A COMBINATORIAL CHARACTERIZATION OF THE DISTRIBUTED
1-SOLVABLE TASKS!?

Ofer Biran, Shlomo Moran and Shmuel Zaks

Department of Computer Science
Technion, Haifa, Israel 32000

Revised Version, October 1989

ABSTRACT

Fischer, Lynch and Paterson showed in a fundamental paper that achieving a distributed agree-
ment isimpossible in the presence of one faulty processor. This result was later extended by Moran and
Wolfstahl who showed that it holds for any task with a connected input graph and a disconnected deci-
sion graph.

In this paper we extend that latter result, and in fact we set an exact borderline between solvable
and unsolvable tasks, by giving a necessary and sufficient condition for atask to be 1-solvable (that is:
solvable in the presence of one faulty processor). Our characterization is purely combinatorial, and
involves only relations between the input graph and the output graph, defined by the given task. It pro-
vides easy proofs for the non-solvability of tasks, and also provides a universal protocol which solves
any task which is found to be solvable by our condition.

Using the above characterization, we aso derive a novel technique to prove lower bounds on the
number of messages that must be sent due to processor failure; specifically, we provide a simple proof
that for each fixed N > 2 there exist distributed tasks for N processors, that can be solved in the presence
of a faulty processor, but any protocol that solves them must send arbitrarily many messages in the
worst case.

1 This research was supported in part by Technion V.P.R. Funds - Wellner Research Fund and Loewengart Research Fund, by
the I. Goldberg Fund for Electronics Research, and by the Foundation for Research in Electronics, Computers and Communications,
administrated by the Israel Academy of Sciences and Humanities. A preliminary version of this paper appeared in the proceedings of
the 7" PODC, Toronto, Canada, August 1988.

1. INTRODUCTION

An asynchronous distributed network consists of a set of processors, connected by communication
lines, through which they may have to communicate in order to accomplish a certain task; the time
delay on the communication linesisfinite, but unbounded and unpredictable.

In recent years a number of papers that investigate impossibility issues in distributed networks
were published. Some of these impossibility results stem from symmetry or from lack of information
(like not having distinct identities to the processors or not knowing the size of the network); the work
of [ASW] is of this kind. Other impossibility results are due to processors failures that are either naive
(e.g., crash failures, or failures of the fail-stop type) or malicious (e.g., Byzantine faults); the works
[FLP, MW] and [LSP, FLM] are, respectively, of these two types.

In this paper we study the case when at most one processor is faulty, which means that all of its
messages are not delivered from some point on (crash failure). It was shown in [FLP] that it is impossi-
ble to achieve a distributed consensus for this case. This result was extended in several directions. In
[DDS] the features of asynchrony that yield the result of [FLP] and related results were analyzed. In
[DLPSW] it was shown that approximate consensus, in which all processors must agree on values that
are arbitrarily close to one another, is possible in the presence of afew faulty processors. In [ABDKPR]
afew other problems were shown to be solvable in the presence of faulty processors. However, giving a
precise characterization of the tasks that can be solved in the presence of t faulty processors remains an
interesting open problem (partial results are given in [TKM]). In this paper we provide such a charac-
terization for the caset =1.

The first step towards the result in this paper was done in [MW], where it was shown that any dis-
tributed task satisfying a certain combinatorial property is not 1-solvable (i.e., is not solvable in the
presence of one faulty processor). Informally, the input values and the output values of a given problem
were described in [MW] by input and output graphs, where a vertex in the input [output] graph is a vec-
tor of input [output] values of the processors, and there is an edge connecting two vertices if and only if
the corresponding vectors differ in exactly one entry. It was shown there that any distributed task whose
input graph is connected and whose output graph is disconnected is not 1-solvable.

In this paper we extend the condition in [MW] to provide a complete characterization of the asyn-
chronous distributed tasks that are 1-solvable. This characterization is given in a pure graph-theoretic
formulation, in terms of the input and output graphs of these tasks, and the relations between them. A
simple protocol that solves tasks satisfying this characterization is aso given. This protocol uses a
novel technique, in which every processor eventually decides on avertex in the output graph. The set of
vectors decided upon isincluded in a set of two adjacent vertices, which implies that the actual output
vector is one of these two vertices. (Convergence on one vertex isimpossible, since it can be shown to
contradict the above result in [FLP].)

Using our characterization, the question of whether a given task is 1-solvable is reduced, in many
cases, to the technical problem of determining certain properties of a given graph. We demonstrate this
by extending some known impossibility results to their extremes. In a subsequent paper [BMZ1] we
use this characterization to show that the problem of deciding whether a given distributed task is 1-
solvable is NP-hard.

The pure combinatorial properties of our characterization provide a simple technique for proving
lower bounds on the number of messages needed to solve distributed tasks in the presence of a faulty

processor. More specifically, we show that for any fixed N = 3 there is a 1-solvable task for N proces-
sors, such that for every arbitrarily large M, there is an input for this task such that any protocol that
solves it sends in the worst case more than M messages on this input. Previous lower bound proofs in
similar models required arather involved use of an adversary ([Fe]). In a subsequent paper [BMZ2] this
characterization is used to achieve further results concerning the communication complexity of general
1-solvable tasks.

