
AVERAGE AND RANDOMIZED COMPLEXITY OF DISTRIBUTED
PROBLEMS ∗

NECHAMA ALLENBERG-NAVONY† , ALON ITAI , AND SHLOMO MORAN
COMPUTER SCIENCE DEPARTMENT

TECHNION, HAIFA 32000, ISRAEL

Abstract. A.C. Yao proved that in the decision-tree model the average complexity of the best
deterministic algorithm is a lower bound on the complexity of randomized algorithms that solve the
same problem. Here it is shown that a similar result does not always hold in the common model
of distributed computation, the model in which all the processors run the same program (that may
depend on the processors’ input).

We, therefore, construct a new technique, that together with Yao’s method, enables us to show
that in many cases a similar relationship does hold in the distributed model. This relationship enables
us to carry over known lower bounds on the complexity of deterministic computations to the realm
of randomized computations, thus obtaining new results.

The new technique can also be used for obtaining results concerning algorithms with bounded
error.

1. Introduction. In 1977 Yao presented results relating the average determinis-
tic complexity and the randomized complexity of the same problem in the decision-tree
model [9]. In particular, he introduced ‘Yao’s inequality ’ that states that the average
complexity of the best deterministic algorithm is a lower bound on the complexity
of randomized algorithms that solve the same problem. As Yao pointed out, this
inequality may be applied to derive lower bounds on the randomized complexity from
known lower bounds on the average complexity.

Yao’s lemma can be immediately applied to additional computational models.
For example, the PRAM model (see [5]). However, the following example shows that
Yao’s technique cannot be applied directly to the common distributed model.

The counterexample: Consider computing the AND function on an asynchronous
ring. Every processor has its own private bit xi ∈ {0, 1}. Every deterministic algo-
rithm for this problem has bit complexity Ω(n2) [2]. Moreover, Attiuys et al. show
that the worse case occurs for the input ~1 = (1, 1, ..., 1), (i.e., every algorithm that is
correct for all inputs (x1, ..., xn) ∈ {0, 1}n, requires Ω(n2) communication bits for ~1,
under the same schedule S0). Consider the distribution P :

P (~x) =
{

1 ~x = ~1
0 otherwise.

Under this distribution the worst case occurs with probability 1, hence the average
number of communication bits is also Ω(n2).

However, by using a randomized algorithm to choose a leader (O(n log n) bits [7])
and then have the leader send a message that computes the cumulative AND, the
problem can be solved in O(n log n) bits by a randomized algorithm.

Thus, the upper bound on the complexity of randomized algorithms is strictly
less than the lower bound on the average cost of deterministic algorithms. 2

∗ Part of this work was conducted while the last two authors visited AT&T Bell Laboratories,
Murray Hill, New Jersey.

† Current address: Computer Science Department, Hebrew University, Jerusalem, Israel.

1

We cannot directly apply Yao’s inequality for two reasons:
1. There is a basic (though somewhat implicit) assumption underlying Yao’s

inequality. This assumption is that randomized algorithms can be represented
as a probability distribution over a set of deterministic algorithms. It turns
out that this assumption depends on the model of computation studied, and
we will see that this assumption does not hold for the common model of
distributed algorithms, in which all the processors run the same program.
Thus, this technique cannot be used indiscriminately.

2. Even when the above assumption holds, we have to investigate the depen-
dency on the schedule.

We consider a new technique that enables us to extend Yao’s inequality to a very
widely considered case of distributed models—the case in which each processor is
guaranteed in advance to have a distinct private input (or, as is sometimes phrased
in the literature, each processor is given a unique id).

This result is achieved in two steps. First, we “encapsulate” the relevant parts of
Yao’s technique by restating the lemma to meet our needs. Using this formulation,
it is observed that Yao’s inequality is not valid for the distributed model. Then we
add a new technique, to show that this inequality can be carried on to the model in
which the processors have distinct ids.

These new results enable us to carry over several known lower bounds, from
deterministic computations to randomized ones. Some of the lower bounds obtained
by our technique are new, while others had been known before. However, we are
able to extend the known lower bounds to more general settings, such as allowing
algorithms that may make mistakes (with small probability).

Note that a lower bound on the restricted problem when the processors are as-
sumed to have distinct ids also holds for the general problem. Thus, the lower bounds
we obtain are satisfied in the more general setup.

Like Yao’s lemma, and unlike most lower bound proofs, our technique is inde-
pendent of the topology of the network and holds for many complexity measures and
different distributed models.

Yao has generalized his inequality to algorithms with bounded error. Using our
technique we carry this result to the distributed model and show that in some cases
the cost of distributed randomized algorithms with bounded error is bounded by the
cost of error-free distributed deterministic algorithms.

Independently, Bodlaender [3] proved a result similar to Corollary 3.2 and Theo-
rem 4.1. However, there seems to be no direct way to extend his results to deal with
randomized algorithms that can make errors (even when the error probability is 0).
Thus the lower bounds obtained by our methods are stronger in the sense that they
hold in more general settings.

2. Preliminaries.

2.1. Distributed Systems. A distributed network of size n consists of a strongly
connected directed graph of n vertices. Each vertex corresponds to a processor, which
is our basic computing unit.

