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Abstract

We study the problem of caching query result pages in Web search engines. Popular
search engines receive millions of queries per day, and for each query, return a result
page to the user who submitted the query. The user may request additional result
pages for the same query, submit a new query, or quit searching altogether. An
efficient scheme for caching query result pages may enable search engines to lower
their response time and reduce their hardware requirements.

This work studies query result caching within the framework of the competitive
analysis of algorithms. We define a discrete time stochastic model for the manner
in which queries are submitted to search engines by multiple user sessions. We then
present an adaptation of a known online paging scheme to this model. The expected
number of cache misses of the resulting algorithm is no greater than 4 times the
expected number of misses that any online caching algorithm will experience under
our specific model of query generation.

1 Introduction

1.1 The need and promise of caching search results

Popular search engines receive millions of queries per day on any and every
walk of life. While these queries are submitted by millions of unrelated users,
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studies have shown that a small set of popular queries accounts for a significant
fraction of the query stream. These statistical properties of the query stream
seem to call for the caching of search results. Indeed, such caching was noted
in Brin and Page’s description of the prototype of the search engine Google?
as an important optimization technique of search engines [1]. An engine that
answers many queries from a cache instead of processing them through its
index, can lower its response time and reduce its hardware requirements.

Several works report on experiments with caching query results. In [2], Markatos
used a log containing a million queries submitted to the Excite ? search engine
to drive simulations of query result caches. He used four replacement policies
- LRU (Least Recently Used) and three variations, demonstrating that warm,
large caches of search results can attain hit ratios of close to 30%. Saraiva et
al. [3] proposed a two-level caching scheme that combines caching query re-
sults and inverted lists. The replacement strategy they adopted for the query
result cache was LRU. They experimented with logged query streams, test-
ing their approach against a system with no caches. Overall, their combined
caching strategy increased the throughput of the system by a factor of three,
while preserving the response time per query.

In addition to storing results of submitted queries in the cache, search engines
may also prefetch results that they predict to be requested shortly. An immedi-
ate example is prefetching the second page of results whenever a new query is
submitted by a user. In [4], a log containing over seven million queries submit-
ted to the search engine AltaVista ® was used to test integrated schemes for
the caching and prefetching of search results. Hit ratios exceeding 50% were
achieved. Prefetching of results proved to be of major importance, doubling
the hit ratios of small caches and increasing those of larger caches by more
than 50%. The prefetching of search results was also examined in [5], albeit
from a different angle: the objective was to minimize the computational cost
of serving search sessions rather than to maximize the hit ratio of the results
cache.

1.2 Online paging and caching algorithms

Paging is a classic problem that has been studied extensively in the context
of competitive analysis of algorithms. The classic formulation of the problem
defines a system with two levels of memory: a fast memory (a cache) of size k
pages, and a slow memory of N > k pages that represents the entire address
space. A paging algorithm (cache replacement policy) ALG is presented with
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a sequence of requests for memory pages, and must service the requests online
by having each requested page in the cache prior to seeing (and serving) the
following requests. When a request for an uncached page arrives, a page fault
(or cache miss) occurs, and ALG must evict a cached page in order to vacate
space for serving the request. Paging algorithms differ from each other by the
policy they apply when choosing which cached page to evict upon a fault. The
cost of serving a request sequence o with a (deterministic) paging algorithm
ALG, denoted by ALG(0), is the number of page faults that ALG encounters
while serving o.

The difficulty of paging stems from the online nature of the problem. Had the
entire sequence of requests been known in advance, an optimal policy is to
always evict the cached page whose next request is the farthest away. This
optimal offline algorithm, proposed by Belady [6], will be denoted by OPT.
Following Sleator and Tarjan [7], paging algorithms are commonly evaluated
using competitive analysis. A paging algorithm ALG is said to be c-competitive
if there exists a constant «, such that

Vo, ALG(0) <c-OPT(0)+ .

Sleator and Tarjan showed that the competitive ratio of any deterministic on-
line paging algorithm is at least the cache size, k. They also showed that the
FIFO and LRU (least recently used) paging policies both achieve a compet-
itive ratio of k£, and so attain the optimal competitive ratio for the problem.
However, LRU usually outperforms FIFO in many practical settings [8]. This
stems from the fact that the request streams that are generated by many
real-life applications exhibit a large degree of locality of reference: after a page
p is requested, p and a small set of related pages are likely to be requested
in the near future. In order to model reality more closely, many researchers
have examined the paging problem for non-arbitrary request sequences that
exhibit some degree of locality of reference. Another expansion of the clas-
sic formulation that has attracted researchers deals with multi-user settings,
where the system is presented with several request streams that are generated
concurrently. These efforts are detailed in Section 3. See [9] for a comprehen-
sive study of competitive analysis and online algorithms, and [10] for a survey
of the paging problem.

1.3  This work

This work examines the caching of search results within the theoretical frame-
work of competitive analysis. We model search engine query streams that are
created by concurrent sessions of multiple clients. We then adapt a known



online paging algorithm to this setting in a manner that preserves its compet-
itiveness.

We start in Section 2 by surveying some statistical properties that have been
observed in search engine query streams. Section 3 reviews online paging algo-
rithms which handle multiple request streams and streams that exhibit some
form of locality of reference. We recount in special detail the paging algorithm
of Lund et. al [11], that deals with request streams that are generated by a
distribution.