The rest of this paper is organized as follows. In Section 2 we present definitions and notations,
and notions like decision tasks, protocols and 1-solvability are discussed. In Section 3 we present two
conditions (Theorems 1 and 2) that must be met by protocols that 1-solves a given task. These two con-
ditions are then used in Section 4 to derive our main result (Theorem 3), which provides a complete
characterization of tasks which are 1-solvable, and presents a universal protocol that 1-solves such
tasks. In section 5 we modify our result for the case where the identities of the processors are not mutu-
aly known. We conclude in Section 6 where we present the lower bound mentioned above.

2. DEFINITIONSAND NOTATIONS

2.1 Asynchronous Systems

An asynchronous distributed network is composed of aset V={ Pq, P,,..., Py} of N proces
sors (N = 3), each having a unique identity. We assume that the identities of the processors are mutually
known, and w.l.0.g. that the identity of P; isi. Our results are applicable also to the model in which the
identities are not mutually known (or absent, provided that the inputs are distincts). The outline of the
maodifications needed in the definitions and the proofs required for this model is given in Section 5. The
processors are connected by communication links, and they communicate by exchanging messages
aong them. Messages arrive with no error in afinite but unbounded and unpredictable time; however,
one of the processors might be faulty (the exact definition is given in the sequel), in which case mes-
sages might not have these properties. The faults discussed in this paper are crash failures [FLPF].

A network of N processors is viewed as an undirected graph with N vertices, each representing a
processor. Itisimplicitly assumed in our proofs that the network is complete, but the results easily gen-
eralize to arbitrary biconnected networks, in which a failure of a processor cannot disconnect the net-
work.

2.2 Decision Tasks

We view a decision task as a mapping of possible inputs to allowable outputs. For this we need
few definitions.

Let A and B be arbitrary sets. Let f: A - 2B be a function that assigns to each element alJA a
subset f (a) of B, and let C 00 A. We define

f[C]= cElcf (c). *)

Hence, f [C]028. For a given set A, AN denotes the set of al vectors @ =(ay, a,, . .., ay), Where

a,JAfor every i.

Definition: Let X and D be sets of input values and decision values, respectively. A distributed deci-
sion task T isafunction

T:Xr - 22" —{O},

where X1 O XN. X is called the input set of the task T. The decision set of the task T is the set
Dt =T[Xg]. Each vector X = (X1,X»,...,Xny) Xt is called an input vector, and it represents the initial
assignment of the input value x0OX to processor P;, for i=12..,N. Each vector
d =(dy,d,,....dy)0D7 is caled a decision vector, and it represents the assignment of a decision value
d; 1D to processor P;, fori =1,2,...,N.

Thus, a decision task T maps each input vector to a non-empty set of allowable decision vectors.

We assume that al tasks T discussed in this paper are computable, in the sense that the set
{(.d):Xx0Xy, dOT ()} isrecursive.

Examples:

(1) Consensus[FLP]: A consensus task is any task T where X; = XN for an arbitrary set X, and such
that T(X) 0 { (0,0,...0),(1,1,...,1) } for every input vector X(X1. In the sequel, G denotes the vec-
tor (0,0,...,0), and 1 denotes the vector (1,1,...,1). A strong consensus task is a consensus task T,
in which there exist two input vectors U and V such that T(t) = {O} and T(V) = {1}. The main
result in [FLP] implies that the strong consensus task T, with X¢ ={0,1}N, is not 1-solvable. A
weak consensus task is a consensus task that is not strong.

(20 Approximate Consensus [DLPSW]: Thistask is defined for any given €> 0. Theinput set Xy is
QN, where Q is the set of rational numbers, and for a given input X = (x4, * - ,xn), T(X) is the set
of all vectors a:(dl, ++-,dy) satisfying [di—dj[<se and ms<ds<M (1<i,j<N), where
m=min{ Xy, -, Xy} andM =max{ Xq, " - ,Xy}.

(3 Order Preserving Renaming (OPR) [ABDKPR]: This task is defined for a given integer K,
where K=N. The input set Xt is the set of al vectors (x4, - - - ,xy) of distinct integers. For a
given input X, T(X) isthe set of all integer vectors (dq, - - - ,dy) satisfying 1<d; <K and such that
for eachi,j, x < x; implies d; < d;.

Note that the model in [ABDKPR] assumes that the processors do not have identities. As men-
tioned above, our results can be modified to hold for this model too.

2.3 Protocols and Executions

A protocol a for agiven network isaset of N programs, each associated with a single processor in
the network. Each such program contains operations of sending a message to a neighbor, receiving a
message and processing information in the local memory.

If the network is initialized with the input vector XOXN (i.e., the value x; is assigned to processor
Pi), and if each processor executes its own program in o, then the sequence of operations performed by
the processors is called an execution of a on input X. For this definition, we assume that no two opera-
tions occur simultaneoudly; otherwise, we order them arbitrarily. For more formal definitions see, e.g.,

[FLP, KMZ]. Note that an execution on a given input is not hecessarily unique, due to the asynchrony in
the network. The set of al the executions of a protocol a on an input X is denoted by E (X).

Definition: A complete execution e of a protocol a on input X is an execution of a on input X in which
al the processors eventually decide, by writing a decision value in a write-once register. The vector
d= (dq,do,...,dy), where d; is the decision value of processor p;, for every i, is caled the output vector
of the execution e, and is denoted by D4 (e, X). D4(X) isthe set of al output vectors of all the complete

executions of the protocol a oninput X. Namely, D4(X)= 0O Dy(e X), where CE 4 (X) isthe set of
e[ICE,(X)

al complete executions of a onX. For aset Sof input vectors, D 4[S] is defined according to (*).

