated for 

methods based on SR functions maximizing the discrimination score ( Eq. (13) ) computed from the inferred parameter values ( DiscScore ) and the (unobserved) true parameter 

values ( DiscScore –oracle). Success ratios for Kimura’s formula and the 3ML method are shown for reference. The success ratios of DiscScore –oracle are near optimal, and the 

success ratios of DiscScore are somewhat lower, likely due to the influence of noise (see Section 3.5 ). The simulated data sets are the ones generated for Fig. 1 , and the 

maximum standard error of a success ratio estimate is 0.16%. 

Fig. 3. DiscScore ( c ) is a rational function with quadratic polynomials in the numerator and in the denominator. It has two extrema: one maximum ( c max ) and one minimum 

at c switch ( DiscScore (c switch ) = 0 ). DiscScore ( c ) approaches the same positive value at ± ∞ . The graphs here depict two forms of DiscScore ( c ) observed in our experiments. (a) In 

a typical unambiguous case ( c switch < 0), the global maximum is obtained at a positive point c max > 0 , and d c max 
is selected by the DiscScore method. (b) In a typical ambiguous 

case ( c switch > 0), the global maximum is negative c max < 0 , which implies that DiscScore selects as an SR function either d 0 or d ∞ . 
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Fisher’s linear discriminant provides an excellent oracle for select-

ing an SR function for a given two-path model, but it appears to be

less effective when applied as an inference method to the observed

data. 

3.5. The noise-minimizing SR functions c 
opt 
1 

and c 
opt 
2 

We examined the behavior of Fisher’s linear discriminant more

closely to understand the discrepancy between the DiscScore infer-

ence method based on estimated parameter values and DiscScore -

oracle based on true values used in simulation. Along the entire

real axis ( c ∈ [ −∞ , + ∞ ] ), the discrimination score typically has a

single local maximum and a single local minimum. Since the dis-

crimination score is non-negative, the local minimum is attained at

c switch , where the score is zero. We noticed that in all models con-

sidered, the maximum point of the discrimination score computed

from the true parameters was at a positive and finite SR coeffi-

cient (0 < c < ∞ ), which was thus the one used by DiscScore -oracle.

This was also true for the discrimination score computed from the

estimated parameters in the great majority of unambiguous cases

( Fig. 3 (a)). However, in all ambiguous cases encountered in our ex-

periments, the local (and global) maximum point was attained in

a negative SR coefficient ( Fig. 3 (b)). Thus in every ambiguous case,

the non-negative SR coefficient that maximized the discrimination

score was either c = 0 ( d c (λ, μ) = − log (μ) ) or c = ∞ ( d c (λ, μ) =
− log (λ) ). This means that the DiscScore method is practically the

same as choosing the SR function that maximizes the discrimina-

tion score among the two extreme SR functions d 0 and d ∞ 

. 

This simple observation implies that the DiscScore method can

be implemented efficiently by two simple computations rather
han having to find the maximum in the entire range. However,

ore importantly, it provides some insight into why this method

s not as good as the oracle based on the same score. Because

hey lie on the edges of the range of SR functions, d 0 and d ∞ 

ave large relative distance estimation noise, and the discrimina-

ion score could be a poor indicator for their expected accuracy.

alse inference might be a result of a deceptively high discrimina-

ion score for one of these SR functions. 

We chose to address this problem by using less noisy SR

unctions as candidates for inference. Consider the two SR func-

ions that minimize the relative distance estimation noise for the

wo paths in the model. The coefficients corresponding to these

oise-minimizing SR functions are approximated by Eq. (11) : c 
opt 
i 

�=
 

opt ( ̂ λi , ˆ μi ) . Both SR coefficients are associated with low levels of

istance estimation noise for the two paths, and so are other SR

oefficients in the range between them, which we refer to as the

 

opt range . Consequently, we define c opt -ambiguous cases as data

ets in which c switch falls in the c opt range. We examined the influ-

nce of this focus on the c opt range on our inference experiments.

irst, the number of c opt -ambiguous cases was much lower than

he number of overall ambiguous cases, and did not exceed 20%

 Fig. 4 ). Importantly, while the number of unambiguous correct

ases increased by 17%–21%, the number of unambiguous incorrect

ases increased by only 6%–13%, resulting in overall improvement

n inference accuracy. Consequently, the simple method that infers

he long path based on an SR coefficient selected uniformly at ran-

om from { c opt 
1 

, c 
opt 
2 

} is only slightly less accurate than the 3ML

ethod and comparable to the DiscScore method proposed in the

revious section. 
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Fig. 4. Basic inference methods based on the noise-minimizing SR coefficients c opt 
1 

and c opt 
2 

applied to homogeneous two-path models with κ = 2 and t 2 / t 1 = 0 . 9 . Dashed 

lines represent proportions of c opt -unambiguous correct cases (bottom) and cases that are not c opt -unambiguous incorrect (top). Success ratios for DiscScore and the 3ML 

method are shown for reference. A simple inference method based on randomly choosing SR coefficients among c opt 
1 

and c opt 
2 

(random c opt ) is only slightly less accurate than 

the 3ML method, and is comparable to DiscScore . The simulated data sets are the ones generated for Fig. 1 , and the maximum standard error of a success ratio estimate is 

0.16%. 