Every edge of the graph represents a directed communication channel. These
edges are the only means of communication between processors. With each channel
we associate an unbounded FIFO queue of pending messages.

Each such processor has its own internal memory, program, program counter, in-
buffer and out-ports. The in-buffer of the processor, not to be confused with the queue
of the edges, contains the messages that have arrived but have not yet been processed

2

by the processor. Each out-port corresponds to a distinct outgoing edge. Since we
are not concerned with computation time, we consider each processor as a (possibly
infinite) state machine represented by its transition table. i.e., each configuration
of the processor (memory content, program counter, step counter and buffer state)
will be represented by a different state (since the step counter strictly increases, a
processor never returns to a previous state).

Every step of the computation corresponds to a transition of the state of the
processor. A single transition of a processor consists of receiving (zero or more)
messages from some of its incoming channels (i.e., moving a message from the queue
of pending messages of the incoming edge to the in-buffer), removing messages from
its in-buffer, changing its state, and sending (zero or more) messages, (i.e., placing
messages on queues of its outgoing channels). The new state depends on the previous
state and the message just received.

A distributed algorithm is the n-tuple of the state diagrams of the processors. The
distributed algorithm is uniform if all the processors have the same state diagram.
In this case the processors are identical. We are interested in uniform distributed
algorithms. (Since the processors may differ with respect to the incoming and outgoing
degree of the corresponding nodes, we assume that all the processors have the same
number of out-ports. However, for vertex v only the first out deg(v) ports correspond
to edges of the network. Any attempt to write to an unassigned port results in an
improper termination of the algorithm.)

Let X and Y be two sets, called the private input set and private output set,
respectively. In our distributed model, a processor’s actions may depend on its private
input x ∈ X. I.e., each private input x corresponds to a different initial state. We
also assume that each processor vi has a write once register, on which it writes its
private output, yi.

We require X to be a countable set. However, this restriction is not severe, it is
implied when each private input can be represented by a finite number of bits (there
need not be a bound on the length of all the private inputs of the processors).

The order by which the various processors are activated and the delays on the
channels are governed by the schedule. The validity and efficiency of distributed
algorithms often depend on the class of schedules allowed. We give below a definition
of an oblivious schedule class. However, our technique is also valid for other schedule
classes.

A schedule S = (e1, e2, ...) is an infinite sequence of edges.

We now describe the i-th step: Let ei = (ui, vi) be the i-th component of S.
If there are any pending messages in the queue of ei, the first message is moved
from the queue of pending messages of ei to the in-buffer of vi. Processor vi is then
enabled: it reads and removes some of the messages from its in-buffer and makes a
state transition.

Example 2.1.: A possible execution of the schedule S = (e1, e3, e4, e5, e5, ...) as
applied to the following network.

3

v1

v2

v0

e1

e5

e2

e3

e4

Fig. 1. The network after executing the fourth step

S vertex e1 e2 e3 e4 e5 legend
– – – – – initially all buffers are empty.

e1 v1 – m1 m2 – – v1 sends messages m1,m2.
e3 v2 – m1 – m3 m4 v2 receives m2, sends m3,m4.
e4 v1 – m1,m5 – – m4 v1 receives m3, sends m5.
e5 v0 – m5 – m3 – v0 receives m4,

sends no messages.
e5 v0 – m5 – – – v0 receives and

sends no messages.

An execution is a sequence ε = (ε1, ε2, ...), where εi = (v, IN,OUT, s) such that
v is the processor enabled at step i, IN is the set of messages received by v at that
step, OUT is the set of messages v sent, and s is the new state of v.

Let us note that given a distributed deterministic algorithm A, an input ~x ∈ Xn,
and a schedule S, the execution is uniquely determined.

Our formulation does not require special wake up messages, since processors may
be enabled even when none of their incoming edges contain any messages.

2.2. Distributed Tasks. A distributed task for n processors is defined as a re-
lation T on Xn × Y n. For example, the task of finding the maximum is the relation
{((x0, ..., xn−1), (y, ..., y)) | y = maxn−1

i=0 {xi}}. Let XT ⊆ Xn be the set of inputs ~x
for which there exists an output ~y ∈ Y n such that (~x, ~y) ∈ T .

Let S be an arbitrary schedule class. A distributed algorithm A is correct for
input ~x ∈ XT and schedule S ∈ S, if in the execution of A on ~x according to S, all
processors terminate, and the output ~y satisfies (~x, ~y) ∈ T . A distributed algorithm
A solves a distributed task T , if A is correct for every input ~x ∈ XT and schedule
S ∈ S.

Correctness depends on the task, T , the set of private inputs, XT , and the schedule
class, S. Sometimes restricting the set XT drastically changes its complexity. A
difficult task might become trivial by severely restricting the inputs. For example, if
T is leader election (only one private output is 1 and all the rest are 0), then the task
is trivial if XT is restricted to contain only tuples which have exactly one component
with the value 1, and all the rest 0. The algorithm that writes its private input on
its private output, without any communication is correct. However, if XT contains

4

private inputs for which all components are equal, the task becomes impossible [1].
A cost function is a mapping from the set of all executions to the natural num-

bers. Given a distributed algorithm A, an input ~x ∈ XT , and a schedule S ∈ S, let
cost(A, ~x, S) denote the cost of the corresponding execution.