Note that the definition above does not require the processors to halt after reaching a decision.
However, in our universal protocol, deciding will always be associated with halting.

2.4 Solvability and 1-Solvability
Definition: A protocol a solvesatask T if for every input vector XXy, it satisfies:
(1) EL(X)=CE4(X) (i.e, dl the executions of a on X are complete), and

2 Dyg(X)OTX) (i.e., each execution of a on X resultsin alega output vector).

Note that for every (computable) task T there is a protocol that solves it, by first having each pro-
cessor send its input to a specified processor, say Py, and then letting P decide on some vector d in
T (X) and broadcast it to all other processors.

Definition: A processor P is faulty in an execution e if all the messages sent by P during e after a cer-
tain time are never received (acrash failure).

Next we define the notion of solvability in spite of one fault. We adapt the approach in [MW].

Definition: A protocol o 1-solvesatask T (and in this case, T is 1-solvable) if the following two condi-
tions hold:

(1) if no processor isfaulty then a solves T, and
(2) if, in an execution e, one processor is faulty, then all other processors eventually decide.

The strong consensus tasks are shown in [FLP] not to be 1-solvable. The weak consensus tasks
are clearly 1-solvable, by simply letting every processor decide on 1 (or 0), regardless of the input. The
reason is that our definition of solvability does not exclude such trivial solutions. Note that our
definition differs from the ones in [FLP, MW] in that we do not require a protocol that solves T to
achieve every possible output. We use this definition since we believe it is more natural: usually, one
considers a task solved by any protocol that always outputs an acceptable decision vector, regardless of
whether there are some acceptable decision vectors that are never achieved.

3. TWO BASIC CONDITIONSFOR 1-SOLVABILITY

Given atask T and a protocol o, we present in this section two necessary conditions for the 1-
solvability of T by a.

Intuitively, the first of these conditions, called the connectivity condition, reflects the fact that a
processor in the network may fail immediately after it “chooses’” one out of some decision values, |eav-
ing the rest of the processors in doubt as to its actual decision value. The second condition, called the
extendibility condition, reflects the fact that a processor may fail before starting the computation, forc-
ing the other processors to reach a decision without knowing its input value. These conditions are later
used to obtain a complete characterization of 1-solvable tasks.

3.1 The Connectivity Condition

Definition: Let SO AN, for a given set A. Two vectors $;, S,00S are adjacent if they differ in exactly
one entry. The adjacency graph of S, G(S) = (S EJ), is an undirected graph, where (S, S,)0E; iff 5;
and S, are adjacent. For atask T, the adjacency graph G (X7) of the input set Xy is called the input
graph of T. Thedecision graph G(D+) of T is defined similarly.

Our first theorem is a straightforward generalization of Theorem 3.5 in [MW], which we state here
using our notation:

Theorem MW: Let T be a decision task that has a connected input graph, and let a be a given protocol.
If a 1-solves T, then G (D [X1]) is connected. [

Our first theorem extends Theorem MW to cases where only a sub-task of the given task satisfies
the assumption of that theorem.

Theorem 1 (The Connectivity Condition): Let T be a decision task, let C[OXt be such that G(C) isa
connected subgraph of the input graph G (X7), and let o be a given protocol. If o 1-solves T, then
G (D 4[C]) isconnected.

Proof. Let a be aprotocol that 1-solvesthetask T: X — Dy. Defineanewtask T': C — D4[C], such
that Xp =C and T'(X) = D (X) for every XOC. a clearly 1-solves T', and by applying Theorem MW to
T we havethat G (D 4[X7]) isconnected. [

We shall usein the sequel the following corollary of Theorem 1, for which we need the following
definitions:

Definition: Let T be atask and a a protocol which solves T. T isthe task induced by a and Xr; that is:
Xta = Xg, and T¥(X) = D4 (X) for every XXy
Definition: A task Tis pointwise connected if G (T (X)) is connected for each X X.

Corollary 1: If aprotocol a 1-solves atask T then T9, the task induced by a and X, is pointwise con-
nected.

3.2 The Extendibility Condition

Our next theorem is based on the following observation: Consider an execution of a protocol that
1-solves a given task, in which we delay all the messages sent by any processor P for long enough.

Then, eventually, all other processors must decide. Moreover, the decisions they make (knowing only
N -1 input values) must be extendible to an acceptable decision vector. (A similar observation was used
in the proof of Lemma6.1in [ABDKPR].)

We need the following definitions for our discussion:

Definition: A partial vector is avector in which one of the entries is not specified; this entry is denoted
by '00. For avector S=(S1, """ ,S\)s §i denotes the partial vector obtained by assigning [Jto the i-th
entry of S, i.e.,§i =(s1, " *,S-1,05+1, """ ,SN). Siscaled an extension of§i. For a set of vectors S
S ={g':309.

Definition: LetYi be a partia input vector and a" apartial decision vector of atask T. ai isacovering
vector for Yi if for each extension of Yi to an input vector XXy, there is an extension of ai to a deci-
sion vector dIT (X).

Definition: Let a be a protocol that 1-solves atask T. An i-slegping execution of a is an execution in
which all the messages sent by P; are delayed until all other processors decide (such an execution exists
by the definition of 1-solvability, since P; is not distinguishable from a faulty processor).

Theorem 2 (The Extendibility Condition): Let T be a decision task and a be a protocol that 1-solves
T.Thenin T, the task induced by a and X, there is a covering vector for each partial input vector.