Section 4 presents a spectrum of theoretical models for the problem of caching
search result. We discuss several issues that are encountered when transform-
ing the complex reality of the problem into concrete, abstract models. Section 5
narrows the discussion to one concrete model, which is subsequently analyzed
by an adaptation of the algorithm of [11]. The analysis shows that the algo-
rithm is both efficient and competitive for that model. Concluding remarks
and suggestions for future research are brought in Section 6.

2 Locality of Reference in Search Engine Query Logs

Several studies have analyzed the manner in which users query search engines
and view result pages [2,4,12,13]. These reports shed light on the locality of
reference that is found in search engine query logs, such as the distribution of
query popularities, and the number of result pages that users view per search
S€sSion.

Search sessions start when users submit initial queries to search engines, by
typing some search phrase which describes their topic of interest. From the
user’s point of view, an engine answers each initial query with a linked set
of ranked result pages, typically with 10 results per page. All users browse
the first page of results, and some users scan additional result pages of the
list, usually in the natural order in which those pages are presented. A search
session implicitly terminates when the user decides not to browse additional
result pages on the topic which initiated the session. From the engines’ point
of view, users that request additional result pages, beyond the first page of re-
sults, are actually submitting follow-up queries. Such queries retain the search
phrase of the original query, and specify the number of result page that is
requested. Throughout the remainder of this paper, we will use the term topic
to refer to a search phrase, while the term query will refer to a request for a
specific result page of a specific topic.



Topic and query popularities

The number of distinct information needs of users is very large. Silverstein
et al. [13] analyzed a log of a billion queries submitted to AltaVista over
a period of six weeks, and reported that almost two thirds of the queries
appeared only once in the log. However, popular queries were repeated many
times: the 25 most popular queries found in their log accounted for 1.5% of the
total submissions. The findings of Markatos [2], who analyzed a log of about
a million queries submitted to Excite, are consistent with the later figure -
the 25 most popular queries in the Excite log accounted for 1.23% of the
submissions. Markatos also found that many successive submissions of queries
on the same topic appear in close proximity (are separated by a small number
of other queries in the query log).

In [4], a log of over 7 million queries submitted to AltaVista was examined.
67% of all topics were only requested once, with the corresponding figure for
queries being 48%. However, the 50 most popular queries accounted for almost
2% of the log. In general, both topic and query popularities were found to obey
power-law distributions: the number of topics[queries| that were requested n
times in the log was proportional to n=¢ (¢ was about 2.8 for queries, 2.4 for
topics) 4.

Structure of search sessions

The studies cited above report that users browse through very few result
pages during search sessions, and that the “deeper” the result page, the less
users view it. The exact distributions are different in each study, but all four
reports agree that at least 58% of the users view only the first page (the top-10
results), at least 15% of the users view more than one page of results, and that
no more than 12% of users browse through more than 3 result pages. Although
not many users venture deeply into the set of result pages, statistical data in
the order of 1072 are powerful predictors for the purpose of caching result

pages.

3 Beyond the Classic Model of Paging

We discussed the classic formulation of the paging problem and its competitive
ratio in the Introduction. This section surveys additional results on variations
of the problem.

4 The number of extremely popular topics and queries exceeded the value predicted
by the power law distributions.



We first note that randomized paging algorithms can achieve a better com-
petitive ratio for the classic problem. A randomized paging algorithm ALG is
said to have a competitive ratio of ¢ if, for every request stream o,

E[ALG(0)] < ¢-OPT(0)+ «

where the expectancy is with respect to the random choices of ALG. Fiat
et al. [14] showed that all randomized paging algorithms have a competitive
ratio of at least Hj, (the £’th harmonic number), while McGeoch and Sleator
presented an algorithm that attains the lower bound [15].

Modeling locality of reference

The access graph model was proposed by Borodin et al. [16] to capture the
locality of reference in streams of page requests. Given a graph GG, whose nodes
correspond to the possible NV pages of memory, request sequences in the access
graph model describe paths in G. Every graph GG and paging algorithm A im-
plicitly define a competitive ratio c4(G). Given G, let ¢(G)[c?(G)] denote the
infimum, over all deterministic[randomized] paging algorithms of c4(G). Thus,
c(@)[cf(G)] is the best competitive ratio that any deterministic[randomized]
algorithm can hope to achieve on G. Borodin et al. presented a universal
deterministic algorithm that was later shown to be O(c(G))-competitive on
any undirected access graph G. Fiat and Karlin presented the randomized
counterpart in [8].

Locality of reference may also be modeled by request sequences that are gen-
erated by distributions. Karlin et al. [17] suggested a model based on Markov
chains, in which request sequences correspond to random walks on the chain.
Each state of the chain corresponds to one of the N pages of memory, and
the transition probability from state ¢ to state j corresponds to the probabil-
ity of requesting page j immediately after requesting page 7. Given a Markov
chain M, the goal is to define an algorithm whose expected cost on randomly
generated request sequences is minimal. The authors use results from Markov
decision theory to deduce that, for every chain M, there exists an optimal
online paging policy. Furthermore, this policy is deterministic, time-invariant
and memoryless, meaning that eviction decisions are determined by the £
cached pages and requested page at each step. However, computing the op-
timal policy requires solving a linear program in N (JZ variables, which, in
general, is exponential in k. They then present an algorithm whose expected
cost (for any Markov chain M) is no more than ¢ x f(M), where ¢ is a constant
and f(M) is the expected cost of the optimal policy on sequences generated
by M. This algorithm requires a preprocessing step which is polynomial in
N, and further performs O(k) calculations per fault. Lund et al. [11] consid-
ered request sequences that are generated by a broader set of distributions.