We will mainly consider communication costs: message complexity—the number
of messages sent, and bit complexity—the total number of bits sent by all the proces-
sors during the execution. However, our discussion is valid for other cost measures as
well.

2.3. Average Cost of Deterministic Algorithms. Let T be a distributed
task and P be a probability distribution over the input set XT . The average cost of
a deterministic algorithm A, with respect to distribution P , and a schedule S ∈ S is:

distribution-cost(A,S, P) = E~x(cost(A, ~x, S), P) =
∑

~x∈XT

P (~x) · cost (A, ~x, S).

The average cost of algorithm A with respect to distribution P , distribution-cost(A, P),
is the average cost of the algorithm under the worst possible schedule. However since
the maximum need not exist, we define it to be the supremum over S of the average
cost of the deterministic algorithm A, under schedule S ∈ S.

The average cost of a task T with respect to distribution P and schedule S,
distribution-costT (S, P), is the cost of the best algorithm that solves T under S.
Again, since when the set of algorithms is infinite there may not be a best algorithm,
it is defined to be the infimum of the average cost of A with respect to distribution
P , taken over all uniform distributed algorithms A that solve T .

The average cost of a task T , with respect to distribution P is the supremum of the
average cost of T with respect to distribution P and S, taken over all schedules S ∈ S,
and is denoted distribution-costT (P). Note that only algorithms that are correct with
respect to every schedule S ∈ S are considered in this definition.

2.4. Randomized Algorithms. While the transitions of a deterministic algo-
rithm depend solely on the current state and the messages received, the transitions of
a randomized algorithm may also depend on the outcome of coin tosses. To simplify
the notation we assume that the number of coin tosses, performed by each processor
of a randomized program in an execution, is exactly L. However, the validity of our
technique and results do not depend on this assumption.

The Boolean L-tuple, ρi, of results of the L coin tosses of a processor vi in the
execution is called the private random input of vi, and ~ρ = (ρ1, ..., ρn) ∈ {{0, 1}L}n,
the n-tuple of private random inputs, is called the random input of the execution.

As customary, we view each processor that runs a randomized algorithm as having
access to an additional input tape, called the random tape. In addition to the input,
each processor is given its own random tape. In each run, the random inputs are
chosen uniformly at random, so that every one of the 2nL n-tuples of random tapes has
the same probability. The “coin toss” operation of processor v is viewed as accessing
the next bit of v’s random tape. A random algorithm can thus be “derandomized”
by fixing the content of the random tapes. We view this process as follows: for every
processor we replace the random tape by a read-only work tape that contains a fixed
binary string (of length L). The operation of reading the next bit of the random tape
is replaced by the operation of reading the next bit of this constant tape.

For a randomized algorithm R and ~ρ ∈ {{0, 1}L}n, let R[~ρ] denote the determin-
istic algorithm resulting from R when for every processor vi the operation of reading

5

the next bit from the random tape is replaced by the operation of reading the next
bit of ~ρi.

Let OUTPUT(R[~ρ], ~x, S) denote the private outputs that result from applying
R[~ρ] under schedule S and input ~x. Then R is correct for T if for every ~x ∈ XT ,
~ρ ∈ {{0, 1}L}n, S ∈ S,

(~x,OUTPUT(R[~ρ], ~x, S)) ∈ T.

In Section 3.3 the definition of correctness is weakened to include correctness with
probability 1, and in Section 5 to include algorithms that are correct only with proba-
bility ε < 1. First we prove our results for the stronger correctness requirement given
above, and then generalize it to the weaker definitions.

Since we assume that in each coin toss 0 and 1 are equally likely, each of the 2nL

random inputs has equal probability. Therefore, we define the expected randomized
cost of algorithm R for input ~x under schedule S to be

randomized-cost(R, ~x, S) = E~ρ(cost(R[~ρ], ~x, S)) = 2−nL
∑

~ρ∈{{0,1}L}n

cost(R[~ρ], ~x, S).

The randomized cost of algorithm R under schedule S is

randomized-cost(R,S) = sup
~x∈XT

randomized-cost(R, ~x, S),

and the randomized cost of algorithm R is

randomized-cost(R) = sup
S∈S

randomized-cost(R, S).

Finally, let randomized-costT the randomized cost of the task T under schedule class
S, be the infimum of randomized-cost(R) over all randomized algorithms R that solve
T . Note that in the definitions of this subsection, the expectations are taken over the
coin tosses with respect to the worst possible input ~x ∈ XT .

2.5. Relationship to Other Models. Since we are interested in lower bounds
we have allowed the computational capabilities of the processors to be as strong as
possible and restricted the schedule class. The schedule classes we allowed are limited
in that they allow only FIFO discipline on the edges, and the reception of only one
message at a time. Since a lower bound exhibits the existence of a schedule on which
the algorithm behaves badly, this schedule belongs to any schedule class that contains
ours, therefore the lower bound holds also for the more general classes.

However, lower bounds would not necessarily hold for more restricted schedule
classes. To prove a lower bound on randomized algorithms under such a schedule
class one should explicitly restrict the discussion to the same schedule class.