Proof: Let Xi =(Xq, * " Xi—1,%,%i+1, **,Xn) be a partial input vector. Consider an i-sleeping execu-
tion of a, in which the input to P; is x; for each j #i. Let d' =(dyq, - -+ ,di—q,*,diq, - - ,dy) be the
partial vector output by the non-sleeping processors. We show that d’ isacovering vector for X g

Let the vector Y = (X1, - * ", Xi-1,Yi:Xi+1, = =, Xn) X7 be an extension of X '. We have to show an

extension of d ' to adecision vector in T9(y). For this, assume that ¥ isthe actua input to a, and that P,
is eventualy awakened. P; must eventually decide on a value d; to obtain an output vector

d=(dy, - .0, - ,dy). Thisdis the desired extension of d . [
The vector d in the proof above will play an important role in the sequel, and we give it a formal
definition:
Definition: A vector d isan i-anchor of an input vector Xif dOT (x) and d ' is a covering vector for X ',
Let TE(?i) denote the set of al covering vectors for Yi. It is not difficult to see that
Te®)=n{(TH) | yOX7isanextensonof X' }.

Examples. Let T be the OPR task for N=3 processors and K =4. Consider the partial input vector v 3=

(10,22,0) and the following input vectors which are extensions of Vg: Xy =

(10,12,13), X, =(10,12,11), X3 =(10,12,9). By the definition of T,
T(X1) ={ (1,2,3), (1,2,4), (1,34, (2,3,4) },

TX,) ={ (1,3,2), (1,4,2), (1,4,3), (24,3) } and

T(X3) ={ (2,31), (24,1), (34,1), (34,2 }.

Hence

(T ={ (120,130, (230},

(T(X2)*={ (1,30, (140, (240},

(TR3)*={ (230,240,340}

and (T(%1))® n (T(X2))® n (T(Xs))® = 0. This implies that Te(vV) = 0, so by Theorem 2 this task is
not 1-solvable.

Now examine the same task with N =3 and K =5. For the same three input vectors we have
(Tx))°*={ (120, (13D, (230, (14D, (240,340},
(T(X2))* ={ (130, (14D, (240, (1,50, (250, (350 } and

(T(®3))>={ (23D, (240,340, (250, (350, (450 }.

Then (T(X1))2 n (T(X,))® n (T(X3))® = {(2,4,0}. Indeed, in this task, if messages sent by some pro-
cessor are delayed, then the other two processors may eventually decide on 2 and 4; no matter what is
the input of the delayed processor, it can always extend the partial decision vector to a legal decision
vector by deciding on 1, 3 or 5. In fact, in the example above, Tg((10,22,0)) ={ (24,0 }, that is:
(2,4,0 is the only covering vector for (10,12,0). Its extensions - (2,4,1),(2,4,3) and (2,4,5) - are 3-
anchors of the input vectors (10,12,9),(10,12,11) and (10,12,13), respectively. (Note that in this exam-
ple the covering vectors and the anchors are unique. This is not always the case, as can be exemplified
by the OPR task with N =3 and K =6.)

One can easily extend this example to show that the minimum K required for the OPR task for N
processors to be 1-solvableis 2N-1 (N-1 decisions and N possible extensions). Thisresult is proved in
[ABDKPR], whereit is al'so shown that this condition suffices for the task to be 1-solvable (actualy, the
result presented there is optimal for any number of faults).

4. NECESSARY AND SUFFICIENT CONDITIONSFOR 1-SOLVABILITY

In this section we combine the necessary conditions given in Theorems 1 and 2 to give a a neces-
sary and sufficient condition for a task to be 1-solvable. In proving the positive direction we present a
universal protocol which 1-solves any such task. First we need one more definition.

Definition: A task T' isa restriction of atask T if Xy =Xy, and T'(X) O T (X) for every X[IXy.
Note that, for a restriction T' of T, if a protocol a (1-)solves T', then a aso (1-)solves T. Also
note that if protocol a (1-)solves T, then T® , the task induced by X7 and a, is arestriction of T.
Theorem 3: A task T is 1-solvable if and only if there exists arestriction T' of T satisfying:
(38) T'is pointwise connected, and
(3b) For each partial input vector Yi there is a covering vector E{i in T'; moreover, there is a (central-
ized) algorithm that on input ?i outputs such ad i.

Proof: First we use the results of the previous section to prove the “only if” part of the theorem. Then
we prove the “if” part, by presenting a universal protocol that 1-solves any task satisfying (3a) and (3b).

Only if: Let o be a protocol that 1-solves T. Take T' to be T, the task induced by a and X;. T% is
pointwise connected by Corollary 1, and by Theorem 2 it contains a covering vector for each partia

input vector X i; moreover, for each partial input vector X i, the corresponding ai can be computed by
simulating an i-sleeping execution of a on input X i, as described in the proof of Theorem 2.

Before proving the if part, we give an example to illustrate the proof above: Consider the OPR
task with N=3 and K=5, which as mentioned above is 1-solvable. We show that if we add to it the
requirement that each decision vector must have 2 as one entry and 4 as another entry, then the result-
ing task is not 1-solvable.

Consider the input vector X = (10,20,30). By the definition of this task,
TX) ={(1,2,4),(2,3,4),(2,4,5)}. Consider the 3 partial input vectorsX Lo (020,30), X 2= (10,0330) and
%’ = (10,20,0). To each of these partial input vectors there is a unique covering vector in T (d ' denotes
the covering vector forX'): d ' = ([12,4), d > = (2,04) and d ° = (2,4,0). Therefore, for any restriction T
of T that satisfies condition (3b), it must hold for i = 1,2,3 that there is some extension of d'in T'(X).