Fig. 5. Advanced inference methods based on the noise-minimizing SR coefficients c opt 
1 

and c opt 
2 

applied to homogeneous two-path models with κ = 2 and t 2 / t 1 = 0 . 9 . We 

considered different scores for evaluating the two noise-minimizing SR functions: the discrimination score ( Disc Score - c opt ), and the maximum coefficient ( Max - c opt ). The 

Disc Score - c opt method has near optimal accuracy, and the simpler Max - c opt method has slightly lower success rates, especially for models with intermediate path lengths. 

The simulated data sets are the ones generated for Fig. 1 , and the maximum standard error of a success ratio estimate is 0.16%. Results are shown for models with t 1 ≥ 0.2 

to enable focus on subtle differences between methods. 
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.6. Selecting between c 
opt 
1 

and c 
opt 
2 

Next, we examined how an informed choice between the two

oise-minimizing SR functions would improve inference accuracy

ompared to the random choice we examined in Fig. 4 . One way

o select between the two SR functions is by using the discrimina-

ion score we defined in Section 3.4 . We tested this method, which

e termed Disc Score - c opt , on our simulated data and saw that it

ad a considerably higher success rate than the original DiscScore ,

hich maximizes the discrimination score across the entire range

f positive SR coefficients ( Fig. 5 ). Furthermore, Disc Score - c opt had

uccess rates that were statistically identical to those of the 3ML

ethod across nearly all models tested. We attribute the improved

erformance to the fact that we are using the discrimination score

o evaluate SR functions with low distance estimation noise (see

iscussion in Section 3.5 ). We tested this approach also in models

ith various ti-tv ratios and various ratios between path lengths
 2 / t 1 (Supplementary Figure S1), and observed success rates that

ere very similar to those of the 3ML method in all tested mod-

ls. Importantly, this near-optimal accuracy is achieved by an in-

erence method that is much simpler than the 3ML method and

nvolves the following steps: 

1. Compute the two noise-minimizing SR coefficients c 
opt 
1 

and c 
opt 
2 

using Eq. (11) . 
2. If the path that is longer under SR function d 
c 

opt 
1 

is also longer

under d 
c 

opt 
2 

, then return the identity of this path. 

3. Otherwise, compute the discrimination scores of c 
opt 
1 

and c 
opt 
2 

using Eq. (13) and return the identity of the path that is longer

based on the SR coefficient with higher score. 

This approach is appealing because it is very efficient and does

ot require numeric maximization of a complex likelihood func-

ion. Indeed, our experiments indicate that Disc Score - c opt is roughly

6 times faster than 3ML (Supplementary Table S1). Another ad-

antage of this approach is that in cases that are tougher for infer-

nce, where the two paths have similar lengths, the two SR coef-

cients c 
opt 
1 

and c 
opt 
2 

are also very similar and the third step is not

eached. We considered several selection criteria as alternatives to

he discrimination score for step 3, (e.g., ratio between inferred

engths, sum of normalized MSE, distance from c switch ), and they

ll had slightly lower success rates. One alternative method worth

oting is based on selection of the larger SR coefficient among c 
opt 
1 

nd c 
opt 
2 

. The rationale behind this method, which we call Max - c opt ,

s that two-path models where c opt -ambiguous cases are prevalent

ypically have at least one long path (see Fig. 4 ), and in these mod-

ls large SR coefficients typically have high success rates (see d ∞ 

in

ig. 1 ). As expected, this method has near optimal success rates for

odels with short paths (due to few ambiguous cases) and models

ith long paths (due to choice of large SR coefficient), and some-
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Fig. 6. The 2D function c opt (λ, μ) defined by Eq. (11) computed in the range [0, 

1] 2 in a grid with 0.01 intervals. In this range, we see that c opt is increasing with 

λ and decreasing with μ, establishing Claim 1 . The biologically-relevant subregion 

where λ>μ is shown to the right of the diagonal red line. The discontinuation 

line between the two manifolds corresponds to points where the denominator of 

Eq. (11) is zero. 
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what lower relative success rates in models with paths of interme-

diate length ( Fig. 5 ). We revisit this method later in Section 4 when

we extend the comparison problem to sums of distances. 