Some examples of schedule classes are:
1. Synchronous schedules—The processors are enabled in lock step.
2. Fair schedules—The schedules in which in a every infinite execution each edge

occurs infinitely often.
The situation is reversed when considering the computational power of the proces-

sors: A lower bound that holds for processors with strong computational power also
holds for more restricted processors. Additional models can be simulated by restrict-
ing the class of allowable transition tables. For example: to model a message driven
setup, it suffices that the state remains unchanged unless the in-buffer is nonempty.
In order to simulate wake up messages, we allow a state transition from the initial
state even when the buffers are empty.

6

3. Yao’s Lemma.

3.1. Restating Yao’s Lemma. In this subsection we restate Yao’s Lemma to
fit our needs. For this we need the following definition:

We may view a (uniform) randomized algorithm R as a mapping of each pair
(~x, S) of input and schedule to a probability distribution over the executions of R on
input ~x under schedule S. A canonical representation of R is a probability distribution
over a set of deterministic algorithms A such that

(a) each algorithm A ∈ A is uniform,
(b) for each input ~x, each schedule S, and each execution ε, the probability
that R on input ~x performs execution ε is equal to the probability that on
the same input ~x and schedule S, an algorithm A chosen at random from A
performs execution ε.

We restate Yao’s Lemma to include an appropriate consideration of the schedule and
an explicit stating of the assumption a model must fulfill in order to make the lemma
valid.

Lemma 3.1 ([Yao]). Let S be a schedule class, S ∈ S a schedule, T a distributed
task over the inputs XT ⊆ Xn, R a randomized algorithm that solves T , and A a
canonical representation of R. Then for every probability distribution P over XT ,
there is a deterministic algorithm A ∈ A such that

distribution-cost(A,S, P) ≤ randomized-cost(R,S).

3.2. Main Results. The counterexample in the introduction demonstrated that
in general Yao’s inequality need not hold. However, we now show that if we restrict
ourselves to componentwise distinct inputs, Yao’s Lemma can be extended to the
distributed case.

First, let us examine the representation of random algorithms that is traditionally
used (for example in the PRAM model) for implementing Yao’s inequality, sometimes
implicitly. Recall that for ~ρ ∈ {{0, 1}L}n, R[~ρ] is the deterministic algorithm which
results from R if in every processor vi every coin toss operation is replaced by reading
the next bit of ρi. The traditional technique represents a random algorithm R by the
set

R =
{
R[~ρ] | ~ρ ∈ {{0, 1}L}n

}
,

under the uniform distribution on {0, 1}Ln.
The problem of using R in our distributed model is that it does not consist only

of uniform algorithms, since for nearly all ~ρ = (ρ1, ..., ρn) ∈ {{0, 1}L}n, i 6= j implies
that ρi 6= ρj and therefore R[ρi], the transition table of vi, is different from that
of vj . Thus, we cannot apply Yao’s Lemma using this representation since the first
requirement of a canonical representation—that of uniformity—is violated.

Theorem 3.2. Let S be a schedule class, S ∈ S, T a distributed task over an
input set XT ⊆ Xn consisting of only componentwise distinct inputs, P a probability
distribution over XT , and R a randomized distributed algorithm that solves T . Then
there exists a deterministic algorithm D that solves T such that

distribution-cost(D,S, P) ≤ randomized-cost(R, S) ≤ randomized-cost(R).

7

Proof. First we show that for every randomized algorithm R there exists a canon-
ical representation A.

Let f be a bijection from X × IN to IN. (For example, if X = IN, f(x, i) =
1
2 (x + i)(x + i + 1) + i.)

Let {0, 1}ω denote the set of all infinite sequences over {0, 1}). For each σ ∈
{0, 1}ω let Rf [σ] be the deterministic algorithm in which the state diagram of each
processor is identical to R’s, except for the following changes:

1. the string σ is a constant of the program of Rf [σ];
2. every read operation from the random tape is replaced by a read operation

of σ, i.e., when in R a processor reads the i-th bit from its random tape, in
Rf [σ] the processor reads bit f(x, i) of σ, where x is the private input of the
processor.

Let

A = {Rf [σ]|σ ∈ {0, 1}ω} .

We now show that A with the uniform distribution on {0, 1}ω is a canonical repre-
sentation of R.

To show (a), for each σ, Rf [σ] is a uniform algorithm since all the processors have
the same state diagram. In the random algorithm two processors may have acted
differently on the same inputs because their random tapes were different. However,
in Rf [σ] there is no random tape—it was replaced by σ. The sequence of bits of
σ considered by each processor is a function of the processor’s private input—not
its index. However, the private input is not part of the program. If, for example,
processor i were given the private input of processor j, processor i would consider the
same bits previously considered by processor j, and thus its actions would be exactly
identical to those of processor j, i.e., both processors have the same state diagram,
i.e., the algorithm is uniform.

To show (b), fix the input ~x = (x1, ..., xn) ∈ XT , and a schedule S. The execution
depends now only on the random inputs. We say that a coin toss ~ρ ∈ {{0, 1}L}n

implies execution ε if ε occurred when R is run with random input ~ρ. Since each of
the 2nL random sequences is equally likely, the probability of execution ε is equal to
the number of tosses that imply ε divided by 2nL. Define an equivalence relation ∼=~x

on {0, 1}ω such that σ∼=~xσ′ if for i = 1, ..., L and j = 1, ..., n,

σf(xj ,i) = σ′f(xj ,i).