Thisimplies that T'(X) = T(X). But G(T (X)) is not connected, and hence T’ is not pointwise connected.
It follows that thistask is not 1-solvable.

We now compl ete the proof of Theorem 3:

If: Let T be atask which has arestriction T' satisfying (3a) and (3b). (An example of a solvable task is
the OPR task for N =3 and K =5, with T' = T; see Figure 1b.) We will present a protocol which 1-
solves T', and hence 1-solves T.

By condition (3b), thereis an algorithm COMP.COVER that gets as an input a partial input vector
X' and outputs a partial covering vector for X ', d'. By (3a) G(T'(X)) is connected. Hence, for a given
finite set S; of i-anchors of X, there is a finite tree TRy in G(T'(X)) that contains S;. It is not hard to
show, by the computability of T, that there is an algorithm COMP.TREE that on input X and a (finite)
set S of i-anchors of X, outputs a tree TRy as above and aroot ry, which is an (arbitrary) vertex in TRy.

Our protocol assumes that each processor P, has a copy of these algorithms COMP.COVER and
COMP.TREE.

The general outline of the protocal is as follows:. In the first two stages each processor Py istrying
to find out the input vector X; for this, it first broadcasts its input value and receives N-1 input values

(including its own), which determine a partial input vector X' (note that i # k). Then it broadcasts this
partial vector, and waits until it receives N—1 such partia vectors. If all these N-1 partial vectors are
equal to its own, X ', then Py decides on the partial output vector d'=com P.COVER(X I) (by saying
that P, decides on a (partial) output vector (dq, - - - ,dy, - - - ,dy) We mean, in particular, that dy is the
decision value of Py). Then P, broadcasts its decision on d' to al other processors, and halts. Other-
wise, Py knows the input vector X, and it first computes N anchors A7, - - -, Ay, where A; is an extension

of d = COMP.COVER(X i) to an i-anchor of X (it is assumed that all the processes compute the same
extensions). then it computes the tree TR, = COMP.TREE(X, A7, - - - ,Ay). Note that the tree TRy is a
function of the input vector X alone, since each of the A’ sis determined by X.

In the rest of the protocol each processor attempts to decide on a certain vertex in TRy, such that

eventually every processor will decide on one out of two adjacent vertices (vectors) (this guarantees that
the actual output vector is one of these two vectors, and henceit isin T(X)). This part of the algorithm is
done in phases, where in phase | a processor broadcasts a message in which it either suggests a certain
vertex d as a possible decision, or informs the other processors that it has decided on some d. If in
phase | +1 it receives N-1 messages of phase | suggesting the same vertex d, or at least one message
deciding on d, then it decides on d, broadcasts its decision, and halts. Otherwise it picks up a vertex d’
that was suggested in a maximal number of messages of stage |, and it suggests in phase | +1 the father
of d' in TRy as a possible decision. This process guarantees that if for long enough no vertex was
decided upon, al the processors will eventually suggest the root ry (which is defined to be its own
father), and then will decide on it.

A formal description of the protocol is given below; in this protocol we use the procedures
COMP.COVER and COMP.TREE described above. It is assumed in this protocol that N > 3. In the
Appendix we show how to modify the protocol to work also when N = 3.

The protocol for Py:

broadcast your input value x, and wait until you receive N—1 stage-A messages.

B. Now for somej (1<j<N) you know?j. (Notethat j # k)

BROADCAST (X J), and wait until you receive N -1 stage-B messages.
I « 1{l isthe phase number}

if all the N—1 stage-B messages you received are equal ton then

begin _ .
d' - coMP.COVER(') _
DECIDE(d) {your output value s the k-th entry of d '}
BROADCAST(DECIDE, d);
HALT,;

end;

else { now you know the input vector X}

TR, « COMP.TREE(,A;, - - - ,Ay), Where A is an extension of d' = COMP.COVER(X) to
an i-anchor of X.

Let s be such that the partial vector X * was received amaximal number of timesin Stage B.
d — father (As) {d gets the father, in TRy, of the s-anchor of X}
BROADCAST(SUGGEST, d, I);

C. decided - false

while NOT decided do

begin
| —1+1;
RECEIVE N-1 messages of phase | -1; {(DECIDE, d) messages are considered to be of phase
mfor every m} - -
if al N-1 messages are (SUGGEST,d’, 1-1) or one of the messages is a (DECIDE, d')
{(DECIDE, d°) message of phase B is considered as a (DECIDE, A,) message, where A, is the
s-anchor that you computed in stage B} then

begin
DECIDE (d");
BROADCAST (DECIDE, d');
decided —true;

end

elselet d’ be avertex that was suggested in a maximal number of phase | —1 messages.

10

d — father (d'); .
BROADCAST(SUGGEST, d, I);
end.

The correctness of the protocol follows from the claims below. For a given input vector X, TRy is
the tree computed by COMP.TREE; Ly denotes the maximal distance, in TRy, from an i-anchor to its
root ry. Also, for a set of vertices U in TRy, father (U) denotes the set { father (v) : vOU} (recall that

father (rg) =ry). Clearly, father I‘*(U) ={rx} for any subset U of vertices of TRy (father " is the function
obtained by applying father repeatedly h times).