These distributions, and a suitable uniform randomized paging algorithm, are
covered in Section 3.1.

Multiple, interleaving request streams

In many realistic settings, and certainly in the context of search engines, paging
and caching systems are faced with multiple, independent streams of requests.
Alborzi et al. [18] defined and analyzed a model where the paging algorithm is
faced with requests originating from u clients. At every moment, the algorithm
sees the next pending request of each client; in other words, it sees a “front” of
u pending requests. The algorithm may serve any of those u requests at each
step. This model did not address locality of reference in the requests generated
by each client. Fiat and Karlin [8] addressed multiple request streams in the
access graph model by considering u pointers, each pointing to a node of
the graph. A request is generated by moving any of the pointers from its
node to a neighboring node. They presented a universal deterministic paging
algorithm for undirected access graphs with u pointers, and proved that its
competitive ratio is O(c,(G)), where ¢, (G) is the straightforward adaptation of
¢(Q) (defined in the earlier discussion of the basic access graph model) to the u-
pointer scenario. Multiple, interleaving request streams can also be integrated
into the Markov paging model. When u streams are generated independently
by the same chain, and when each request of the combined stream is chosen
independently and uniformly from one of the streams, the resulting behavior
can be described by a Markov chain with (“HJ _1) states.

Lookahead, and reordering of requests

High-volume Web servers such as search engines receive requests from many
users concurrently. Unlike requests that are generated by a serial program,
where request ¢ + 1 cannot be issued before request i is served, requests of
different clients to Web servers arrive independently of each other. This enables
the caching algorithm to examine some future portion of the request sequence
while replacing entries, and even to serve requests not necessarily in FIFO
order (provided that the delay experienced by every request is sufficiently
small). As noted above, in [18] the paging algorithm has knowledge of the
pending request of each client. Breslauer [19] defined the notion of paging
algorithms with ¢-natural lookahead. Such algorithms may see a prefix of future
requests until £ + 1 uncached page requests are encountered (whenever they
serve an uncached page, they see future requests that extend until ¢ other
uncached pages have appeared). He presented an optimal deterministic paging
algorithm for this variant, whose competitive ratio is % Albers [20] suggested
a different lookahead model, called strong lookahead. Whenever an algorithm
with a strong lookahead of ¢ serves an uncached page p, it sees future requests



that extend until ¢ distinct pages (that are also different from p) appear.
Note that the lookahead is independent of the algorithm in this model. For
¢ < k—2, Albers presented a deterministic algorithm that is & — ¢ competitive,
and proved it to be optimal. She then presented a nearly-optimal algorithm,
whose competitive ratio is k — ¢ + 1, which does not exploit the full power
of the allowed lookahead; rather, it serves the requests in non-overlapping
blocks, where each block (except, perhaps, the last) contains exactly ¢ + 1
distinct requests. The algorithm has the property that after serving the last
request of each block, all of that block’s requests are cached. Thus, the internal
order of the requests in each block is of no consequence, and the algorithm
may be thought of as serving an entire block of requests “at once”. Recently,
Feder et al. [21] applied competitive analysis to paging algorithms that allow
reordering of requests, and may enjoy additional lookahead capabilities. Note
that reordering itself implicitly involves lookahead. Their results cover both
deterministic and randomized algorithms.

3.1 Paging against a distribution

This section recounts the definitions and algorithm presented in [11] for paging
against a distribution. The algorithm assumes that a stream of page requests
is generated by some distribution D. The only assumption about D is that
whenever a page must be evicted from fast memory, it is possible to compute
for every two pages a and b in fast memory, the probability P(a,b) that the
next request for a occurs before the next request for b. Since the algorithm
handles requests sequentially, P(a,b) + P(b,a) = 1 for all a # b.

Let C denote the set of pages in fast memory when an uncached page is
requested (and a page in C must be evicted). The above probabilities define a
weighted tournament on C.

Definition 1 A weighted tournament is a set C and a function P :C x C —
0, 1] so that for every two distinct elements a,b € C, P(a,a) =0 and P(a,b)+
P(b,a) =1.

After calculating the weighted tournament for the pages in C, the algorithm
proceeds to calculate a dominating distribution for the tournament.

Definition 2 A dominating distribution in a weighted tournament (C,P) is
a probability distribution Q on C such that for every a € C, the expectation

N | —

> P(b,a)Q(b) <

beC



Lund et al. prove in [11] that a dominating distribution exists for every
weighted tournament, and show how to calculate the distribution Q in a time
that is polynomial in |C| (the size of the fast memory). Their algorithm then
chooses a page according to Q, and evicts it from fast memory.

Let ON denote any online paging algorithm against the distribution D. The
algorithm described above is proved to be 4-competitive against ON: the
expected number of page faults of the proposed algorithm is at most 4 times
the expected number of faults of ON. In Section 5.4 we bring a modification
of the algorithm and its analysis, adapted to our needs.