3.7. Self contraction of noise-minimizing SR function 

We encountered an interesting observation about c opt -

ambiguous cases in our experiments ( Fig. 4 ). In all these cases,

the SR function that correctly inferred that path 1 was longer

than path 2 was the one corresponding to coefficient c 
opt 
2 

. In

other words, if the two SR functions minimizing the distance

estimation noise for the two paths do not agree as to which

path is longer, then the SR function that minimizes the distance

estimation noise of the shorter path is the one that results in the

correct answer. This observation is a consequence of a property of

noise-minimizing SR functions, which we call self contraction : 

Lemma 1 (self contraction) . Let ˆ λ1 , ˆ μ1 , ̂
 λ2 , ˆ μ2 be estimates of the

four parameters in a two-path model, and let c 
opt 
1 

and c 
opt 
2 

be the two

noise-minimizing SR functions defined by Eq. (11) : c 
opt 
i 

= c opt ( ̂ λi , ˆ μi ) .

If c switch falls between these two coefficients ( c opt -ambiguous case),

then for every i ∈ {1, 2}, the SR function corresponding to c 
opt 
i 

in-

fers that path i is the shorter path among the two: d 
c 

opt 
i 

( ̂ λi , ˆ μi ) <

d 
c 

opt 
i 

( ̂ λ3 −i , ˆ μ3 −i ) . 

Note that this lemma implies that if path 1 is longer, then

c 
opt 
2 

will lead to correct inference in all c opt -ambiguous cases, as

we observed in our simulations. This self-contraction property fol-

lows from a basic property of the formula for the noise-minimizing

SR coefficient, which we confirmed by computing the values of

c opt (λ, μ) in the range [0, 1] 2 (see Fig. 6 ): 

Claim 1. Let c opt (λ, μ) denote the noise-minimizing SR coefficient

defined by Eq. ( 11 ). Then c opt is a monotonic increasing function of

λ and a monotonic decreasing function of μ. 

Proof of Lemma 1. (self contraction). For a given SR coefficient, c ,

denote by �(c) = d c ( ̂ λ1 , ˆ μ1 ) − d c ( ̂ λ2 , ˆ μ2 ) the difference between

the lengths of the two paths according to c (see Eq. (12) ). We need

to prove that �(c 
opt 
2 

) > 0 and �(c 
opt 
1 

) < 0 . Because we assume a

c opt -ambiguous case, then one of these differences is positive and

the other is negative. We can thus prove that �(c 
opt 
2 

) > 0 by show-

ing that �(c 
opt 
2 

) > �(c 
opt 
1 

) . Recall that in ambiguous cases, { ̂ λ1 , ̂
 λ2 }

and { ̂  μ , ˆ μ } are ordered differently. If we assume ˆ λ < ̂

 λ , then
1 2 1 2 
e have ˆ μ1 > ˆ μ2 , implying through Claim 1 that c 
opt 
1 

< c 
opt 
2 

, and

hrough Eq. (12) that �( c ) is a monotonic increasing function in c .

hus, �(c 
opt 
1 

) < �(c 
opt 
2 

) , as required. If, on the other hand, ˆ λ1 >

ˆ 
2 , then ˆ μ1 < ˆ μ2 , implying through Claim 1 that c 

opt 
2 

< c 
opt 
1 

and

hrough Eq. (12) that �( c ) is a monotonic decreasing function . Thus

e still have �(c 
opt 
1 

) < �(c 
opt 
2 

) , as required. �

The self contraction property is nicely demonstrated in Fig. 7 ,

hich depicts data simulated under models with identical paths.

e generated data for a series of homogeneous two-path models

ith t 1 = t 2 and κ = 2 and measured the inference bias of different

ethods. As expected, all inference methods that are solely based

n the observed alignments (Kimura’s formula, 3ML, and Max - c opt )

how no bias and infer both paths as being longer roughly the

ame number of times. However, a method based on the SR func-

ion that minimizes the distance estimation noise of path 2 shows

ignificant inference bias toward path 1. 

In principle, we would like to use this bias caused by the self-

ontraction property to improve inference accuracy. Note that by

sing the SR function that minimizes the noise for the shorter of

he two paths we could obtain success rates that are even higher

han those of the 3ML method (upper dashed line in Fig. 4 ). How-

ver, because this requires knowing which path is the shorter one,

hen this property does not end up having practical implications

hen comparing two paths. Nonetheless, it may have interesting

mplications in the context of phylogenetic inference (see Discus-

ion section). 