Claim 1: In each execution of the protocol on input X, thereisan | < Ly+1 such that at least one proces-
sor decides in phase | (a processor decides upon executing the function DECIDE, in lines 8 or -8 in the
code above).

Proof: Let U, be the set of i-anchors of Xin TRy, and for | > 0 let U; be the set of vertices appearing in
a SUGGEST message in phase | of this execution. Assume that no processor decides in any phase
| <Lg. Then for each such |, each non-faulty processor will execute that last three lines of the code.
This implies that each such processor will send a SUGGEST message in phase |, and that
Ui+ Ofather (U|)

This implies, by the discussion above, that U, ={rg}, which means that in phase Ly al the non-
faulty processors send the message (SUGGEST, rg,Ly), and hence in phase Ly+1 every processor will
receive N -1 such messages, and hence will decide on ry. [

In claims 2-4 below, | 5 isthe minimal | satisfying Claim 1, Py is a processor that decides in phase

lo, and d is the vertex it decides on. In these claims, we consider a decision of P, on a partial vector d’
at stage B as adecision of P, on the anchor A;; such an assumption is possible sincei # k, and hence the
decision value of Py isthe samein both cases.

Claim 2: If some processor P; decidesin phasel, on avertex d', thend’ = d.

Proof. Since no processor decides in phase | 3—1, a processor decides in phase |5 on a vertex d iff it
receives N -1 messages of phase | o1 suggesting d. The proof follows by the observation that, since
N> 2, it isimpossible to have two distinct vertices, each suggested by N -1 messages of phasely—1. [

Claim 3: One of the following holds:
(8 At least two processors send in phase| o a (DECIDE, d) message, or
(b) All the (non-faulty) processors, except Py, send in phase | o a (SUGGEST, father(d),|) message.

Proof: Assume that (a) does not hold. Then exactly one processor, Py, sends a (DECIDE, a') message in
phase | 5. Also, by the definition of 15, P, must have received N-1 (SUGGEST, d, | o—1) messages.
Moreover, every other non-faulty processor P; received exactly N-2 such messages and exactly one
(SUGGEST, d', | 5—1) message, for somed’.

Since N-2> 1 (this is the only place where we use the fact that N> 3), P; must send a (SUG-
GEST, father (a), | o) message, since disthe only vertex suggested by a maximal number of messages
of phaselo-1. O
Note: Claim 3 does not hold for N=3. A modification of the algorithm that works also in this case is
given in the Appendix.

11

Finally, from Claim 3 and step C of the protocol we get:

Claim 4. For j =1, - - -,N, every non-faulty processor P; decides in phase | or in phase | 5+1 on dor
on father (d).

Proof: If (a) of Claim 3 holds, then every non-faulty processor that has not decided on d in phase | o will
receive at least one (DECIDE, a) message in phase | g+1, and hence will decide on din this phase. Oth-
erwise, case (b) of Claim 3 holds. This means that in phase | g+1, every non-faulty processor will either
receive N—1 (SUGGEST, father (d), | o+1) messages, and then will decide on father (d), or will receive
the (DECIDE, d) of Py, and will decideond. O

The proof of the correctness of the protocol is easily derived from the above claims and the obser-
vation that if all processors decide on two adjacent vertices then the vector they output is one of these
vertices. This completes the proof of Theorem 3. [

We demonstrate the use of Theorem 3 by two examples, in which we extend two known 1-
solvability results to their extremes. For this, al we haveto do is to show existence of arestriction T' of
T satisfying Theorem 3:

Strong Approximate Consensus. This task is defined similarly to the Approximate Consensus, with
the following stronger restriction: For a given input X = (X4, - - - ,Xy), |et a be the average of the N-1
smallest x;'s, and let A be the average of the N—1 largest x;’s. T(X) is restricted to the set of all vectors
d=(dy, - - - ,dy) satisfying |d —d;j |<e and a<d;<A (1<i,j <N). Note that this is the most severe restric-
tion that can be imposed on the range of the output numbers. In fact, for a partial input vector

X' = (X1, "+ "X -1,0% +1, -+ ,Xy) there is only one covering vector a', which is the "constant" partia
vector (d, ---,00 - - - ,d), d being the average of the N—1 inputs {X;:] #i}. It is not hard to verify that
this task satisfies the conditions of Theorem 3 (with T' = T), and hence is 1-solvable.

We can further restrict this task, by requiring that the output vectors d are monotone, that is,
d; <d;+;. Theresulting decision graph still satisfies Theorem 3, and hence the resulting task, called the
monotone strong approximate consensus, is still 1-solvable. Moreover, by imposing the additional
requirement that each decision vector d contains a most two distinct values (e, d =
(b, ---,b,c, - --,0), bsc<a+e), weobtain atask whichis still 1-solvable.

Restricted OPR with N=3 and K =5: This version is similar to the OPR, but it is required that the
difference between the maximal and minimal entries of the output vector never exceeds 3. In fact, we
can restrict the decision set for each input vector to include only 5 decision vectors. Figure 1a shows
the corresponding graph G(T (X)) for X = (A,B,C) with A<B < C. The three marked vectors are the
anchors of such input. For comparison, Figure 1b shows the corresponding graph for the original formu-
lation of the OPR problem. In fact, choosing any connected subgraph of this latter subgraph, that
includes al the i-anchors, defines a version of the OPR which is 1-solvable. This example can be gen-
eralized to the OPR with N processors and K =2N -1, to define a restricted version which allows only
2N -1 possible output vectors for each input vector (see Figure 1c for the case N=4), compared to the

(ZNN_l) vectors which are allowed by the original formulation.

