
Possibility and Impossibility Results

in a Shared Memory Environment ∗

Gadi Taubenfeld
AT&T Bell Laboratories
600 Mountain Avenue

Murray Hill, NJ 07974

Shlomo Moran†

Computer Science Department
Technion, Haifa 32000

Israel

Abstract

We focus on unreliable asynchronous shared memory model which support only
atomic read and write operations. For such a model we provide a necessary condition
for the solvability of problems in the presence of multiple undetectable crash failures.
Also, by using game-theoretical notions, a necessary and sufficient condition is provided,
for the solvability of problems in the presence of multiple undetectable initial failures
(i.e., processes may fail only prior to the execution).

Our results imply that many problems such as consensus, choosing a leader, ranking,
matching and sorting are unsolvable in the presence of a single crash failure, and that
variants of these problems are solvable in the presence of t− 1 crash failures but not in
the presence of t crash failures.

We show that a shared memory model can simulate various message passing mod-
els, and hence our impossibility results hold also for those message passing models.
Our results extend and generalize previously known impossibility results for various
asynchronous models.

Key words: asynchronous protocols, impossibility, shared memory, atomic read and
write operations, crash failures, initial failures, winning strategy.

∗A preliminary version of this work appeared in the Proceedings of the 3rd International workshop on
distributed algorithms, Nice, France, September 1989. In: LNCS 392 (eds.:J.C. Bermond, M. Raynal),
Springer Verlag 1989.

†Supported in part by Technion V.P.R. Funds - Wellner Research Fund, and by the Foundation for
Research in Electronics, Computers and Communications, administrated by the Israel Academy of Sciences
and Humanities.

0

1 Introduction

This paper investigates the possibility and impossibility of solving certain problems in an
unreliable asynchronous shared memory system of n ≥ 2 processes, which supports only
atomic read and write operations. The faulty behaviours we consider are undetectable
initial failures and undetectable crash failures. Initial failures are a very weak type of
failures where it is assumed that processes may fail only prior to the execution and that
no event can happen on a process after it fails. That is, once a process starts operating it
is guaranteed that it will never fail. Initial failures are a special case of crash (fail stop)
failures in which a process may become faulty at any time during an execution. Obviously,
if a protocol cannot tolerate initial failures then it cannot tolerate crash failures but not
necessarily vice versa.

In some of our examples we use the consensus problem, in which every process receives
a binary input, and all non-faulty processes have to decide on the same input value. (In
particular, if all input values are the same, then that value must be the decision value.)
Define an input vector to be a vector ~a = (a1, ..., an), where ai is the input value of process
pi. A crucial assumption in most of the impossibility results for a single crash failure is that
the set of input vectors is “large enough”. To demonstrate this fact, consider the consensus
problem where only two input vectors are possible: either all processes read as input the
value “zero” or all processes read as input the value “one”. It is easy to see that under
this restriction, the problem can be solved assuming any number of process failures. (Each
process outputs its input value.)

We concentrate, in this paper, on an asynchronous shared memory model and prove
possibility and impossibility results within that model. For every t < n, where n is the
number of processes, we define a class of problems that are unsolvable in such a system in
the presence of t crash failures. This implies a (necessary) condition for solving a problem
in such an unreliable system. Also, we provide a necessary and sufficient conditions for
solving problems in an asynchronous shared memory model where only undetectable initial
failures may occur. Similar condition for initial failures in a message passing model appears
in [TKM89b]. However, unlike in [TKM89b] we do not need to assume that only up to half
of the processes may fail. Our results extend and generalize previously known impossibility
results for asynchronous systems.

It appears that the necessary and sufficient condition which we give here for initial
failures assuming only deterministic protocols, is the same as the complete characterization
which is given in [CM89] for crash failures assuming randomized protocols. An interesting
result that follows from the similarities between these characterizations is that in a shared
memory model which supports only atomic read and write operations, a problem can be
solved by a deterministic protocol that can tolerate up to t initial failures if and only if the
problem can be solved by a randomized protocol that can tolerate up to t crash failures.

We show that many problems such as consensus, choosing a leader, ranking, matching
and sorting are unsolvable (in a nontrivial way) in the presence of a single crash failure,
and that, for any t, there are variants of these problems that are solvable in the presence of
t− 1 crash failures but not in the presence of t crash failures. An example is the consensus
problem with the assumption that for each input vector, | #1−#0 |≥ t. (i.e., the absolute
difference between the number of ones and the number of zeros is at least t.) Following is a
simple protocol that solves this problem assuming up to t− 1 crash failures (where t > 0).

1

Each process writes its input value into a shared register that the other processes can read
and then repeatedly tries to read the input values of the other processes. Since no more
than t− 1 processes may fail, a non-faulty process eventually reads n− t + 1 input values.
A process decides 1 iff the sum of the n + t− 1 inputs is more than (n− t + 1)/2 otherwise
it decides 0. The fact that | #1−#0 |≥ t guarantees that all the processes will decide the
same.

Another example is the shared-consensus problem, defined for a parameter t ≥ 1
[TKM89a], for which we can use our results to prove impossibility in the presence of up to
t crash failures. The input of each process pi is a real number xi, such that 0 ≤ xi ≤ 1
and |n2 −

∑n
i=1 xi| ≥ t

2 ; Each process has to decide on an integer such that the sum of the
integers decided upon is 0 if

∑
xi < n

2 , and is n otherwise. A solution to this problem in
the presence of up to t− 1 crash failures is as in the previous example.

We show that a shared memory model can simulate several of the message passing
models which are considered in [DDS87], and hence all our impossibility results hold also
for those message passing models. In particular, the impossibility results for crash failures
presented in this paper imply similar results, for an asynchronous message passing model,
which appear in [TKM89a].