Under the uniform distribution on {0, 1}ω each of the equivalence classes has proba-
bility 2−nL.

For each input ~x as above, we define a 1-1 correspondence between the above
equivalence classes and random inputs ~ρ ∈ {{0, 1}L}n: a random input ~ρ = (ρ1, ..., ρn)
corresponds to σ if for i = 1, ...L and j = 1, ..., n, ρj,i = f(xj , i). If σ belongs to an
equivalence class that corresponds to ~ρ then the execution of Rf [σ] is equal to that
of R with random inputs ~ρ. Given an equivalence class C ⊆ {0, 1}ω, the probability
of choosing σ ∈ C is equal to 2−nL, and that is equal to the probability of choosing
any random input. In particular, it is equal to choosing the random input which
corresponds to C. Consequently, the probability of choosing an algorithm Rf [σ] ∈ A
whose execution is ε equals to the probability that the execution of the randomized
algorithm R is ε.

We still need to show that each algorithm Rf [σ] ∈ A solves T . Since R is correct
for T , for every input ~x and every schedule S ∈ S, every execution of R on ~x under

8

S produces a correct result. Since every execution of Rf [σ] corresponds to some
execution of R, we must have that every execution of Rf [σ] must produce a correct
result, hence Rf [σ] solves T .

We may now apply Lemma 3.1 to prove the theorem.

As a corollary of the theorem we have:
Corollary 3.3. Let T be a distributed task over an input set XT ⊆ Xn con-

sisting of only componentwise distinct inputs, S a schedule class, and P a probability
distribution over XT . Then for every S ∈ S

distribution-costT (S, P) ≤ randomized-costT (S, P) ≤ randomized-costT .

Note that Corollary 3.3 can be used to obtain lower bounds on the randomized
complexity of a distributed task, even if its input set does not consist solely of compo-
nentwise distinct inputs, because a lower bound for a restricted set of inputs implies
a lower bound for a superset.

3.3. Randomized Algorithms that are Correct with Probability 1. We
can generalize Theorem 3.2 and Corollary 3.3 to hold also for randomized algorithms
that are correct with probability 1, (i.e., for every (x, S) there is probability 0 that
the randomized algorithm errs). This can occur only if the number of coin tosses is
unbounded. Hence, we abandon our methodological assumption that this number is
finite.

An additional effort is needed only to show that if A is our canonical representa-
tion of a randomized algorithm R that is correct with probability 1, then there exists
a canonical representation A′ for R, such that all A ∈ A′ solve T . Since the number of
possible schedules might be uncountable, this last result is not immediate. However,
this result can be proved for all the cost functions we considered. We sketch below
the proof to the case when the cost function is the number of messages sent.

This result will follow from the next two lemmas. Lemma 3.4 implies that for every
randomized algorithm, R, that is correct with probability 1, there exists a randomized
algorithm, R′, that is also correct with probability 1, has the same complexity, and
for some finite M > 0 never sends more than M messages.

This implies that the complexity of a task cannot be affected by considering
algorithms that do not have a finite bound on the number of messages they send.
Thus, without loss of generality, such algorithms may be ignored.

Lemma 3.4. Let R be a randomized algorithm that solves T with probability 1.
Then for every δ > 0 there is a randomized algorithm Rδ that solves T with probability
1, such that:

(a) Every execution of Rδ terminates after at most n4(1 + δ−1) messages are
sent.

(b) distribution-cost(Rδ) ≤ (1 + δ)randomized-cost(R).
Proof. (an outline): For ~x ∈ XT and I ⊆ {1, ..., n}, ~yI = (yI

1 , ..., yI
n) is a partial

output if there exists ~y ∈ Y n for which (~x, ~y) ∈ T , ~yI
i = yi for i ∈ I and yI

i = ⊥ 6∈ Y
otherwise. Let g be a function that maps every input ~x and partial output ~yI to a
full output ~y ′ such that (~x, ~y ′) ∈ T and ~yI and ~y ′ agree on I. (If yI is not a partial
output of ~x, i.e., there exists no such ~y ′, then g(~x, ~yI) is arbitrary.)

Given a randomized algorithm R and δ > 0, Rδ is defined as follows: Every
processor vi simulates R until vi sends n3/δ messages and then if vi did not terminate
the algorithm, it stops executing R and broadcasts its private input. Also, upon first

9

receiving a broadcast message a processor stops its regular execution and broadcasts
its private input (and its private output if it had already been computed). Let I
consist of the processors which computed their private output before participating in
the broadcast. Upon receiving the broadcasts from all the graph, processor vi (i 6∈ I),
computes ~y ′ = g(~x, ~yI) and outputs y′i.

To implement the broadcast, each time a processor gets new information it sends
it to all its adjacent vertices. Thus each edge is traversed at most 2(n− 1) times, and
the message complexity is at most 2(n− 1)|E| < n3. (If the network contains parallel
edges between two vertices vi and vj , then each message from vi to vj is sent on only
one of these parallel edges.)