. Resolving quartets and comparing sums of path lengths 

.1. Quartet reconstruction 

In this section we examine ways of extending methods pre-

ented in Section 3 for the problem of comparing two paths to

he problem of phylogenetic reconstruction. We focus on quartet

rees to demonstrate the usefulness of these methods and outline

otential challenges. A quartet is a phylogenetic tree representing

he evolution of four taxa (associated with leaves of the tree). In its

nrooted form, a quartet has four external edges (edges that touch

eaves) and a single internal edge ( Fig. 8 ). The objective of phylo-

enetic reconstruction in the case of a quartet is to infer the topol-

gy of the tree, which is typically represented by the split that the

nternal edge induces on the leaves. For instance, split ( a, b | c, d )

eans that all four paths connecting taxa a, b with taxa c, d tra-

erse through the internal edge. 

The split of a quartet can be inferred quite simply by observing

he lengths of the six paths connecting all pairs of taxa. Denote by

 ( i, j ) the length of the path connecting taxa i and j . Since a path

ength is the sum of lengths of edges that make up that path, we

et for a quartet with split ( a, b | c, d ): 

(a, c) + d(b, d) = d(a, d) + d(b, c) > d(a, b) + d(c, d) . (14)

he difference between the first two sums in Eq. (14) and the

hird one equals twice the length of the internal edge. Hence, the

uartet split can be inferred by examining the three sums of path

engths specified in Eq. (14) , and choosing the split correspond-

ng to the smallest sum (the two paths considered in the sum do

ot contain the internal edge). This inference method is called the

our point method (FPM; see Buneman, 1971 and Sattath and Tver-

ky, 1977 ), and it is the cornerstone of distance-based phylogenetic

econstruction methods. 

Inference of quartets using the FPM depends on our ability to

ccurately compare sums of distances, thus the approaches we in-

roduced in Section 3 to compare path lengths may be useful in

his setting as well. However, there are some potential compli-

ations that stem from differences between the two-path prob-
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Fig. 7. Distinguishing between two identical paths in homogeneous two-path models with κ = 2 and t 2 = t 1 . We considered three different inf erence methods (see legend) 

as well as a method that uses the SR function that minimizes the distance estimation noise of path 2 ( c opt 
2 

). For each method we measured the proportion of times in which 

it infers that path 1 is longer than path 2, which we expect to be 50%. Indeed, the three inference methods are all observed to be unbiased, but the method based on c opt 
2 

infers path 1 to be longer in as much as 60% of the data sets for models with long paths. This biased inference is a direct result of the self-contraction property ( Lemma 1 ). 

Results are based on 10 0,0 0 0 independent experiments run for each model using 500 bp long sequences. Standard errors for success ratio estimates are less than 0.16% (See 

Section 3.2 ). 

Fig. 8. A general diagram of an unrooted quartet. The quartet has four external 

edges and a single internal edge. The length of each edge corresponds to the evolu- 

tionary distance between the two nodes it touches. The split induced by this quartet 

is designated by ( a, b | c, d ). 
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em and quartet reconstruction: (1) the FPM compares sums of

engths and not the lengths directly, (2) the inference task has

hree possible outcomes and not two, and (3) the six paths con-

idered share common edges and are thus not independent as as-

umed in the two-path model. In the remainder of this section we

uggest extensions of the adaptive distance methods presented in

ection 3 to quartet inference and we examine the impact of these

hree issues. 

.2. Ambiguity in quartet reconstruction 

Applying the FPM to data, we first have to obtain length esti-

ates for the six paths in Eq. (14) . This is done by estimating MLEs

or the K2P eigenvalues ˆ λi j , ˆ μi j for each of the six paths connecting

airs of taxa i, j , and applying an SR function to these estimates.

he additivity of SR functions (see Section 2.2 ) guarantees that the

ength of each path equals the sum of lengths of the edges that

ake up that path. Let us denote the 12 parameter estimates by

( ̂  �, ˆ M ) , and for a given SR coefficient c and a given pair of taxa { i,

 } ⊂ { a, b, c, d }, denote by d c (i, j) = d c ( ̂ λi j , ˆ μi j ) . The FPM is imple-

ented by computing the following 3-dimensional vector: 

 P Msums 
(
c; ˆ �, ˆ M 

)
= (d c (a, b) + d c (c, d) , d c (a, c) 

+ d c (b, d) , d c (a, d) + d c (b, c)) . (15) 