The proof of our result for the crash failures case is constructed as follows. We first
identify a class of protocols that can not tolerate the (crash) failure of t processes, when
operating in an asynchronous shared memory system. Then, we identify those problems
which can be solved only by protocols which belong to the above class. Hence, these
problems can not be solved in an asynchronous system where t processes may fail.

The class of protocols for which we prove the impossibility result (for crash failures)
is characterized by two requirements on the possible input and decision (output) values of
each member in the class. For the input, it is required that (for each protocol) there exists
a group of at least n− t processes and there exist input values such that after all the n− t
processes in the group read these input values, the eventual decision value of at least one of
them is still not uniquely determined. The requirement for the decision values is that the
decision value of any (single) process, say pi, is uniquely determined by the input values of
all the processes together with the decision values of all the processes except pi.

In order to prove the above result for protocols, we use an axiomatic approach for proving
properties of protocols (and problems) which is due to Chandy and Misra [CM85, CM86].
The idea is to capture the main features of the model and the features of the class of
protocols for which one wants to prove the result by a set of axioms, and to show that
the result follows from the axioms. We will present five axioms capturing the nature of
asynchronous shared memory systems which support only atomic read and write operations,
a single axiom expressing the fact that at most t processes may crash fail, and two axioms
defining the class of protocols for which we want to prove the impossibility result (for crash
failures). We then show that no protocol in the class can tolerate t faulty processes, by
showing that the set of the eight axioms is inconsistent.

Related Work

There has been extensive investigation about the nature of asynchronous message passing
systems where undetectable crash failures may occur. The work in [FLP85] proves the

2

nonexistence of a consensus protocols that can tolerate a single crash failure, for a completely
asynchronous message passing system. Various extensions of this fundamental result, also
for a single crash failure, prove the impossibility of other problems in the same model
[MW87, Tau87, BMZ88]. Other works study the possibility of solving variety of problems in
asynchronous systems with numerous crash failures, and in several message passing models
[ABD+87, BW87, DDS87, DLS88, TKM89a].

In [DDS87], Dolev, Dwork and Stockmeyer studied the consensus problem in partially
synchronous message passing models. They showed that by changing the broadcast primi-
tives it is possible to solve the consensus problem in the presence of t− 1 crash failures but
not in the presence of t crash failures. They also identify five critical parameters that may
effect the possibility of achieving consensus. By varying these parameters they defined 32
models and found the maximum resiliency for each one of them.

In [LA88] an impossibility result for the binary consensus problem is shown for an
asynchronous shared memory system, such as we consider here, where a single processes
may (crash) fail. In [Abr88, CIL87, Her88] a weaker result than that of [LA88] proves the
impossibility of the consensus problem in the presence of n − 1 crash failures. This last
impossibility result is used in [Her88] to derive a hierarchy of atomic operations (objects)
such that no operation at one level has a wait-free (i.e., (n − 1)-resilient) implementation
using only operation from lower levels. Systems that support only atomic read and write
operations are shown to be at the bottom of that hierarchy. In particular, it is impossible to
implement using atomic read and write operations common data types such as sets, queues,
stacks, priority queues, lists and most synchronization primitives.

Initial failures may occur in situations such as recovery from a breakdown of a network.
Necessary and sufficient conditions are provided in [TKM89b], for solving problems in asyn-
chronous message passing systems where up to half of the processes may fail prior to the
execution, with and without a termination requirement. Several protocols were designed to
properly operate in a message passing model where initial failures may occur. A protocol
that solves the consensus problem which can tolerate initial failures of up to (not including)
half of the processes was presented in [FLP85]. Protocols for leader election and spanning
tree construction which can also tolerate initial failures of up to half of the processes were
designed in [BKWZ87]. As for the shared memory model which supports atomic read and
write operations, a leader election protocol that can tolerate up to n − 1 initial failure
is presented in [Tau89]. A complete combinatorial characterization, for the solvability of
problems in asynchronous shared memory and message passing models where crash failures
may occur using randomized protocols was given in [CM89].

2 Definitions and Basic Notations

Let I and D be sets of input values and decision (output) values, respectively. Let n be
the number of processes, and let Ī and D̄ be subsets of In and Dn, respectively. A problem
T is a mapping T : Ī→2D̄−{∅} which maps each n-tuple in Ī to subsets of n-tuples in D̄.
We call the vectors ~a = (a1, ..., an) where ~a ∈ Ī, and ~d = (d1, ..., dn) where ~d ∈ D̄, the
input vector and decision vector respectively, and say that ai (resp. di) is the input (resp.
decision) value of process pi.

Following are some examples of problems, which we will also refer to later in the paper

3

(the input vectors for all problems are from In for an arbitrary set I): (1) The permutation
problem, where each process pi(i = 1..n) decides on a value vi from D, D ≡ 1, ..., n, and
i 6= j implies vi 6= vj ; (2) The transaction commitment problem, where I = D = {0, 1}, and
all processes are to decide on “1” if the input of each process is “1”, otherwise all processes
are to decide on “0”; (3) The consensus problem, where all processes are to decide on
the same value from an arbitrary set D; (4) The (leader) election problem, where exactly
one process is to decide on a distinguished value from an arbitrary set D; and (5) The
sorting problem, where all processes have input values and each process pi decides on the
ith smallest input value. In the permutation, consensus and election problems, the trivial
solutions, in which only one vector of D̄ is always chosen, is ruled out by the additional
requirement that each process does not decide on the same value in all computations.