Since R is correct with probability 1, with probability 1, yI is a partial solution,
and Rδ extends it to a full solution ~y ′. Thus Rδ also solves T with probability 1.

The lemma follows since in every execution of Rδ every processor sends at most
n3/δ messages before switching to algorithm AI . If during an execution of Rδ, a
processor switched to algorithm AI , then the number of messages sent by R during
that execution, m, was at least n3/δ. (b) follows since the number of messages sent
by algorithm AI is at most n3 = δ n3

δ ≤ δm.
Lemma 3.5. Let M > 0. Let R be a randomized algorithm that solves T with

probability 1 and sends no more than M messages, and let A be a canonical represen-
tation of R. Then with probability 1 an algorithm A ∈ A solves T . Also, there exists
a canonical representation A′ of R such that every A ∈ A′ solves T .

Proof. (sketch) The bound M on the number of messages allows us to assume
that the schedule class S is countable.

For input ~x and schedule S, let ERR~x,S be the set of algorithms which err on ~x
under schedule S. Since for each ~x and S the probability that an algorithm chosen
at random from A errs is 0, for each (~x, S) the probability of ERR~x,S is 0. Let
ERR =

⋃
~x,S ERR~x,S . Since both XT and S are countable, the probability of choosing

an algorithm A ∈ ERR is P (ERR) ≤ ∑
~x,S P (ERR~x,S) = 0 (a countable sum of

zeroes). Thus, the probability that an algorithm chosen at random from A errs on
some ~x for some schedule S is 0.

The canonical representationA′ is obtained fromA by removing all the algorithms
of ERR.

4. Applications. Like Yao’s original method, our results suggest the following
technique for proving lower bounds on the randomized complexity of distributed tasks
with componentwise distinct inputs:

1. Find a probability distribution P over the set of componentwise distinct
inputs, and a schedule S for which a lower bound can be shown on
distribution-cost(T, S, P), the average (with respect to distribution P) cost
of deterministic distributed algorithms that solve T under schedule S. (Note
that this lower bound has to hold only for deterministic algorithms that are
correct for every S ∈ S. This property is important for proving deterministic
lower bounds.)

2. Apply Corollary 3.3 to conclude that this lower bound holds also for the
randomized complexity of the same task.

Our technique can sometimes be used even if we only have a lower bound on the
worst case: When there is a single componentwise distinct input ~x ∈ XT for which
every deterministic algorithm satisfies the lower bound—choose a distribution P that
gives ~x probability (close to) 1 (and probability (almost) 0 to XT − {~x}). (This
technique is used in Theorem 4.2 below.)

10

In 1988 Bodlaender [3] proved an Ω(n log n) lower bound on the average message
complexity for finding the maximum id in an asynchronous ring of processors that
holds even if the ring is bidirectional and even if the ring size, n, is known to the
processors in advance, provided that the set of possible ids is at least 2n3. The same
lower bound with different parameters was also published by P. Duris and Z. Galil [4]
in 1987.

Bodlaender’s proof satisfies both the requirements of 1:
(a) In Bodlaender’s task, the input is an n-tuple of id’s, i.e., the private inputs

are distinct.
(b) Bodlaender stated his lower bound for the class of asynchronous schedules.

However, in the proof he showed a specific schedule on which this lower bound
holds.

Thus we may apply Corollary 3.3 to Bodlaender’s result to show the following lower
bound.

Theorem 4.1. Let T be the task of finding the maximum id in a bidirectional
asynchronous ring of n processors, where there are at least 2n3 possible ids. Then the
randomized message complexity of T is at least Ω(n log n). This lower bound holds
even if the ring size, n, is known to the processors in advance.

In 1985 Fredrickson and Lynch [6] showed that the problem of finding the max-
imum id in a synchronous bidirectional ring of n processors has an Ω(n log n) lower
bound on the worst case message complexity when the algorithms are assumed to
use comparison only. Their proof constructs a permutation π of {1, ..., n}, such
that if the id of processor i is πi then every correct algorithm (which uses com-
parisons only) requires Ω(n log n) messages. As in the counterexample to Yao’s
lemma, we construct a distribution P that gives probability 1 to the input ~x = π,
and probability 0 to all other inputs. Fredrickson and Lynch’s proof shows that
distribution-cost(T, S, P) = Ω(n log n) messages. Since the inputs are a permutation
they are componentwise distinct. Hence we get the following theorem:

Theorem 4.2. The problem of finding the maximum id in a synchronous bidirec-
tional ring of n processors has an Ω(n log n) lower bound on the randomized message
complexity when the algorithms are assumed to use comparison only.

Note that the last two lower bounds hold even if the randomized algorithms are
allowed to err with probability 0.

5. Bounded Error. In his paper, Yao also presented an inequality for the prob-
abilistic complexities when a bounded error is allowed. With our technique this in-
equality can also be extended to the distributed model.

Let A be a deterministic distributed algorithm that solves task T , ~x ∈ XT and
S ∈ S a schedule. Define

ERR(A, T, ~x, S) =
{

1 OUTPUT(A, ~x, S)) 6∈ T
0 otherwise,

where OUTPUT(A,~x, S) is the output of A on input ~x under schedule S.
Let P be a probability distribution over XT , and δ ≥ 0. We overcome measura-

bility problems by using the assumption that XT is countable. A solves a task T with
error δ under schedule S if the expected error satisfies:

E~x(ERR(A, T, ~x, S), P) =
∑

~x∈XT

P (~x) · ERR(A, T, ~x, S) ≤ δ.