The choice of SR function influences the outcome of the FPM

y affecting the entries of the FPMsums vector. Recall that in the

wo-path problem, inference was based on determining the small-

st entry in a two-dimensional vector (d c ( ̂ λ1 , ˆ μ1 ) , d c ( ̂ λ2 , ˆ μ2 )) . We

bserved that entries in this two-dimensional vector were linear

unctions of the SR coefficient c , and ambiguous inference was a

esult of the intersection of these two lines at a positive SR coef-

cient c . In the quartet reconstruction problem, the three en-
switch 
ries of F P Msums (c; ˆ �, ˆ M ) are also linear functions of the SR co-

fficient c (e.g., d c (a, b) + d c (c, d) = − log ( ̂ λab 
ˆ λcd ) c − log ( ̂  μab ̂  μcd ) ).

mbiguous quartet inference is thus a result of intersection points

etween these lines that satisfy the following conditions ( Fig. 9 ):

1) the intersection is at a positive SR coefficient c switch > 0, and

2) none of the three lines passes below the intersection point

t c switch . Because you cannot have three intersection points that

atisfy the second condition, there are at most two switch points

or inference. Furthermore, inference is convex in the sense that if

R coefficients c 1 and c 2 result in the same inferred split, then so

oes any SR coefficient in the range between them. This implies

hat ambiguity in quartet inference is similar to ambiguity in the

wo-path problem described in Section 3 , with the main difference

eing that there are possibly three results for inference instead of

wo. 

.3. Adaptive quartet inference methods 

One of the main conclusions from examining the two-path

roblem was that it is very useful to restrict consideration to SR

oefficients which are likely to be less noisy. In the quartet model

e have six paths, each of which has its noise-minimizing SR coef-

cient c 
opt 
i, j 

= c opt ( ̂ λi j , ˆ μi j ) ( Eq. (11) ). The c opt -range is thus defined

y the minimal range containing these six noise-minimizing SR co-

fficients. If all six SR functions agree on the inferred split (the

mallest entry in the FPMsums vector is in the same index), then

his split is returned. If they disagree, then we use some criterion

o decide which SR function is more likely to be correct. 

A criterion that proved to be very useful in the two-path model

as the discrimination score based on Fisher’s linear discrimi-

ant ( Eq. (13) ). Extending this score to the quartet model requires

onsidering all different noise estimates in the denominator and

he relevant difference in the numerator (squared). In the two-

ath model, this was simply the difference between the two path

engths. Here, we consider the difference between the smallest en-

ry in the FPMsums vector and the second smallest entry. We de-

ote this difference by �FPMsums , and define the quartet discrim-

nation score as follows: 

iscScoreQuart 
(
c; ˆ �, ˆ M 

)
= 

(
�F P Msums 

(
c; ˆ �, ˆ M 

))2 

∑ 

{ i, j }⊂{ a,b,c,d } ˜ MSE (c ; ˆ λi j , ˆ μi j ) 
(16) 

The DiscScoreQuart method for inferring a quartet split is thus

iven by applying the FPM on distances obtained by using the SR

unction that maximizes the quartet discrimination score. In our

xperiments we consider this method and the adaptive method
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Fig. 9. The figure depicts the three linear functions corresponding to the three en- 

tries of F PMSums (c; ˆ �, ˆ M ) . The inferred split for a given SR function, d c , is given 

by the identity of the line which is below the other two in position c . There are at 

most two switch points between inferred splits. A switch point is an intersection 

between two of the three linear functions, and there are at most three intersection 

points between the three lines. Additionally, if there are three intersection points, 

then one of the lines (green in figure) is below the intersection point of the other 

two lines (blue and red in figure), implying that this intersection is not a switch 

point. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

Fig. 10. Symmetric homogeneous quartets are defined by three parameters: the 

shared ti-tv ratio, the total rate of the internal edge, and the total rate of all ex- 

ternal edges. The diameter of the quartet ( t long ) is defined by the total rate of the 

longest path in the quartet (between { a, b } and { c, d }). 
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that uses the largest among the six noise-minimizing SR coeffi-

cients ( Max - c opt - Quart ). 

4.4. Experiments on homogeneous quartets 

As with the two-path problem, we tested our methods on quar-

tets simulated under a homogeneous model, so that we could com-

pare our methods, which do not assume homogeneity, to an ap-

proach that explicitly makes use of the homogeneous assumption

to increase its accuracy. Homogeneous quartets have six free pa-

rameters: the total rates of the five edges and a shared ti-tv ra-

tio. However, obtaining MLEs of these six parameters together with

the quartet split is an extremely computationally intensive task. A

more practical and commonly used approach for this problem is

based on estimating a shared ti-tv ratio and total rates for the six

paths connecting pairs of taxa ( Felsenstein, 1989 ). As in the 3ML

method for the two-path problem, estimation is done by examin-

ing all six pairwise alignments, and assuming that the six paths

are independent (share no edges) but share a common ti-tv ra-

tio. The inferred split is then obtained by applying the FPM to the

MLEs of the six total rates. This method, which we term the 7ML

method, always produces a valid split, and it uses the homoge-

neous assumption to reduce the number of free parameters from

12 to 7. 