A protocol P ≡ (N, R,C) consists of a set of process id’s (abbv. processes) N ≡
{p1, ..., pn}, a (possibly infinite) set R of registers, and a nonempty set C of computations.
A computation is a finite sequence of events. In protocols over shared memory read/write
models there are four types of events. A read event, denoted ([read, r, v], pi), represents
reading a value v from register r by process pi. A write event, denoted ([write, r, v], pi), rep-
resents writing a value v into register r by process pi. An input event, denoted ([input, a], pi),
represents reading an input value a by process pi. A decide event, denoted ([decide, d], pi),
represents deciding on a value d by process pi. (One may also consider an internal event in
which a process executes some other local computation; however nowhere in this paper do
we need to refer to such an event.)

We use the notation (e, pi) to denote an arbitrary event, which may be an instance of
any of the above types of events. For an event (e, pi) we say that it occurred on process pi.
An event is in a computation iff it is one of the events in the sequence which comprises the
computation. It should be emphasized that, given a set of processes N , a set of registers
R, and a set of computations C, the triple (N, R, C) is a protocol in a given model only if
the set C satisfies certain properties, which depend on N , R and the given model.

The value of a register at a finite computation is the last value that was written into that
register, or its the special symbol ⊥ if no process wrote into the register. We use value(r, x)
to denote the value of r at a finite computation x.

It is convenient to think of R as the set of shared memory registers, and to assume that
each process may have in addition local variables that only it can read from and write to.
In this work we do not need the notion of local variables.

In the rest of this paper Q denotes a set of processes where Q ⊆ N . The symbols x, y, z
denote computations. An extension of a computation x is a computation of which x is a
prefix. For an extension y of x, (y−x) denotes the suffix of y obtained by removing x from
y. For any x and pi, let xi be the subsequence of x containing all events in x which are on
process pi. Computation y includes computation x iff xi is a prefix of yi for all pi.

Definition: Computations x and y are equivalent w.r.t. pi, denoted by x
i∼ y, iff

xi = yi.

Note that the relation i∼ is an equivalence relation. Also, for x a prefix of y, there is an
event on pi in (y − x) iff ¬(x i∼ y).

Next, we define for a computation x and process pi, the extensions of x which only have
events on pi.

4

Definition: Extensions(x, i) ≡ {y | y is an extension of x and x
j∼ y for all j 6= i}.

Process pi reads input a in a computation x iff the input event ([input, a], pi) is in x.
Process pi decides on d in a computation x iff the decision event ([decide, d], pi) is in x.
A computation x is i-input iff for some value a, pi reads input a in x. We assume that a
process may read an input value only once and decide only once.

A protocol P ≡ (N, R, C) solves a problem T : Ī→2D̄−{∅} iff (1) For every input vector
~a ∈ Ī, and for every decision vector ~d ∈ T (~a), there exists a computation z ∈ C such
that in z processes p1,...,pn read input values a1,...,an and decide on d1,...,dn; (2) For every
computation z ∈ C and ~a ∈ Ī if in z processes p1,...,pn read input values a1,...,an and decide
on d1,...,dn, then ~d ∈ T (~a); and (3) In any “sufficiently long” computation on input in Ī all
processes decide (this last requirement is to be defined precisely later). It is also possible
to define solvability so that (1) is replaced by the requirement that for each input vector
~a ∈ Ī, there exists a computation with ~a as input. In such a case we will say that a protocol
P minimally solves a problem T . The difference between the two is that in the former case
every possible decision vector is the result of some computation, while in the latter this is
not so. It will be shown in section 6 that it is possible to prove the impossibility result for
the former definition of solvability, and then to derive from it a result for the latter one.

We define when a set of input events is consistent w.r.t. a given task. Intuitively,
this is the case when all the input events in the set can occur in the same computation.
Formally, Let T : Ī→2D̄−{∅} be a given task, and let P be a protocol that solves T . Then
a set of n input events {([input, a1], p1), · · · , ([input, an], pn)} is consistent w.r.t. P only
if (a1, · · · , an) ∈ Ī, and any subset of a consistent set of input events is also consistent.
In the sequel, we assume that for every protocol P ≡ (N, R, C) that solves a problem
T : Ī→2D̄−{∅}, the set of input events in any computation x ∈ C is consistent.

3 Shared Memory Model

In this section we characterize an asynchronous shared memory model which supports
atomic read and write operations. This is done by stating 5 axioms which define what
are the ordering of events of a computation.

Definition: An asynchronous read-write protocol (abbv. asynchronous protocol) is a
protocol whose computations satisfy the following properties,

P1: Every prefix of a computation is a computation.

P2: Let 〈x; (e, pi)〉 be a computation where (e, pi) is either a write event or a decision event,
and let y be a computation such that x

i∼ y, then 〈y; (e, pi)〉 is a computation.

P3: For any computation x, process pi and input value a, if the set of all input events in x
together with ([input, a], pi) is consistent then there exists y in Extensions(x, i), such
that ([input, a], pi) appears in y.

P4: For computations x and y and process pi, if 〈x; ([read, r, v], pi)〉 is a computation, and
x

i∼ y then 〈y; ([read, r, value(r, y)], pi)〉 is a computation.

P5: For a computation x and an event ([read, r, v], pi), the sequence 〈x; ([read, r, v], pi)〉 is
a computation only if v = value(r, x).

5

Property P2 means that if some write event or decision event can happen on process pi at
some point in a computation, then this event can happen at a later point, provided that
pi has taken no steps between the two points. Property P3 means that a process which
has not yet read an input value may read any of the input values not conflicting with those
already read by other processes. For example, if we assume that the input values different
processes may read in the same computation are distinct, then a process may read any
value which has not already been read by other processes. Property P4 means that if a
process is “ready to read” a value from some register then an event on some other process
cannot prevent this process from reading some value from that register (although it may
prevent this process from reading a specific value which it could read previously). Property
P5 means that it is possible to read only the last value that is written into a register.