11

Let distribution-costδT (S, P), the average cost of task T with error δ with respect to
distribution P and schedule S, be the infimum of distribution-cost(A,S, P) taken over
all the deterministic algorithms, A, that solve T for schedule S with error δ.

Consider a randomized algorithm R. If we fix the input ~x, then ERR(R[~ρ], T, ~x, S)
is a function of ~ρ ∈ ({0, 1}ω)n. Moreover we show:

Lemma 5.1. For every ~x ∈ XT , ERR(R[~ρ], T, ~x, S) is a measurable function of ~ρ
over ({0, 1}ω)n.

Proof. Consider a vector of finite sequences τ ∈ ({0, 1}k)n. Let CONT(τ) consist
of all the infinite continuations of τ . i.e.,

CONT(τ){σ ∈ ({0, 1}ω)n : τi[j] = σi[j], i = 1, ..., n, j = 1, ...k}.
Obviously, for every such τ , CONT(τ) is measurable.

For ~x ∈ XT , ~ρ ∈ ({0, 1}ω)n, let `(R, ~ρ, ~x, S) ≤ ∞ denote the largest index accessed
by any processor running R with random tapes ~ρ and input ~x under schedule S. Let

HALTk = {~ρ ∈ ({0, 1}ω)n : `(R, ~ρ, ~x, S) = k}.
If ~ρ and ~ρ ′ ∈ CONT(τ) and ~ρ ∈ HALTk then

1. ~ρ ′ ∈ HALTk.
2. ERR(R[~ρ], T, ~x, S) = ERR(R[~ρ ′], T, ~x, S).

Thus there exists a finite set of sequences Ik = {τ1, ..., τ q} such that HALTk =⋃
τj∈Ik

CONT(τ j). Since HALTk is a finite union of measurable sets, HALTk is
measurable.

Let CORRECTk ⊆ HALTk be the set of all sequences ~ρ ∈ HALTk for which
R[~ρ] is correct for ~x (i.e., ERR(R[~ρ], T, ~x, S) = 0). ERR(R[~ρ], T, ~x, S) is constant on
every τ i ∈ Ik. Let I0

k ⊆ Ik consist of the sequences of Ik for which R is correct.
CORRECTk =

⋃
τj ∈ I0

k , and is measurable since it is a finite union of a measurable
sets. CORRECT =

⋃
k≥0 CORRECTk is also measurable.

ERR(R[~ρ], T, ~x, S) is a measurable function since 1 − ERR(R[~ρ], T, ~x, S) is the
characteristic function of the measurable set CORRECT.

Since ERR(R[~ρ], T, ~x, S) is measurable, we may define its expectation
E~ρ(ERR(R[~ρ], T, ~x, S)) over the coin tosses (~ρ ∈ ({0, 1}ω)n). A randomized dis-
tributed algorithm solves a task T with error δ under schedule S, if for every input
~x

E~ρ(ERR(R[~ρ], T, ~x, S)) ≤ δ.

A randomized algorithm R solves T with error δ if for every S ∈ S, R solves
T with error δ under S. randomized-costδT (S), the randomized cost of task T with
error δ, is the infimum of randomized-costT (R[~ρ], S) taken over all the randomized
algorithms that solve T under schedule S with error δ.

Using Yao’s result concerning Monte Carlo algorithms and the same technique
that was used to prove Theorem 3.2 we obtain:

Theorem 5.2. Let T be a distributed task over a countable input set XT ⊆ Xn

consisting of only componentwise distinct inputs, S a schedule, and P a probability
distribution over XT . Then for every 0 ≤ δ ≤ 1

2 ,

1
2distribution-cost2δ

T (S, P) ≤ randomized-costδ
T (S).

12

Proof. Let R be a randomized algorithm that solves the task T within error δ
under schedule S. For every infinite binary sequence σ ∈ {0, 1}ω, let Rf [σ] be the
deterministic algorithm which results if processor j uses the f(xj , i)-th bit of σ as
the outcome of the i-th coin-toss. As before, {Rf [σ] | σ ∈ {0, 1}ω} is a canonical
representation and Eσ(cost(Rf [σ], ~x, S)) = E~ρ(cost(R[~ρ], ~x, S)).

Since R solves T within error δ, for every ~x ∈ XT ,

E~ρ∈({0,1}ω)n(ERR(R[~ρ], T, ~x, S)) ≤ δ.