Our experiments used data simulated on a series of homo-

geneous quartets to compare adaptive distance-based methods,

which do not assume homogeneity, to the 7ML method as a point

of reference. We considered several archetypical quartet shapes

(see Sections 4.5 and 4.6 below). As in Section 3 , for each quar-

tet we ran 10 0,0 0 0 simulations of the substitution process along

the quartet using sequences of length n = 500 bp, and followed the

same approach for handling cases with saturated paths. Accuracy

rates of different inference methods were recorded using the num-

ber of times that the correct split ( a, b | c, d ) is produced. As in our

previous simulations, the standard error of our accuracy estimates

are bounded from above by 0.16% (see Section 3.2 ). 

4.5. Symmetric quartets 

We start by examining symmetric quartets. Symmetric homo-

geneous quartets have identical external edges, and are thus de-

fined by three parameters: the shared ti-tv ratio, the total rate of

the internal edge, and the total rate of all external edges ( Fig. 10 ).

In symmetric quartets we have only two types of paths: paths

traversing the internal edge (long paths), and paths not traversing

the internal edge (short paths). The four long paths have identical

substitution parameters (total rate t long ) and the two short paths

are identical as well (total rate t short ). Thus in a way, quartet in-

ference becomes a problem of identifying which entry of the FPM-

sums vector is associated with the two short paths, making infer-

ence in symmetric quartets very similar to inference in a two-path

model. 

We simulated data for a series of symmetric quartets with ti-

tv ratio of κ = 2 , and 

t short / t long 
= 0 . 9 , and compared the inference

success rates of the adaptive distance-based methods to the suc-

cess rates of the 7ML method and the two standard distance-based

methods (based on Kimura’s original formula and the transversion

only formula). As expected, the two adaptive methods, DiscScore-

Quart and Max - c opt - Quart , outperformed the standard distance-

based methods, and were as accurate as the 7ML method ( Fig. 11 ).

This is interesting, because in the two-path problem, the discrimi-

nation score was a considerably better criterion than the maximal

coefficient ( Fig. 5 ). 
.6. Asymmetric quartets 

Reconstruction of symmetric quartets is relatively similar to the

wo-path problem because symmetric quartets have only two dis-

inct types of inter-taxon paths and the two short paths contribute

o the same sum in the FPM ( Eq. (14) ). We thus expect that break-

ng this symmetry will complicate the inference task. To examine

his, we considered quartets in which two of the external edges are

onger than the other two. Such asymmetric quartets have three

istinct types of edges: the internal edge (typically short), the two

ong external edges (which are identical), and the two short ex-

ernal edges (also identical). Together with the shared ti-tv ratio,

uch quartets are defined by four free parameters. The shape of

he quartet also depends on whether the identical external edges

re on different sides or on the same side of the internal edge. The

ormer type of quartets is associated with the so-called “Felsen-

tein” zone, which was used to show that the maximum parsi-

ony criterion for phylogenetic inference is statistically inconsis-

ent ( Felsenstein, 1978 ) and also associated with the phenomenon

f long-branch attraction ( Bergsten, 2005 ). The latter type is as-

ociated with the so-called “Farris” zone, where maximum parsi-

ony was shown to outperform maximum likelihood as a criterion

or phylogenetic inference ( Siddall, 1998 ). We thus refer to these



Y. Damti et al. / Journal of Theoretical Biology 440 (2018) 88–99 97 

Fig. 11. Experiments on data simulated under symmetric homogeneous K2P quartets with κ = 2 , and t short / t long 
= 0 . 9 . Inference accuracy was measured for the adaptive 

distance-based methods ( DiscScoreQuart and Max - c opt - Quart) and compared to the accuracy of standard distance-based methods (Kimura’s formula and the transversion 

only formula) and the 7ML method. Both adaptive methods are considerably more accurate than the standard distance-based methods. As in the two-path problem, the 

method based on the discrimination score ( DiscScoreQuart ) has practically the same accuracy as the 7ML method, but the method based on the largest noise-minimizing SR 

coefficient ( Max - c opt - Quart) is relatively better compared to its counterpart in the two-path problem (see Fig. 5 ). Standard errors for success ratio estimates are less than 

0.16% (See Section 4.4 ). 

Fig. 12. Two archetypes of asymmetric quartets. In both types, there are two iden- 

tical long external edges and two identical short external edges. These quartets are 

thus defined by four free parameters: the shared ti-tv ratio, the total rates of the 

long external edges, short external edges, and the total rate of the internal edge. In 

Felsenstein quartets (a) , the identical external edges are on different sides of the in- 

ternal edge, and in Farris quartets (b) , the identical external edges are on the same 

side. 
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wo archetypes of quartets simply as Felsenstein quartets ( Fig. 12 (a))

nd Farris quartets ( Fig. 12 (b)). 