We will consider in this paper only deterministic protocols which means that at any
point in a computation a process may perform at most one non-input action; in case the
current action of a process is reading an input then the process may read one of several
possible input values. I.e., if 〈x; (e, pi)〉 and 〈x; (e′, pi)〉 are computations and both (e, pi)
and (e′, pi) are not input events then (e, pi) ≡ (e′, pi). This assumption does not restrict
the generality of the results which will hold also for non-deterministic protocols.

We say that process pi is enabled at computation x iff there exists an event (e, pi) such
that 〈x; (e, pi)〉 is a computation. It follows from the above five properties that an enabled
process (in some computation) cannot become disabled as a result of an event on some
other process.

4 Classes of Protocols

In this section we identify two classes of protocols, called dependent(t) protocols, and
robust(t) protocols. The important features of dependent(t) protocols are the requirements
on the possible input and decision (output) values. For the input, it is required that there
exists a group of at least n− t processes and there exist input values such that after all the
n− t processes read these input values, the eventual decision value of at least one of them is
still not uniquely determined. Compared with the usual requirement in other works where
the above group should include all the processes (i.e., be of size n), this requirement is very
weak. The requirement for the decision values is that the decision value of any (single)
process pi is uniquely determined by the input values of all the processes together with the
decision values of all the processes except pi.

Typical examples of dependent(t) protocols are the protocols that solve any of the
problems described in the Introduction and Section 2, where various assumptions, depending
on the value of t, are made about the set of input vectors for each of these problems. Having
that class formally defined, we prove in the next section that for every 1 ≤ t ≤ n, no protocol
in the class of dependent(t) protocols can tolerate t process failures.
The following definition generalizes the notion of valency of a computation from [FLP85].
Let d be a possible decision value and let U,W be sets of values.

Definition: A computation x is (i,W)-valent iff (1) for every d ∈ W , there is an
extension of x in which pi decides on d, and (2) for every d 6∈ W , there is no extension of x
in which pi decides on d.

6

A computation is i-univalent iff it is (i,{d})-valent for some (single) value d. It is i-
multivalent otherwise. It will follow from the sequel that no computation in a protocol
studied here is (i, ∅)-valent. A computation may become i-univalent (i.e., its ultimate
decision value can be uniquely determined) as a consequence of some other process’ action.
That is, it is possible to have two computations x and y such that x

i∼ y, yet x is i-univalent
while y is i-multivalent. Also, for any computation x and any process pi, if pi has decided
on some value then x is i-univalent but not vice versa. Note that for any computation x
and process pi there exists a single set W such that x is (i,W)-valent.

Definition: Let y and y′ be (i,W)-valent and (i,W ′)-valent, respectively. Then y and
y′ are i-compatible iff W ∩ W ′ 6= ∅. They are compatible iff they are i-compatible for all
i = 1..n.
Using the above notions we can now characterize dependent(t) protocols formally. Two
requirements are given, and a protocol is defined to be a dependent(t) protocol if it satisfies
these requirements.

Definition: A dependent(t) protocol is a protocol that satisfies the requirements:

D1(t): There exists a computation x, set of processes Q and process pi ∈ Q, such that
|Q| ≥ n− t, for every pj ∈ Q x is j-input, and x is i-multivalent. (non-triviality.)

D2: For any two computations x and y which are both i-univalent, if each process read the
same input value in both x and y, and if each processes pj 6= pi decide on the same
value in both x and y then x and y are i-compatible. (dependency.)

Requirement D1(t) generalizes a requirement which appears in [FLP85],(i.e., Lemma 2),
which says that a non trivial consensus protocol must has a bivalent initial configuration.
As we explain latter in section 7, any problem that can be solved by a protocol that does
not satisfy D1(t), has also the following trivial solution. Each process sends its input value
to all other processes, then it waits until it receives n− t values; assuming it does not satisfy
D1(t), it has now enough information to decide. Notice that D1(t) implies D1(t + 1). It is
not difficult to see why any protocol that solves the variant of the consensus problem, with
the assumption that for each input vector |#1−#0| ≥ t, or the shared-consensus problem
which is mentioned in the introduction, must satisfy D1(t). The proof of that fact is similar
to the proof of Lemma 2 in [FLP85].

Requirement D2 means that an external observer who knows all the input values and all
decision values except one can always determine the missing decision value. All protocols
which solve the problems mentioned in the Introduction and in Section 2 satisfy D2.

Next we identify the class of protocols which can tolerate t crash failures (0 ≤ t ≤ n).
A crash failure of a process means that no subsequent event can happen on this process.
Note that if an impossibility result holds for crash failures it also holds for any stronger
type of failure. Informally, a protocol is robust(t) if, in spite of a failure of any group of
t processes at any point in the computation, each of the remaining processes eventually
decides on some value.

In order to define robust(t) protocols formally, we need the concept of a Q-fair sequence.
Let Q be a set of processes, a Q-fair sequence w.r.t. a given protocol is a (possibly infinite)
sequence of events, where: (1) Each finite prefix of the sequence is a computation; (2) For
an enabled process pi ∈ Q at some prefix x, there exists another prefix y that extends x

7

such that there is an event (e, pi) in (y − x). It follows from P5 and requirement (1) that
the sequence 〈x; ([read, r, v], pk)〉 is a prefix of a Q−fair sequence only if v = value(r, x).

A Q-fair sequence captures the intuition of an execution where all enabled processes
which belong to Q can proceed. Notice that a Q-fair sequence may be infinite and in such
a case it is not a computation. It follows from P1−P5 that, in asynchronous protocols, for
every set of processes Q, any computation is a prefix of a Q-fair sequence.

Definition: A robust(t) protocol (0 ≤ t ≤ n) is a protocol that satisfies the requirement:

R(t): For every set Q of processes where |Q| ≥ n − t, every Q-fair sequence has a finite
prefix in which any pi ∈ Q decides on some value.