Given a distribution P on the inputs, the error probability of Rf [~ρ],
E~x(ERR(R[~ρ], T, ~x, S), P) =

∑
~x∈XT

P (~x) · ERR(R[~ρ], T, ~x, S) is measurable, since it
is an infinite sum of measurable functions ([8, Theorem 1.27, p. 22]). Its expectation
over ({0, 1}ω)n satisfies:

E~ρ∈({0,1}ω)n(E~x(ERR(R[~ρ], T, ~x, S), P)) = E~x(E~ρ∈({0,1}ω)n(ERR(R[~ρ], T, ~x, S), P))
= E~x(Eσ∈({0,1}ω)(ERR(Rf [σ], T, ~x, S), P))
≤ E~x(δ) = δ.(1)

(The measurability of ERR(Rf [σ], T, ~x, S) over σ ∈ {0, 1}ω is similar to Lemma 5.1.)
Let C ⊆ {0, 1}ω denote the set of sequences for which E~x(ERR(Rf [σ], T, ~x, S)) ≤

2δ. Since ERR(Rf [σ], T, ~x, S) is measurable, so is E~x(ERR(Rf [σ], T, ~x, S)) =∑
~x∈XT

P (~x) · ERR(Rf [σ], T, ~x, S) (a sum of measurable functions). Hence, by [8,
Exercise 5, p. 32] C is measurable.

Equation (1) implies that P (C) ≥ 1
2 . Hence there exists a sequence σ∗ ∈ C such

that

distribution-cost(Rf [σ∗], S, P) ≤ 2randomized-cost(R,S).

Since σ∗ ∈ C, E~x(ERR(Rf [σ∗], T, ~x, S), P) ≤ 2δ. Thus, if R has expected cost
randomized-costδT (S) we have exhibited a deterministic algorithm, Rf [σ∗], which errs
with probability at most 2δ and its expected cost is at most 2randomized-cost(R, S)).

Another result by Yao connects the randomized cost with small error to the
average cost with no error. Combining our techniques with those of Yao we can
extend these ideas to the distributed model.

Theorem 5.3. Let T be a distributed task over a finite input set XT ⊂ Xn

consisting only of componentwise distinct inputs, S a schedule, and P a probability
distribution over XT . Then for every 0 ≤ δ ≤ 1,

(1− δ)distribution-cost0T (S, P) ≤ randomized-cost(δ/|XT |)
T (S)

≤ randomized-cost(δ/|XT |)
T .

As an application we can extend a result by Fredrickson and Lynch [6] concerning
deterministic worst case complexity of synchronous algorithms:

Corollary 5.4. Let T be the task of electing a leader in a synchronous ring of
size n, t a positive integer, and 0 < δ < 1. If the set of inputs XT is a sufficiently
large finite set, then the expected number of messages required by any randomized
algorithm that solves T within t rounds with bounded error δ/|XT | requires Ω(n log n)
messages.

13

6. An Open Problem. We have shown that in the distributed model for every
schedule S

distribution-costT (S, P) ≤ randomized-costT (S) ≤ randomized-costT

provided the inputs are componentwise distinct.
Note that we can only state that for every schedule S there exists a deterministic

algorithm A(S) such that distribution-cost(A(S), S, P) ≤ randomized-costT (S). It
remains an open question whether there exists a single deterministic algorithm for
which for all schedules S the inequality holds. I.e., while we have shown that

distribution-costT (P) = sup
S

inf
A

distribution-cost(A,S, P) ≤ randomized-costT ,

it remains open whether

inf
A

sup
S

distribution-cost(A,S, P) ≤ randomized-costT .

For the special case, where the system can be modeled by a single schedule (i.e.,
the set S of schedules is a singleton), Corollary 3.3 indeed implies the last inequality.
This happens, for example, when modeling a synchronous system.

However, as we have seen in Section 4, our results are sufficient to show nontrivial
optimal lower bounds for randomized complexity even for the general asynchronous
case.

Acknowledgment. It is a pleasure to thank A. Herzberg for his helpful advice,
and S. Ben-David and A. Fiat for helpful discussions.

REFERENCES

[1] D. Angluin, Local and global properties in networks of processes, in 12th ACM Symposium on
the Theory of Computing (STOC), Los Angeles, California, 1980, pp. 82–93.

[2] H. Attia, M. Snir, and M. Warmuth, Computing on the anonymous ring, in The 4th Annual
ACM Symposium on Principles of Distributed Computing (PODC), 1985, pp. 196–203.

[3] H. L. Bodlaender, New lower bound techniques for distributed leader finding and other prob-
lems on rings of processors, Theoretical Computer Science, 81 (1991), pp. 237–256.

[4] P. Duris and Z. Galil, Two lower bounds in asynchronous distribute computation, in 28th
IEEE Symposium on the Foundations of Computer Science (FOCS), 1987, pp. 326–330.

[5] F. E. Fich, F. M. auf der Heide, P. Ragde, and A. Wigderson, One, two, three ... in-
finity: Lower bounds for parallel computation, in 17th ACM Symposium on the Theory of
Computing (STOC), 1985, pp. 48–58.

[6] G. N. Fredrickson and N. A. Lynch, Electing a leader in a synchronous ring, J. ACM, 34
(1987), pp. 98–115.

[7] A. Itai and M. Rodeh, Probabilistic methods for breaking symmetry in distributed networks,
Information and Computation, 88 (1990), pp. 60–87.

[8] W. Rudin, Real and Complex Analysis, McGraw-Hill, 3rd ed., 1966.
[9] A. C. Yao, Probabilistic computations: Towards a unified measure of complexity, in 18th IEEE

Symposium on the Foundations of Computer Science (FOCS), 1977, pp. 222–227.

14