4 From the Practical Problem to a Theoretic Model

The problem of caching query result pages is a natural problem that arises
when designing a large scale search engine that is expected to accommodate
millions of queries per day. We now present some of the issues that must be
tackled when modeling this problem. We begin by formalizing the notions of
queries and topics, introduced in Section 2: a query will refer to an ordered
pair (t, k) where t is the topic of the query (the search phrase that initiated
the session), and k& > 1 is the number of result page requested. For example,
a (t,2) query will denote the second page of results (which typically contains
results 11 — 20) for the topic ¢.

Structure of search sessions As discussed in Section 2, a search session
begins when a user issues an initial (¢, 1) query. The user then browses several
result pages, usually in the natural order of the pages. Indeed, it has been
observed that the percentage of users that view result page (¢, k) diminishes as
k grows [13,12,4]. Search engines, however, allow users to browse through result
pages in a less strict manner. Upon viewing a page (¢, k), all engines allow users
to submit a query for result page (¢,k+1)°. Whenever k& > 1, the engines also
allow users to retract and request page (t,k — 1). Some engines allow users to
request pages in a more random fashion, jumping quite arbitrarily from one
result page to another.

One simple model of search sessions, which will be adopted in Section 5.1,
is the forward viewing model: the series of result pages of every topic t € T
form the states of a Markov chain. A user viewing result page (¢, k) will either
proceed to view (¢, k + 1) with a certain predetermined probability, or will
quit viewing result pages (with the remaining probability). This geometric
modeling of user behavior has also been applied in [4,5,22].

5 provided that the engine has more results to offer for the query



Activation and termination of search sessions In Section 3 we sur-
veyed previous work on paging in the presence of multiple, interleaving re-
quest sequences [18,8,17]. Those works have all assumed that the number of
interleaving sequences is constant and known to the algorithm. Search engines,
however, face an ever changing number of active search sessions. Users activate
sessions by submitting (¢, 1) queries at random. They then view some number
of result pages for topic ¢ at their leisure, and terminate the session (which
becomes inactive) once they are satisfied (or hopelessly dissatisfied) with the
results. While the engines can track the session activations (they receive the
(t,1) queries), the engines cannot know when users decide to terminate the
sessions. Thus, not only does the number of sessions generating requests vary
in a chaotic manner, the engines cannot even keep track of the number of
active sessions at each moment.

A model of session activation should decide the rate in which users will initiate
sessions, and the topics that the users will query on. Not all query topics are
equally popular, and thus it is reasonable that each topic should have its own
session activation rate. Furthermore, the model should decide whether the
topic-specific activation rates are stationary or dynamic: the popularity (or
lack thereof) of topic ¢ may be constant, but ¢ may be a trendy topic whose
popularity fluctuates with respect to current events or other temporal issues.

Session termination is governed by the modeling of the search session. How-
ever, since users do not “notify” the engine when terminating their sessions,
the engine should assume that sessions which have been inactive (did not gen-
erate queries) over long periods of time, have been terminated. Implicitly, this
requires some modeling of the timespan between successive query generations
in each session. Must active sessions generate a query once per time period?
Once in every window of queries? According to some probability distribution
of inter-generation times? A concrete model should resolve this.

Synchronization and ordering of user requests With many active ses-
sions generating queries concurrently, the model must consider the order in
which the various queries arrive to the system.

Pure online models will have queries arrive sequentially, and have the caching
algorithm serve each query prior to receiving the next one. There are a cou-
ple of natural alternatives for merging multiple request streams into a fully
ordered request sequence: the requests might be ordered arbitrarily, as if by
an adversary, or they may be ordered by some underlying stochastic process.
However, as noted in Section 3, internet servers that handle multiple, concur-
rent client sessions may have the privilege of serving requests not in the order
of their arrival, and may thus enjoy some lookahead capabilities. Specifically,
the model may allow for the arrival of queries in batches, where groups of
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queries are presented to the system simultaneously. Batched arrivals are par-
ticularly applicable when the model assumes discrete time steps, since many
sessions may generate queries at the same time unit 7 . When requests arrive
in batches, a natural requirement is that all pages requested in a batch must
reside simultaneously in the cache prior to the arrival of the next batch”.
Implicitly, treatment of batched arrivals involves aspects of both lookahead
and reordering of requests, since the system is allowed to see many unordered
requests at once. However, this luxury is partially offset by the requirement
that all the requests in a batch be cached prior to the arrival of the next batch.
This requirement is more stringent than in sequential paging settings, where
each request must only be cached momentarily upon its treatment.

Association of sessions with requests The discussion so far assumed
that upon receiving a request, the server can identify the session which gener-
ated the request. This assumption enables the server to keep track of the set of
active sessions and of the specific page that each session is currently viewing.
While the assumption is technologically sound in the context of search engines
(engines may provide each session with a session id, or use the cookie mecha-
nism to couple users with actions), it is also possible to consider the problem
of treating anonymous streams, where requests are not associated with the
generating sessions.