Note that the class of robust(t + 1) protocols is included in the class of robust(t) protocols.
Furthermore, the inclusion is strict since there are protocols which are robust(t) but not
robust(t + 1). Requirement R(0) means that in any “long enough” execution of a protocol,
if no process fails then each process (eventually) decides on a value. In fact, R(0) formally
expresses requirement (3) from the definition of solves given in Section 2. Thus, any pro-
tocol that solves a problem should satisfy R(0). From R(0) and from the fact that every
computation is a prefix of some N-fair sequence it follows that (in asynchronous robust(0)
protocols) no computation is (i, ∅)-valent.

In order to define robust(t) protocols we did not have to define the notion of a faulty
process. We concentrated on the role of the correct processes in order to capture the nature
of robustness. By using the notion of a Q-fair sequence we have described an execution
in which all processes in Q are correct, and only for those processes we required that they
eventually decide. We may say that process pi 6∈ Q is faulty in some Q-fair sequence if
that sequence is not a (Q∪{pi})-fair sequence. There is a way to define a fault tolerant
protocol by first defining the notion of a faulty process as done in [Had87]. This involves
the introduction of an additional type of event which signals the fact that a process is
faulty. Our approach seems to be more suitable for the model under consideration, since
it captures the fact that in systems where a failure of a process is not detectable, a faulty
process cannot be distinguished from a process that operates very slowly. It also simplifies
the presentation and the proofs.
Lemma 1: In any asynchronous robust(1) protocol, for any two computations x and y and

for any process pi, if x
j∼y for every j 6= i, and value(r, x) = value(r, y) for every r ∈ R,

then x and y are j-compatible for every j 6= i.
Proof: It follows from P1 − P5 that the computation x is a prefix of some (N−{pi})-fair
sequence, and there are no events on pi in that sequence after x. Apply requirement R(1)
to the above sequence to conclude that there exists an extension z of x such that x

i∼z and
any pj 6= pi has decided in z. From P1 − P4, it follows that w ≡ 〈y; (z − x)〉 is also a
computation. Clearly, for any j 6= i, z and w are j-compatible. Hence also, for any j 6= i, x
and y are j-compatible. 2

We postpone the formal definition of initial failures to Section 7. In the next two sections
we consider only crash failures.

8

5 Impossibility Results for Protocols

In the previous sections we have defined several classes of protocols in the shared memory
model which supports only atomic read and write operations. In this section we investigate a
class which is the intersection of all the previous classes. This class is defined by the entire
eight axioms and is called the class of RObust(t) Asynchronous Dependent(t) Protocols
(abbv. ROAD(t) P’s), where 1 ≤ t ≤ n. We prove in this section that the class of ROAD(t)
P’s is empty. Put another way, we show that there does not exist any ROAD(t) P.

The following lemma shows that for any ROAD(t) P, every two computations which
differ only by the events on a single process pi and in which the values of all registers are
the same are compatible.
Lemma 2: In any ROAD(t) P, for any two computations x and y and any process pi,

if, (1) pi did not read different input values in x and y, (2) x
j∼y for any j 6= i, and (3)

value(r, x) = value(r, y) for any r ∈ R, then x and y are compatible.
Proof: It follows from P1 − P5 that the computation x is a prefix of some (N−{pi})-fair
sequence, and there are no events on pi in that sequence after x. Apply requirement R(1)
to the above sequence to conclude that there exists an extension z′ of x such that x

i∼z′

and for any pj 6= pi, pj has decided in z′. By P3 there is an extension z of z′ in which
all processes except maybe pi read their input and z

i∼ z′. From P1 − P4, it follows that
w ≡< y; (z − x) > is also a computation. By P1− P5 and R(0), there are two i-univalent
extensions ẑ and ŵ of z and w respectively, in which pi reads the same input value. From
D2, ẑ and ŵ are compatible and hence also x and y are compatible. 2

Theorem 1: In any ROAD(t) P, for any process pi and any j-multivalent computation x,
if x is i-input and pi is enabled at x then there exists a j-multivalent extension x̂ of x such
that ¬(x i∼ x̂).
Proof: To prove the theorem we first assume to the contrary: for some process pi and
some j-multivalent computation x where x is i-input and pi is enabled at x, there is no
j-multivalent extension x̂ of x such that ¬(x i∼ x̂). Then we show that this leads to a
contradiction. It follows from the assumption that for any extension m of x such that pi

is enabled at m, the unique extension of m by a single event on pi is j-univalent. Let us
denote that j-univalent extension of m by Φ(m).

Since x is j-multivalent, there exists an extension z of x (z 6= x) such that z and Φ(x) are
not j-compatible. Let z′ be the longest prefix of z such that x

i∼ z′. From the assumption
it follows that Φ(x) and Φ(z′) are not j-compatible. Consider the extensions of x which are
also prefixes of z′. Since Φ(x) and Φ(z′) are not j-compatible, there must exist extensions y
and y′ (of x) such that Φ(y′) and Φ(y) are not j-compatible, and y is a one event extension
of y′. Therefore, y =< y′; (e, ph) > for some event (e, ph) where pi 6= ph. For later reference
we denote w ≡< Φ(y′); (e, ph) >. We do not claim at this point that w is a computation.
(See Figure 1.)

There are four possible cases.
Case 1: (e, ph) is not a write event. By P2 and P4, (Φ(y′) − y′) = (Φ(y) − y) and

hence for any pk 6= ph, Φ(y′) k∼ Φ(y). Also, the values of all registers are the same in both
Φ(y) and Φ(y′), and obviously ph does not read different input values in Φ(y′) and Φ(y).

9

By Lemma 2, Φ(y′) and Φ(y) should be compatible. Hence, we reach a contradiction.
At this point we know that (e, ph) is a write event and (from P2) that w is a computation.