12

5. AN EXTENSION TO THE CASE OF UNKNOWN IDENTITIES

We sketch below the maodifications needed in our definitions and proofs in order for our results to
hold for the model in which the processors have no identities and the inputs are distinct (note that this
includes the case where the processors have distinct identities which are not mutually known, and the
input is arbitrary).

In this case N distinct input values are viewed as a subset of N elements of the input set X, and the
input set of atask T, Xy, isacollection of such subsets of X.

Let D be the decision set. We denote by C=C(X,D,N) the collections of al sets
{(x1,dq), - - - ,(Xn,ON)}, Where the ;" s are distinct elements of X and thed,’sareinD,i =1, ---,N.

A task T in this model is afunction T:X; — 2°={0}. Informally, for each X = {X1,Xz, ..., Xy} OXt,

T (X) isthe collection of all sets {(x1,d1), (X2,d>5), ..., (Xy,0dn)} Such that for input X, the assignment
of the decision value d; to the processor whose input valueisx; (i =1, - --,N) isvalid for T.

The decision set of T, D1 = T[X7] isdefined asin section 2.2.

The vertices of the input and decision graphs, G (X1) and G (D), are now sets of cardinality N, as
described above. Thereisan edge connecting two such vertices iff they differ in exactly one element.

A covering set for a partial input set is defined similarly to the way a covering vector for a partial
input vector was defined in Section 3.2, i.e., ai is a covering set for a partial input set Yi if for each
extension of X to an input set XXy, there is an extension of d' to a decision set dOIT (X).

The equivalent of Theorem 3in thiscaseis:

Theorem 3': A task T is 1-solvable if and only if there exists arestriction T' of T satisfying the follow-

ing:

(38 T'is pointwise connected, and

(3'b) For each partia input set X there is a covering set a* in T'; moreover, there is a (centralized)
algorithm that on input X outputs such aa* :

In the proof of Theorem 3', we first show that a task T satisfies conditions (3'a) and (3'b), iff by
assigning distinct identities to the processors and using them to represent the task in the "vectorial"
notation, we get atask that satisfies condition (3a) and (3b). Thisimmediately implies the only if part.

In proving the if part, all that is needed is to adjust the operations in the universal protocol in Sec-
tion 4 to the new definitions in a straightforward manner (i.e., change all occurrences of X to X etc.). It
should be pointed out that, since the inputs are distinct, we may assume, as before, that all the proces-
sors that received al the input values will agree on the same anchors, and will construct the same tree
TRy used in the protocol.

6. LOWER BOUNDS

Once we have characterized the 1-solvable tasks, it is natural to consider the cost of their solu-
tions. A natural measure for this cost is the message complexity of such atask, that is: the number of
messages that must be sent in the worst case by any protocol that 1-solvesit. Note that if al the proces-
sors are non faulty, then every computable task can be solved by O (N) messages. In this section we use

13

the characterization theorem given in Section 4 to prove the following:

Theorem 4: For a given N =3, there is a 1-solvable distributed task T for N processors satisfying the
following: For every arbitrarily large constant M, there is an input X to T, such that every protocol that
1-solves T must send, in the worst case, at least M messages on input X.

The proof of the above theorem is based on first showing that every protocol a that sends at most
M messages on input X must satisfy that |D (X)| < F (M) for some function F, and then using Theorem
3to show that if a 1-solves T then |Dy(X)| > F (M).

To simplify the discussion we consider in this section only executions that satisfy the FIFO discip-
line on each communication link. Clearly, if a protocol 1-solves a task T, then it must solve it aso
under this restricting assumption. The converse is also true, i.e, if atask T is 1-solvable by protocols
that assume the FIFO discipline, then it is also 1-solvable by protocols that do not assume it, since this
discipline can be simulated by having each processor P; number the messages it sends to each processor
p; (note that for this simulation to work we need the assumption that once a message sent by P; is logt,
all the following messages sent by it are lost too). Hence, it is not hard to see that any lower bound that
assumes this discipline is also applicable in the case where this discipline is hot assumed.

Lemma 1: Let a be a protocol that 1-solves atask T, and let X be in Xr. If at most M messages are sent
in any (FIFO) execution of a onX, then |D4(X)| < NM. O

Proof: The sequence of M pairs (R,S), where the i-th pair denotes that the i-th message received in the
execution (global time order) was received by Pr from Ps, uniquely defines a FIFO execution on input X
with M messages. There are N?M such different sequences, and this is an upper bound on the number of
different FIFO executions on input X with M messages, which is an upper bound on |[D4(X)|. O

Proof of Theorem 4: There exist tasks such that for each arbitrarily large M there exist an input vector

X, such that the distance between any 1-anchor and any 2-anchor of X is greater than N°™ (an example of
such atask is given below).

Let T be such atask, let M be given, and let X be an input vector satisfying the above. Then by the
proof of the only if part of Theorem 3 we know that every protocol a that 1-solves T must satisfy that
G(Dy(X)) is connected and it contains an i-anchor of X for i =1,2,---,N. This implies that
Do (X)| > N?M. By Lemma 1, thisimplies that a may send more than M messages on input X. [J

Example: One task for which the above lower bound is applicable is the Strong Approximate Con-
sensus, for any fixed €. To see this, let €=1, and consider an input X =(B(N-1),-B(N-1),0, - - -,0),
where B is some sufficiently large constant. Then every l1-anchor of X is of the form
A] =(A,-B,-B, ---,-B), where |A+B|<g and every 2-anchor of X is of the form
A, =(B,AB, - ,B), where |A' - B|< ¢, and the distance in G (Dt) between any two such anchors is
2NB. Since B can be taken to be arbitrarily large, this task has the desired properties.