We conducted experiments on a series of Felsenstein and Far-

is quartets. We parameterized these quartets according to the to-

al rate of the long path t long containing both long external edges

and the internal edge for Felsenstein quartets). The ratio between

he total rate of the internal edge and t long was set to 1:5, and so

as the ratio between the total rates of the short and long exter-

al edges. As with symmetric quartets, the adaptive distance-based

ethods are generally better than the standard ones in both types

f quartets, but the overall patterns of performance are somewhat

ore complex ( Fig. 13 ). For instance, both adaptive methods ap-

ear to have relatively better performance in Farris quartets than

n Felsenstein quartets. This preference appears to be stronger for

he DiscScoreQuart method than for Max - c opt - Quart . 

.7. Topological bias in quartet reconstruction 

Our experiments on asymmetric quartets indicate an inherent

opological bias in quartet reconstruction. Such bias is often at-

ributed to the phenomenon of “long branch attraction”, and dif-

erent phylogenetic inference methods have been shown to have

arying degrees of sensitivity to this phenomenon ( Siddall, 1998 ).

o examine and quantify this bias more carefully, we conducted a

eries of additional simulation experiments on quartets with no in-

ernal edge. These are quartets that have a star topology with only

our edges, all of which are external and connected to a single in-

ernal node. Two of the edges are short (identical) and the other

wo are five times longer ( Fig. 14 (a)). Note that one of the six inter-
axon paths in the resulting quartet is short (two short edges), one

ath is long (two long edges), and the other four paths are of in-

ermediate length (short edge and long edge). In the FPMsums vec-

or, one entry corresponds to the sum of the short and long paths,

nd the other two sums correspond to the sums of two intermedi-

te paths. All three sums are identical when considering the true

istances, because there is no internal edge. Therefore, given noisy

istance estimates, the FPM is expected to return each of the three

opologies with equal probability. 

We applied different quartet inference methods to these quar-

ets and recorded the number of times that the split ( a, b | c, d )

as returned (the split separating the two long edges from the

wo short edges). We see that all methods have a bias in favor of

his split, and that the bias increases with the scale of the quar-

et. The two standard distance-based methods (Kimura’s formula

nd the transverion count) have relatively weak bias, remaining

elow 12% for all scales. As expected, the 7ML method also has

ery weak bias, only slightly stronger than that observed for the

ransversion count distance-based method. The adaptive distance-

ased methods both have somewhat higher degrees of bias, with

ax - c opt - Quart being somewhat less biased. These results reflect

he differences we observed between the performance of the dif-

erent methods in Felsenstein and Farris quartets: methods with a

tronger bias in Fig. 14 show larger differences in their accuracy

ates between Fig. 13 (a) and (b). 

The fact that even standard distance-based methods have some

opological bias indicates that this bias is partly due to statistical

oise in the distance estimates. This inherent bias makes it more

hallenging to choose reliable SR functions for inference, because

n SR function might appear to confidently infer a quartet split,

ut this confidence could be a result of biased estimation. Indeed,

e see that our adaptive methods are more sensitive to this topo-

ogical bias. 

. Discussion 

Accurate distance-based phylogenetic reconstruction depends 

n our ability to compare between sums or linear combinations of

nter-taxon distances. In this study we examined in detail the ba-

ic challenge of comparing the lengths of two independent paths

sing the framework of adaptive SR functions. The potential of this

pproach stems from three basic insights: (1) Different SR func-

ions may result in different inference of the identity of the longer

ath, (2) different SR functions have different levels of distance es-

imation noise, and (3) we can estimate the expected noise from

equence data. Using these insights, we developed a simple and ef-



98 Y. Damti et al. / Journal of Theoretical Biology 440 (2018) 88–99 

Fig. 13. Experiments on data simulated under asymmetric homogeneous K2P quartets with κ = 2 , and where the ratio between the total rate of the internal edge and the 

total rate of the long path ( t long ) was set to 1:5, and so was the ratio between the total rates of the short and long external edges. Data were simulated for Felsenstein 

quartets (a) and Farris quartets (b). Inference accuracy was measured for the adaptive distance-based methods ( DiscScoreQuart and Max - c opt - Quart) and compared to the 

accuracy of standard distance-based methods (Kimura’s formula and the transversion only formula) and the 7ML method. Differences between performance on symmetric 

and asymmetric quartets can be attributed to differences in topological bias (see Fig. 14 ). Standard errors for success ratio estimates are less than 0.16% (See Section 4.4 ). 