Case 2: (Φ(y′)− y′) is not a write event. For every pk 6= pi, w
k∼ Φ(y). Also, the values

of all registers are the same in both w and Φ(y). Since y is i-input obviously pi reads the
same input values in w and Φ(y). By Lemma 2, w and Φ(y) are compatible. Since, w is
an extension of Φ(y′) then Φ(y′) and Φ(y) should be compatible. Hence again we reach a
contradiction.
Now we know that for some registers r1 and r2, and values v1 and v2, (Φ(y′) − y′) =
([write, r1, v1], pi), and (y − y′) = ([write, r2, v2], ph).

Case 3: r1 6= r2. Since the two write events on pi and ph are independent, the values of
all registers are the same in w and Φ(y). Also, for every process pk, w

k∼ Φ(y). This leads
to a contradiction as in the second case.

Case 4: r1 = r2. Clearly, value(Φ(y′), r1) = value(Φ(y′), r2) = value(Φ(y), r1) =
value(Φ(y), r2) = v1. Hence, the values of all registers are the same in Φ(y′) and Φ(y).
Also, for any pk 6= ph, Φ(y′) k∼ Φ(y). By Lemma 2, Φ(y′) and Φ(y) are compatible. Hence,
again we reach a contradiction.
This completes the proof. 2

Theorem 2: There is no ROAD(t) P.
Proof: By D1(t), there exists a computation x, process pi and set of processes Q, such that
|Q| ≥ n− t, for every pj ∈ Q x is j-input, pi ∈ Q, and x is i-multivalent. Using Theorem 1,
we can construct inductively starting from the computation x a Q-fair sequence such that
all the finite prefixes of that sequence are i-multivalent. This contradicts requirement R(t).
2

Consider the eight requirements mentioned so far. Apart from requirement D2, all
the requirements capture very natural concepts: P1− P5 and R(t) express the well known
notions of asynchronous and robust protocols respectively, while D1(t) requires that a given
solution is not trivial. This motivates the question of what can be said about protocols that

10

satisfy all the above requirements except D2. For later reference we call these protocols
Decision(t) Asynchronous Robust(t) Protocols (abbv. DEAR(t) P’s). A simple example for
a DEAR(n− 1) protocol, is a protocol where there is only one shared register, each process
first writes its input value into the shared register, then it reads the value of the shared
register and decides on that value.

It follows immediately from the impossibility result of Theorem 2 that DEAR(t) P’s
cannot satisfy requirement D2. Also, if we inspect the proof of Theorem 2 we see that
requirement D2 is only used in the proof of Lemma 2. Hence, we conclude that DEAR(t)
P’s have to satisfy the negation of Lemma 2. These observations leads to the following
theorem.
Theorem 3: In any DEAR(t) P, there exist two computations x and y, and there exists

process pi, such that: (1) pi did not read different input values in x and y, (2) x
j∼y for any

j 6= i, (3) value(r, x) = value(r, y) for any r ∈ R, and yet x and y are not i-compatible.
Proof: Immediate from Lemma 1 and the negation of Lemma 2. 2

Theorem 3 gives the intuition for the nonexistence result for ROAD(t) P’s as stated in
Theorem 2. This result follows from a conflict between two requirements. One is require-
ment D2 which means that at any time a process may be forced by the group of all other
processes to a situation where it has only one possible decision left. As opposed to that
requirement there is the necessary condition given in Theorem 3 which means that there
exist two computations such that the sets of values some process may still decide on in each
one of this computations are disjoint and those computation are indistinguishable from the
point of view of the group of all other processes.

6 Impossibility Results for Problems

In this section we identify the problems that cannot be solved in an unreliable asynchronous
shared memory environment which support only atomic read and write operations. We do
this by identifying those problems which are solved only by ROAD(t) protocols. Hence, the
impossibility of solving these problems will follow from Theorem 2. Results for completely
asynchronous message passing systems which are similar to those presented in the sequel
appear also in [TKM89a]. As we shall see in Section 8, the results presented in this section
imply those in [TKM89a].

We say that a problem can be solved in an environment where t processes may fail, if
there exists a robust(t) protocol that solves it. Since we assume an asynchronous shared
memory environment where t processes may fail, any protocol that solves a problem should
satisfy properties P1−P5, and requirement R(t). Thus, we are now left with the obligation
of identifying those problems which force any protocol that solves them also to satisfy
requirements D1(t) and D2. Let Q denote a set of processes, and ~v and ~v′ be vectors. We
say that ~v and ~v′ are Q-equivalent, if they agree on all the values which correspond to the
indices (of the processes) in Q. A set of vectors H is Q-equivalent if any two vectors which
belong to H are Q-equivalent. Also, we define: T (H) ≡

⋃

~a∈H

T (~a).

Definition: A problem T : Ī→2D̄−{∅} is a dependent(t) problem iff it satisfies the
requirements:

11

T1(t): There exists a set of processes Q where |Q| ≥ n− t, and there exists a Q-equivalent
set H ⊆ Ī such that T (H) is not a Q-equivalent set.

T2: For every ~a ∈ Ī, every set of processes Q where |Q| = n − 1, and every two different
decision vectors ~d and ~d′, if both ~d and ~d′ belong to T (~a) then they are not Q-
equivalent.