An interesting model that addresses many of these issues has been proposed
by Kraiss and Weikum [23]. Their model is based on continuous-time Markov
chains, whose states represent both the pages of the system and potential user
sessions. The model supports general transition patterns between states, and
can thus model arbitrary search session structures. It also allows for dynamic
session arrivals and departures. As the model is time-continuous, it implies
that the requests arrive sequentially, as governed by the stochastic process.

Kraiss and Weikum suggested a caching heuristic based on their model. Roughly
speaking, they proposed to prioritize cached pages according to the expected
number of requests that each page will have within a certain time horizon.
Their work did not involve competitive analysis; rather, they proceeded to
experimentally evaluate several flavors of that heuristic.

6 Batched-arrival models may limit each session to one query per batch, thus main-
taining a strict FIFO order between the requests of each session.

7 This requirement is similar to the property maintained in the block-based algo-
rithm of [20], see Section 3.
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5 A Theoretical Model with a Provably Competitive Algorithm

This section considers a concrete (theoretical) model for the manner in which
queries are presented to search engines. For this model we prove that the
result-page cache can be managed by a competitive online algorithm.

Section 5.1 explains the model of query generation. In Section 5.2, we show
how to efficiently compute, for a given time 7 and every two distinct pages
a, b, the probability P, (a,b) that the first post-7 request of page a will occur
no later than the first post-7 request of page b. Therefore, we can adapt the
online algorithm of [11] (see Section 3.1) and achieve a caching strategy whose
expected page fault rate is at most 4 times that of any online caching strategy.
Section 5.3 presents the adaptation of the algorithm, and Section 5.4 brings
its analysis.

5.1 The model

We propose a discrete time probabilistic model, in which anonymous queries
arrive in batches. The batch of queries arriving at time 7 will be denoted by
B.. B; is a multiset of queries, since certain queries may be submitted by more
than one search session. We thus denote by BY the set of distinct queries in
B.. The caching algorithm examines each batch of queries in full, and then
updates the cache. Let k£ be the size of the cache, and let C, denote the set
of cached result pages right before the arrival of B,. The requirement is that
just before the arrival of B, 1, all pages requested in B, are cached. Formally,

using the above notations, we require that BY C C, ;. Implicitly, this requires
that for all 7,|BY| < k.

B, is composed of follow-up queries submitted by users that are in the midst of
search sessions, and by initial queries submitted by newly activated sessions.
All sessions who contribute to B, will be called 7-active sessions. We first
expand on the activation of new sessions.

Let T denote the (possibly infinite) set of all query topics. New sessions are
activated at independent, topic-specific Poissonic rates as follows. With every
topic t € T', we associate a positive real number \;. The number of initiations
of t-sessions (requests of page (¢, 1)) in batch B, will be denoted by the random
variable U, , ~ Pois(\;).

The submission of follow-up queries is modeled using the forward-viewing
behavior. For simplicity, and as is often done in search engines, we limit the
number of result pages that users may browse per session to s. Thus, for each
t € T, users may request result pages (£,1),...,(¢,s). A user that requested
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(t,m),m < s at time 7, will follow-up and request (¢, m+1) at time 7+ 1 with
probability p, or terminate the session with probability 1 — p. Terminating
users will not notify the system of their decision, and it will be up to the
algorithm to keep track of the set of active sessions. The actions in different
sessions are independent of each other.

Note that this probabilistic model may generate batches of requests which
violate the restriction that |BY| < k. We assume that k is large enough so
that the probability of such events is sufficiently low. The rest of the discussion
addresses request sequences that respect the restriction.

Implications of the model

The model implies that each session contributes at most one query to each
batch, and that the paging algorithm, when serving B, sees the requests of all
T-active sessions. The latter is similar to the lookahead allowed in the model
of Alborzi et al. [18].

The identical (and independent) properties of different same-topic sessions
imply that the paging algorithm needs only to track the number of active
sessions that are viewing every result page. Since the model requires active
sessions to generate a follow-up query in every batch of their active life, the
system can track that number for each page at all times. Thus, the fact that
the queries in this model are anonymous does not hinder the paging algorithm
in any way. Furthermore, the memory overhead that is incured by tracking
these numbers is linear in k, the size of the cache. Recall that the model
requires all the queries of BY to be cached prior to time 7+ 1. As there are no
active sessions that are viewing pages other than those requested in BY, the
algorithm needs only to associate a natural number w, (¢, m) with each page
(t,m) € C 41, noting the number of requests for page (t,m) in B,. This is also
the number of sessions that may potentially request page (t,m + 1) during
BT+1'

5.2 Calculating P-(a,b) for all pairs of pages

This section shows that at any time 7 when the cache must be refreshed
(BY ¢ C,), it is possible to compute P,(a,b) for every two cached pages
a,b, in time which is polynomial in ks - log|B,|. The computation depends
solely on the contents of the cache at time 7, as C, implies the status of the
active sessions, while the model for the activation of new sessions is stationary.
Note that the sum P, (a,b) + P, (b, a) may exceed 1, since both pages may be
requested simultaneously (in the same future batch). Throughout this section,
let 7 denote the current time.