Acknowledgement: We would like to thank the referees for their helpful comments.

14

REFERENCES

[ABDKPR] H. Attiya, A. Bar-Noy, D. Dolev, D. Koller, D. Peleg, R. Reischuk "Achievable casesin an

[ASW]
[BMZ1]
[BMZ2]
[DDS]
[DLPSW]

[Fe]

[FLM]
[FLP]

[KMZ]

[LSP]
[(MW]

[TKM]

asynchronous environment", Proceedings of the 28th FOCS, October 1987, pp. 337-346.

H. Attiya, M. Snir and M. Warmuth, "Computing on anonymous rings', Journal of the
ACM 35 (4), 1988, pp. 845-875.

O. Biran, S. Moran and S. Zaks, "Deciding 1-solvability of distributed tasks is NP-hard", in
preparation.

O. Biran, S. Moran and S. Zaks, "On the communication complexity of 1-solvable tasks",
in preparation.

D. Dolev, C. Dwork and L. Stockmeyer, "On the minimal synchronism needed for distri-
buted consensus', Journal of the ACM 34 (1), 1987, pp. 77-97.

D. Dolev, N. A. Lynch, S. Pinter, E. Stark and W. Weihl, "Reaching approximate agree-
ment in the presence of faults', Journal of the ACM 33 (3), 1986, pp. 499-516.

A. D. Fekete, "Asynchronous Approximate Agreement” Proceedings of the 6th ACM
Symposium on Principles of Distributed Computing, Vancouver, Canada, August 1987,
pp. 64-76.

M. J. Fischer, N. A. Lynch and M. Merritt, "Easy impossibility proofs for distributed con-
sensus problems’, Distributed Computing, 1 (1), 1986, pp. 26-39.

M. J. Fischer, N. A. Lynch and M. S. Paterson, "Impossibility of distributed consensus with
one faulty process’, Journal of the ACM 32 (2), 1985, pp. 373-382.

E. Korach, S. Moran and S. Zaks, "Tight lower and upper bounds for some distributed algo-
rithms for a complete network of processors’, Proceedings of the 3rd ACM Symposium
on Principles of Distributed Computing, Vancouver, Canada, August 1984, pp. 199-207.

L. Lamport, R. Shostak and M. Pease, "The Byzantine generals problem”, ACM Transac-
tions on Programming L anguages and Systems 4 (3), 1982, pp. 382-401.

S. Moran and Y. Wolfstahl, "Extended impossibility results for asynchronous compl ete net-
works", Information Processing L etters 26, 1987/88, pp. 145-151.

G. Taubenfeld, S. Katz and S. Moran, "Impossibility results in the presence of multiple
faulty processors', submitted for publication, 1988.

15

APPENDI X: The Protocol for N> 3

In the proof of Claim 3 we argued that if P, receives N—1 messages suggesting a vertex d, then
every processor P; that does not receive N -1 such messages (and hence does not decide on d), must sug-
gest father(d) in the next phase. This is because P, must have received N-2 messages suggesting d,
whichis(sinceN > 3), more than the number of messages suggesting any other vertex.

The above argument does not hold when N = 3. Indeed, in this case there are scenarios where our
protocol fails. In order for Claim 3 to hold also when N = 3, the protocol has to be modified in the two
places where a processors may reach a decision, in stages B and C. We describe below the modification
needed in stage C (the other modification is similar).

Theideaisto replace each phase in the original protocol by a double-phase, which consists of two
sub-phases: the first sub-phase is similar to a phase in the original protocol, with the following excep-
tion: upon receiving N-1 copies of some message (SUGGEST, d, 1), P, does not decide on d, but sends a
message of the second sub-phase suggesting d. Otherwise P, sends a Null message at the second sub-
phase. This guaranteesthat at most one vertex will be suggested at the second sub-phase of each phase.

If Py receives N-1 messages of the second sub-phase suggesting d, then it decides on d. Otherwise,
if it receives any message of the second sub-phase suggesting d, then it suggests father (d) at the first
sub-phase of the following phase. If al the N-1 messages it receives in the second sub-phase are Null,
it suggests at the first sub-phase of the next phase the father of avertex that was suggested in a maximal
number of messages of the first sub-phase.

It is easy to see that if P, receives N-1 messages suggesting a vertex d at the second sub-phase,
then every other processor will receive a message of the second sub-phase suggesting d, and no other
vertex will be suggested at this sub-phase. This guarantees that at the next phase every processor that
has not yet decided on d, will suggest father (d), as claimed.

16

Figure 1a: G (T (X)) in the restricted OPR task (N =3, K =5) for X =(A,B,C) st. A< B < C. The marked vertices are the i-
anchors.

Figure 1b: G(T (X)) in the original OPR task (N=3, K=5) for X=(A,B,C) st. A< B < C. The marked vertices are the i-
anchors. Any connected subgraph that includes the three i-anchors defines a 1-solvable restricted version of the OPR task.

Figure 1c: The similar restricted OPR task for N =4 (K =7).