Requirement T1(t) means that n− t input values (in an input vector) do not determine the
corresponding n − t decision values (in the decision vectors). Any problem that does not
satisfy requirement T1(t) can easily be solved in a completely asynchronous environment
where t processes may fail. (Each process sends its input value to all other processes, then
it waits until it receives n− t values; assuming it does not satisfies T1(t), it has now enough
information to decide.) Note that T1(t) implies T1(t + 1). Requirement T2 means that a
single input vector cannot be mapped into two decision vectors that differ only by a single
value.
Theorem 4: A dependent(t) problem cannot be solved in an asynchronous shared memory
system which supports only atomic read and write operations and where t failures may
occur.
Proof: As already explained any protocol that solves a dependent(t) problem, in an asyn-
chronous shared variable model where t processes may fail, should satisfy P1−P5 and R(t).
It follows from T1(t) that such a protocol must satisfy D1(t). Also, it follows from T2 that
the protocol satisfies D2. Hence, such a protocol is necessarily a ROAD(t) P. Applying
Theorem 2 the result is proven. 2

Clearly, the shared-consensus problem is a dependent(t) problem and hence can not be
solved in the presence of up to t crash failures. For the two corollaries of Theorem 4, we use
the following definitions and observations. A problem T : Ī→2D̄−{∅} includes a problem
T : Ī ′→2D̄′−{∅} iff (1) Ī ′ = Ī, and (2) for every ~a′ ∈ Ī ′: T ′(~a′) ⊆ T (~a′). It is easy to see that
a protocol P minimally solves a problem T iff there exists a problem T ′ which is included
in T such that P solves T ′. A problem T ′ : Ī→2D̄′−{∅} is a sub-problem of a problem
T : Ī→2D̄−{∅} iff (1) Ī ′ ⊆ Ī, and (2) for every ~a′ ∈ Ī ′: T (~a′) = T ′(~a′). It is easy to see that
if a protocol P solves (minimally solves) a problem T then P solves (minimally solves) any
sub-problem T ′ of T .

Corollary 4.1: If some sub-problem of T includes only dependent(t) problems then T
cannot be minimally solved in a completely asynchronous environment where t processes
may fail.

Corollary 4.2: If a problem T has a dependent(t) sub-problem then T cannot be solved
in a completely asynchronous environment where t processes may fail.

Example: Consider the following variant of the consensus problem T : Ī→2D̄−{∅} where
all processes are to decide on the same value from the set D; Ī is the set of all vectors ~a such
that ~a ∈ (0 + 1)n and |#1−#0| ≥ t, and there exist two input vectors ~a and ~a′ such that
T (~a)∩T (~a′) = ∅. It is not difficult to see that T is a dependent(t) problem and furthermore
that T includes only dependent(t) problems. From Corollary 4.1 we conclude that T cannot
be minimally solved in a completely asynchronous environment where t processes may fail.

Nowhere up to now, have we assumed anything about the process ids, hence the results
we proved hold even if all processes have distinct id’s which are mutually known.

12

7 Initial Failures

In this section we give a complete characterization of the problems that can be solved in an
asynchronous shared memory environment where t processes may initially fail. We use the
intuitive appeal of a game-theoretical characterization by reducing the question of solvability
in the model under consideration to whether there is a winning strategy to a certain game
which we describe below. The exposition here is influenced by the “Ehrenfeucht Game”
[EFT84], which is used in mathematical logic to determine if two structures are elementarily
equivalent (that is, if they satisfy the same first-order sentences.) Similar results for message
passing model appears in Section 4 of [TKM89b]. However, unlike in [TKM89b] we do
not need to assume here that only up to half of the processes may fail. Also, similar
characterization, for the solvability of problems in an asynchronous shared memory model
where crash failures may occur using randomized protocols is given in [CM89].

Informally, a protocol can tolerate up to t initial failures if in spite of a failure of any
group of up to t processes at the beginning of the computation, each of the remaining
processes eventually decides on some value. We now characterize such protocols formally.

Definition: A protocol can tolerate up to t initial failures iff for every set Q of processes
where |Q| ≥ n− t, every Q−fair sequence which consists only of events on processes which
belong to Q, has a finite prefix in which any pi ∈ Q has decided.

Note that the class of protocols that can tolerate up to t initial failures strictly includes
the class of protocols that can tolerate only up to t − 1 initial failures. To see that the
inclusion is strict consider the rotating(t) problem, where each process pi has to decide on
a decision value from the set of input values of processes pi(mod n)+1, ...,pi+t−1(mod n)+1. In
any protocol that solves this problem, process pi will never be able to decide if all processes
pi(mod n)+1, ...,pi+t−1(mod n)+1 fail. We say that a problem can be solved in an environment
where t initial failures may occur, if there exists a protocol which can tolerate up to t initial
failures that solves the problem.

The game G(T, t), corresponding to a problem T : Ī→2D̄−{∅} and a number t (0 <
t ≤ n− 1), is played by two players A (Adversary) and B, according to the following rules.
Each play of the game begins with a move of player A and in the subsequent moves both
players move alternately. The game is played on a board which has n empty circles, which
are numbered from 1 to n. At the first move player A chooses n− t input values from (the
set of input values) I and “places” them on arbitrary n − t empty circles. Then player B
chooses n − t decision values from (the set of decision values) D and uses them to cover
all the n − t input values placed by player A in the previous move. The other subsequent
moves consist of player A choosing a single value from I, in each move, and placing it on an
empty circle, and then player B choosing a single value from D and covering the previous
value placed by player A. The play is completed when all the n circles are covered with
decision values from D. We emphasize that at any time each player knows all the previous
moves.

We denote by ai ∈ I and di ∈ D the values players A and B placed on the i′th circle in
the course of the play, respectively. For simplicity we assume that the final vector (a1,...,an)
belongs to Ī. Player B has won the play iff ~d ∈ T (~a). Player B has a winning strategy in
the game G(T, t), denoted B wins G(T, t), if it can always win each play.

13

For simplicity we assume that the processes have distinct identities which are mutually
known. We will remove these assumptions later.

Theorem 5: A problem T can be minimally solved in an asynchronous shared memory
environment where t processes may initially fail (0 < t ≤ n− 1), iff player B wins G(T, t).