13



We first observe that for two independent geometric random variables X ~
G(p), Y ~G(q),

PriX <Y]=p(l-q)+ (1 —-p)(1—-qPr[X <Y]
and so

p(1—q) (1)

PriX <Y]=
p+q—pg

We now state two simple propositions regarding the probability p;(z), of a
result page x = (t,,n,) being requested in batch 7+ ¢ by at least one session.
Formally,

pilx) = Pr{z € BY,,
Proposition 1 Let x be the page (t.,n,). For alli > n,,

pi(z) =1~ e
where A = X\, is the Poissonic activation rate of new sessions on topic t,, and
p s the probability for proceeding to view the next result page in a session.

Proposition 1 follows from basic properties of Poisson processes [24]. The next
proposition is immediate.

Proposition 2 Let x be the page (ty,n,). For all 1 <i < ng,,

pz<x> — 1 _ (1 _pi)uf(tm,nx—i)
where u,(t,n) denotes the number of sessions that have requested page (t,n)
at time 7 (in batch B;).

Let a, b € C; be the pages (t,, n,) and (¢, np), respectively. Define the following
two events for all 7 > 0:

(1) Ef<P: When considering only requests of batches 7 + i and beyond, the
next request for page a precedes the next request for page b.

(2) E&=b When considering only requests of batches 7 + i and beyond, the
next request for page a and the next request for page b occur at the same

batch.
Note that calculating Pr[E?<?] will allow us to derive P, (a,b):

P.(a.b) = Pr(Ef= U Bi=)] = PriEf=) + PrlEi™) = 1 - PrlE}"] (2)
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The case where t, # ty

The activations of search sessions on different topics are independent of each
other. We rely on this independence in the following proposition, which presents
a closed-form expression for Pr[E®<’| where n = max {ng, ny}.

Proposition 3 Let = A, the activation rate of new sessions on topic t,.

Similarly, let 8 = A, - Forn > max {ng,np},

a<by _ pn(a)(1 —pn(D)) B (1-— e*‘)‘pn“l)efﬁp”b‘l
Pr(E)~"] = Pn(a) + pn(b) — pu(a)pn(b) S ST

Proof: Let n > max {n,,ny}. By Proposition 1, for all i > n, p;(a) = pn(a)
and p;(b) = pn(b). Let X[Y] be the smallest non-negative integer j for which
at least one session requests page a[b] at time n+ j. It is easy to see that X[Y]
is a geometric random variable with parameter p,(a)[p,(b)]. Therefore,

Pr[E*<*) = Pr(X <Y] .

Substituting the expressions of p,(a),p,(b) from Proposition 1 in Equation 1
yields the result. a

Having computed Pr[E2<%], we can proceed to recursively compute Pr[E¢<’]
by the following equation:

PriE=" =pi(a)[l = pi(0)] + [1 = pi(a)][l — pi(b)| PrlELT] (3)
=[1 = pi(®)] (pila) + [1 — pi(a)] Pr(ELT])
Propositions 1-3 and Equations 2-3 enable the calculation of P, (a,b) for any

pair of different-topic pages. The complexity of each such computation is
O(slog | B.).

The case where t, =t

Assume w.l.o.g. that n, > n,. The forward-viewing model implies that only
active sessions already at or beyond page b at time 7, may generate post-7
requests for page a without first generating post-7 requests for page b. There-
fore, if page a is not requested in (7 + 1), ..., (7 +n, — np), page b will surely

15



be requested prior to the next request of a. Denoting the difference n, — ny by
d, this argument yields that substituting

PrlEg) « 0, PrlEgSy] < 1

in the calculation described for different-topic pages (while leaving the values
of E2<% and E?<® for all i < d as described there) will enable the calculation
of P(a,b) and P(b,a).

Combining this with the discussion above, we conclude that calculating P, (a, b)
for all cached pairs can be achieved in O(k*slog |B,|).

5.3 The caching algorithm

Recall that C. is the set of cached result pages just before the arrival of batch
B,. Let {s1,...,5m} = BY \ C, be the set of cache misses (or faults) at time
7, which force the caching algorithm to evict m pages of C, \ BY. These pages
are chosen as follows:

(1) P.(a,b) is calculated for every two pages a,b € C, \ BY. These proba-
bilities are then normalized to form the set of probabilities P,(a,b) as
follows:

- P. a, b Pr(a, b)+73’-r (b,a)— a b
AT 7
0 a=">

Consider two distinct pages a # b. The normalization ensures that P, (a, b)+

P.(b,a) = 1. Furthermore, Equation 2 implies that P, (a,b) = P,(a,b) —

s Pr(Et="]. Thus, Pr{E{<"] < P (a,b) < P.(a,b).

(2) Fori=1,...,m:

(a) Calculate the dominating distribution (see Section 3.1) over the set
of pages that are candidates to be evicted from the cache (cached
pages that are not in BY), using the probabilities P, (-, -).

(b) Store s; while evicting a page chosen randomly according to the dom-
inating distribution.

As argued earlier in this section, step 1 can be achieved in O(k*slog|B,|).
Each iteration of step 2 involves preparing (and solving) a linear program
whose size is O(k?)[11]. The complexity of each iteration is thus polynomial
in k£, and since m < k, the caching algorithm requires a time polynomial in
kslog|B,| to handle the batch of requests B,. Thus, the amortized complexity
of handling each request is polynomial in ks.

16



5.4 Analysis of the algorithm

Let A denote the algorithm presented in Section 5.3, and let ON denote any
online algorithm for caching search engine result pages. The cache size in both
algorithms is k, and the analysis assumes that both A and ON start with the
same initial set of k& cached pages, C;. The following is an adaption of the
analysis of [11] to our needs.