Fig. 14. Experiments on data simulated under asymmetric homogeneous K2P quartets, κ = 2 , with no internal edge, two short external edges and two long external edges 

(a). (b) Inference rates of the ( a, b | c, d ) split were measured for the adaptive distance-based methods ( DiscScoreQuart and Max - c opt - Quart) and compared to the rates of 

standard distance-based methods (Kimura’s formula and the transversion only formula) and the 7ML method. Because these quartets do not have an internal edge, we 

expect the inference ratio to be exactly 1 
3 

. The difference between the inference ratio and 33.3% (horizontal dashed line) measures the bias toward the ( a, b | c, d ) split. All 

method have some bias, with the adaptive distance-based methods showing the highest levels of bias. Standard errors for inference ratio estimates are less than 0.16% (See 

Section 4.4 ). 
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ficient method to select an SR function for a given comparison. Our

proposed method is based on noise-minimizing SR functions intro-

duced by Gronau et al. (2009) and Fisher’s linear discriminant. This

method is shown to perform as accurately as the ML-based infer-

ence for homogeneous models, but unlike ML, our method is not

restricted just to homogeneous models and it involves only a few

straightforward calculations without the need for numerical opti-

mization. As such, it provides a very appealing alternative to infer-

ence based on ML distances, which is the most common practice

today. 

In the second part of our study, we examined extensions of this

basic method to phylogenetic reconstruction, focusing on the fun-

damental task of quartet inference. Our analysis and experiments

indicate some parallels between the two-path problem and the

quartet inference problem, but they also highlight some important

differences. One basic difference is the fact that paths in a phylo-

genetic tree are typically overlapping, and thus not independent as

assumed in the two-path model. To evaluate the potential influ-

ence of dependence, we re-simulated data for our quartet experi-

ments in Figs. 11 and 13 with independent paths (Supplementary

Figure S2). These experiments indicate that dependence overall im-

proves the accuracy of all methods. This is because some of the

stochastic noise is correlated between overlapping paths, and this

correlated noise does not necessarily interfere with comparison be-
ween path lengths. Importantly, the influence of dependence on

ur adaptive methods appears to be similar to its influence on the

L-based method, so we conclude that assuming independence

oes not constitute a significant modeling problem. 

Another difference between the two path problem and phyloge-

etic inference is in the number of values involved in each compar-

son. The two path problem simply compares two path lengths, but

hylogenetic reconstruction algorithms involve steps that typically

ompare many linear combinations of distances. For instance, the

our-point method for quartet resconstruction involves a compar-

son of three distance-sums. The larger number of compared val-

es could potentially lead to a more complicated structure of am-

iguity across different SR functions. However, in Section 4.2 we

howed that comparing sums of distances results in a simple con-

ex structure in which the number of switch points is guaranteed

o be smaller than the number of compared sums. This result ex-

ends beyond sums to general linear combinations of distances,

mplying that the complexity of comparing linear combinations is

trictly bounded by the number of values considered. In practice,

e expect that there will be ambiguity only between a few sim-

lar values. Thus, the number of compared linear combinations is

ot expected to constitute a significant bottleneck in the inference

ask. 
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The main complication we observed in our quartet inference

xperiments is that of topological bias in the case of asymmetric

uartets. Note that in the two-path problem the tough inference

ases involve pairs of paths of similar length. This means that the

wo estimates being compared have similar statistical noise and we

an choose an SR function that reduces noise in both estimates.

 similar observation can be made for symmetric quartets. Things

et more complicated when we introduce asymmetry. Asymmetric

uartets can be tough to infer (short internal edge) even when the

nderlying paths have very different lengths. This is demonstrated

ell in the Felsenstein and Farris quartets, which combine short,

ntermediate and long paths. In these cases, we cannot choose

n SR function that will reduced the expected noise for all dis-

ances, and having different levels of noise for the three sums in

he FPMsums vector could contribute to the topological bias shown

n Fig. 14 . 

What appears to make inference difficult in these asymmet-

ic quartets is the fact that we are comparing a pair of balanced

aths (of similar length) with a pair of imbalanced paths (one

uch longer than the other). All methods appear to preferen-

ially “shorten” the unbalanced pair compared to the balanced pair.

ne of the main challenges of realizing the potential of adap-

ive distance-based methods in this context is to understand the

ource of this bias. The self contraction property introduced in

ection 3.7 may contribute to bias, since it leads to preferential

hortening of certain paths relative to others. Further study of this

ill lead to development of adaptive methods that better deal with

tructural bias, and such methods are likely to realize the full po-

ential of the adaptive distance approach by being more statisti-

ally robust than standard distance-based methods and much more

fficient than ML-based inference. 
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