Let D denote the set of all possible result pages. The analysis uses a charging
function ¢ : D — D U {nil}, that associates with each page d that A evicts,
a page c¢(d) that ON does not currently cache. The intuition behind these
charges is that with high probability, ON will have to reload ¢(d) no later
than A reloads d. We will thus charge the cache miss of A on d on the cache
miss of ON on ¢(d). Initially, ¢(d) = nil for all d € D.

Let {s1,82,...,8n} = BY \ C; be the pages that A must bring into its cache
following B,. Let dy,...,d,, € C, \ C,41 be the list of pages that A decides to

evict from its cache, where d; is the page evicted in the ¢’th iteration of step
2. Also, define C? = C,, and for 0 < i < m:

C AN\ {d,....dYUlst,. .. s} =[C\ {d,}] U s}

Observe that C" = Cr41.

Denote by ON the set of pages in ON'’s cache after serving B,. Note that
{s1,...,8m} CONI\C,. Also, |ONI| = |C!| = k. Thus,

L\ ONY| = [ONF\ ] (1)
The charging function maintains the following two invariants for all values of

7 and 7 and for all pages d,d":

Invariant IV1 If d € C. then ¢(d) = nil.
Invariant IV2 If ¢(d) = d’ and d' € C: \ ON/, then d € ON} \ CL.

Invariant [V2 and Equation 4 imply that whenever there is a page d € ON\Ct
for which ¢(d) = nil, there is also a page ¢ € C: \ ON which carries no charge
(i.e., there is no d’ for which ¢(d') = q).

Both invariants trivially hold when 7 = 0. For each 7 > 0, the charging
function is updated as follows. Initially, for every result page d,

e If d € BY (d was requested at time 7) then ¢(d) « nil.
o If ¢(d) #nil and d € ONF, then ¢(d) « d.
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Note that the operations above preserve invariants IV1 and V2.

Next, we update the charges of the m evicted pages. For all i = 1,...,m,
d; € Ci71) and so invariant IV1 implies that c(d;) = nil. Now, if d; ¢ ON
we set ¢(d;) « d;. Otherwise (i.e., d; € ONI\ Ci), ¢(d;) is set to an arbitrary
page ¢ € C° \ ON which carries no charge (as noted above, Invariant IV2
and Equation 4 imply that such a page ¢ must exist). We call this page as the
default charge of d;. It is easy to see that setting ¢(d;) in this manner preserves
both invariants.

Lemma 1 At any time 7 and for any page q, there is at most a single page
d # q such that c(d) = q.

Proof: An easy induction on 7, using the fact we set ¢(d) < ¢ for a page ¢ # d
only if ¢ carries no charge. O

Corollary 4 For any page q, at any point in time,

{deD : cld)=q} <2

and equality holds only if ¢ = ¢(q).

Lemma 2 Let d; be the i’th page that was evicted by A while serving B, and
let ¢ = c(d;) at that time. With probability > %, the first post-t request of q
will occur no later than the first post-t request of d;.

Proof: The Lemma trivially holds if ¢ = d;, so assume that this is not the
case. Thus, ¢ is the default charge of d;. Define V = Ci=1\ BY; by the method
of assigning charges, both ¢ and d; are in V. Let Q denote the dominating
distribution on the set V' by which d; was selected for eviction, and let P, (-, -)
be the probabilities of the weighted tournament that gave rise to Q. Then, by
the way d; is chosen, the first post-7 request of ¢ will occur no later than that
of d; with probability > ,c1 Q(d)P-(g, d). By the properties of the dominating
distribution,

=1 = Q<Q) - Z Q(d),ﬁ‘r(qa d)

deV\{q}

>1-Q(q)— > Qd)Pr(q,d)

deV\{q}
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=1-3 Qd)P:(g,d)

deVv

and so >4 Q(d)Pr(q,d) > % O

Let M(ALG) denote the number of cache misses of algorithm ALG in a
given time frame 1, ..., 7; (including the service of B, ).

Theorem 1 E[M(A)] < 4-E[M(ON)], where the expectation is taken over
both the random model of the requests and the random actions of A.

Proof: As in the proof of [11], we use the following indicator variables:

e x(7,d) is 1 iff A evicts page d at time 7.
o (7,d) is 1 iff A evicts page d at time 7, and ¢(d) is requested no later than
the first post-7 request of d (causing a cache miss of ON).

Then we have:

MA) =33 v(nd) (5)

T7=1deD

To estimate M (ON) we use two additional notations: Z, is the set of distinct
pages requested in By, ..., B, that were not in C;, and O, is the set of pages
that A has evicted at least once by time 7 and are not cached by A at time
7. Initially Zg = Oy = (). For 7 > 0, consider the changes in the contents of
these sets when a page s is brought into C, replacing an evicted page d: d is
always added to O,. If s has not been previously cached by A, it is added
to Z,; otherwise, it is removed from O,. In the former case the cardinalities
of both sets increase by one, and in the latter case both cardinalities remain
unchanged. We conclude that for all 7, |Z,| = |O,|.

Now, let 7 = 7, and O 2 O,. When a page q € Z is requested for the first
time, ¢ causes a cache miss to ON (in fact, also to A), but there is no page
d for which ¢(d) = ¢ (since ¢ has yet to be cached by A). Therefore, ON
has |Z| cache misses which are unaccounted for by the 7-variables. To count
the cache misses of ON which are accounted for by the ~-variables, observe
that whenever v(7,d) = 1, either (1) there is a post-7 request of d by time
7r, and hence there is also a post-7 request of ¢(d) (and a cache miss of ON)
by time 7y, or (2) page d is not cached at time 74, and so d € O. Since for
each page ¢ there are at most two pages d for which ¢(d) = ¢, the number
of cache misses of ON which are accounted for by the ~-variables is at least

2 (Z:le Saep Y(T,d) — ]O|) Summing ON’s cache misses of both types we
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have

l\)\r—t

M(ON) > 7]+ (Zzwd |0\) >

7=1deD

PRI

(The second inequality follows by the observation above that |Z| = |O].)

By lemma 2, for every page d and time 7,

Ely(r,d) [ x(r,d) =1] = ; = Ex(r,d)] < 2E[(,d)] (7)

Combining equations 5, 6 and 7, we have

EMA) =3 3 x(rd)] =3 3 Elx(r.d

T=1deD T=1deD
Ty
<ZZ2E (r,d)] =2E[>_ > ~(r,d)] <4E[M(ON)] ,
T=1deD 7=1deD
which concludes the proof. O

6 Conclusions and Future Research

This paper considered the online problem of caching search result pages in Web
search engines. We discussed several issues which should be addressed when
transforming the real-life problem into an abstract model. We then presented
a specific discrete-time model of the manner in which queries are submitted
to search engines by multiple client sessions, and showed an adaptation of a
known probabilistic online paging algorithm to this model. The expected cost
of paging that this algorithm incurs is no worst than 4 times the expected cost
of any online scheme.

Possible variations of our model The model and algorithm of Section 5
have assumed that the probability p of users requesting page (¢, m + 1) after
viewing page (t,m) is independent of both ¢ and m. However, replacing the
single probability p by s — 1 probabilities py,...,ps—1 (after viewing (¢, m),
(t,m+1) is requested with probability p,,) will require only minor adjustments
in the algorithm, and will not change its complexity. Furthermore, each topic
t may have its own set of probabilities associated with it, provided that the
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algorithm is familiar with all these probabilities (as it is familiar with A, the
arrival rate of new search sessions on topic t).

Another possible change in the model is to lift the limit of s result pages per
topic, thereby considering each topic to have an infinite list of result pages.
The algorithm itself need not undergo any changes; only the analysis of its
complexity is affected, as the complexity of calculating P(a,b) depends on
the depth of a and b in their corresponding topics’ lists. However, since the
probability of browsing increasingly deep result pages declines exponentially
in our model, the expected complexity of such calculations remains low.

Future research One of the drawbacks of our current model is that it
requires all active sessions to generate queries at successive discrete time steps.
This implies that all users digest search results and conduct their sessions at
the same pace, which is not a faithful representation of reality. It would be
interesting to extend the theoretical analysis to more realistic models of query
streams. This may involve the adoption of continuous time models, perhaps
in the spirit of [23], or further work on discrete models where users will be
allowed to skip several batches between successive submissions of a search
session.

Regarding the algorithm itself, it currently requires solving a linear program
that is quadratic in the size of the cache upon every cache replacement. This is
clearly impractical in the domain of Web search engines, which serve millions
of queries per day, and which use caches whose capacity exceeds hundreds of
thousands of queries. We identify two separate research directions that may
address this problem:

e The algorithm, as described in Section 5.3, requires the computation of
a sequence of m closely-related dominating distributions (where m is the
number of cache misses in a batch). It would be helpful to (1) calculate
(or approximate) a dominating distribution without solving the quadratic
LP, or (2) find a way to quickly derive dominating distribution 7 based on
dominating distribution ¢ — 1 (for i = 2,...,m).

e In [4], a probability-driven cache replacement algorithm called PDC was
proposed, requiring time that is logarithmic in the size of the cache per op-
eration. PDC’s replacement procedure, which approximates the probability
that every cached page will be requested in the near future by at least one
query, shares much of the same intuition behind the probabilistic model
presented in Section 5.1. Through trace-driven simulations it was shown
that PDC outperformed LRU-based schemes, and achieved hit rates close
to those that were theoretically possible for the traces used. It would be
interesting to pursue other caching schemes that bridge the gap between
theoretically guaranteed cache performance on one hand, and practical im-
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plementations on the other.

Another issue for future research is the integration of search result prefetching
into the competitive analysis framework. In an experimental study of search
result caching [4], it was shown that search engines can significantly improve
the hit ratios of their result page caches by prefetching search results. The
idea behind such prefetching is to anticipate follow-up queries by users, and
to cache result pages (t,m),...,(t,m + r) for some r > 1 for every query
(t,m) that causes a cache miss. While the classic paging model would count
such an action as r 4+ 1 replacements, the actual cost in many search engine
architectures of preparing bulks of result pages on the same topic is sublinear
in the size of the bulk [5]. Accordingly, competitive analysis of algorithms that
are charged sublinearly for bulk prefetch operations may analytically show the
merits of prefetching.
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