Proof: This proof is similar to Theorem 1 in [TKM89b]. We first prove the if direction. The
proof is based on the fact that in the model under consideration (which supports atomic
read and write operations), it is possible to elect a leader in the presence of up to n−1 initial
failures [Tau89]. Suppose player B has a winning strategy in the game G(T, t). We describe
a protocol that minimally solves T in the presence of t initial failures. First each process
writes its input into a shared register, and then one of the processes is elected as a leader.
Then the leader try to read the input value of all the processes. Since at most t processes
might be faulty, the leader is guaranteed to read k ≥ n− t input values (including its own).
The leader then uses the winning strategy of player B to determine the corresponding k
decision values, and transfer (by writing to a shared register) the relevant decision value
to each process from which it read an input value. Afterwards the leader repeatedly tries
to read the input value of the other processes. Upon reading an additional input value,
it uses again the winning strategy of player B, to produce an appropriate decision value,
and transfer it to the process from which it read the input value. Each process that gets
a decision value from the leader decides on that value. The fact that B has a winning
strategy implies that for every input vector ~a, and for every possible run on input ~a, the
output vector belongs to T (~a).

We now prove the only if direction. Let P be an asynchronous protocol that minimally
solves T in the presence of t initial failures. We describe a winning strategy for player B
in G(T, t). Let ~a ∈ Ī be an arbitrary input vector, and let Q be a set of process where
|Q| = n − t such that player A chooses in his first move the set of values {ai|pi ∈ Q} and
places each value ai on the circle numbered with i. Since P can tolerate up to t initial
failures, there exists a computation x ∈ C such that x consists only of events on processes
which belong to Q, and any process pi ∈ Q reads the input value ai and decides in x. Let di

denotes the value on which process pi ∈ Q decided in x. By using P , player B can simulate
the computation x, output the n − t decision values, and cover each input value ai by the
corresponding decision value di. Now assume that player A chooses next some value aj

where pj 6∈ Q and places it on the j′th circle. Since P can tolerate up to t initial failures,
there is an extension y of x in which process pj reads the input value aj and decides on some
value dj , x consists only of events on processes which belong to Q ∪ {pj}. Thus again, by
using P , player B can continue the simulation of x in order to simulate computation y and
choose dj . A similar construction holds also for any further input values that A chooses.
Finally, since P minimally solves T , ~d ∈ T (~a) and hence player B wins the game. 2

Examples of problems that can be shown to be unsolvable using the above theorem (in
the model under consideration), are transaction commitment, sorting and rotating(t). To
show the impossibility for transaction commitment we demonstrate that B has no winning
strategy. The adversary can choose at its first move n − t “1” values; B then must also
use n− t “1” values since player A may later choose only “1” values. Then A can add the
value “0” and B loses. The above theorem also points out how to construct a solution (i.e.,

14

a protocol) to any solvable problem T . First find a winning strategy for player B in the
game G(T, t) and then plug it into the (schematic) protocol presented in the “if” part of
the proof of Theorem 5.

In the proof of Theorem 5, the assumption that the processes have distinct identities
which are mutually known is used at the point where the leader (in the “if” part) has to
consult with the winning strategy of player B. We now remove this assumption and only
require that the input values are distinct. (This, of course, also covers the case where the
processes have distinct identities which are not mutually known). Next, we modify Theorem
5 so that it holds under this weaker requirement.

Recall that ~a and ~d are the vectors players A and B placed in the course of the play,
respectively. Let π ≡ (π1,...,πn) be a permutation of 1, ..., n, and let π(~a) denote the
vector (aπ1 ,..., aπn). We say that player B strongly won the play iff for every permutation
π of 1, ..., n where π(~a) ∈ Ī, and for every vector ~d ∈ T (~a), it is the case that π(~d) ∈
T (π(~a)). Player B has a strong winning strategy in the game G(T, t) and write “B strongly
wins G(T, t)” if it is possible for him to strongly win each play. If we now substitute in
Theorem 5 the term “strongly wins” for “wins” then the modified theorem will hold under
the requirement that the input values are distinct, and with no need to assume anything
about the process identities. The proof of this theorem involves some technical modification
of the previous proof, and is based on the fact that a leader can still be elected. Another way
of resolving this problem is the following. We say that a problem T : Ī→2D̄−{∅} is symmetric
iff for every vector ~a ∈ Ī, for every permutation π of 1, ..., n, and for every vector ~d ∈ T (~a),
it is the case that π(~a) ∈ Ī and π(~d) ∈ T (π(~a)). For symmetric problems the notion of
strongly wins and wins coincide, and hence for such problems the original formulation of
Theorem 5 still holds (without the assumption that the processes have distinct identities).

8 Simulations of Various Message Passing Models by a
Shared Memory Model

We show how our results can be used to decide whether the shared memory model, as
defined in Section 3, can simulate various message passing models. To prove our results
about the possible simulations we need to use several results for message passing systems
which have been proven in [DDS87]. Thus, we first informally review some of the results
presented in [DDS87].

The authors identify five critical parameters in message passing systems that may effect
the possibility of achieving consensus. The digits 0 and 1 below refer to situations that are
unfavorable or favorable for solving a problem, respectively. The notion of atomic step is
used for an undivided sequence of events on some process. A process which executes an
atomic step cannot fail before completing that step. The five parameters are:
Processes

0. Asynchronous - Any finite numbers of events can take place between any two consec-
utive events on a process. That is, there is no assumption on the relative speed of the
processes.

1. Synchronous - There is a constant Ψ ≥ 1 such that for any computation 〈x; y〉, if

15

there are Ψ + 1 events on some process in y then there is an event on any nonfaulty
process in y.

Communication

0. Asynchronous - Any finite numbers of events can take place between the sending and
receiving of a certain message. That is, no assumption is made about the time it takes
for a message to arrive to its destination.

1. Synchronous - There is a constant ∆ ≥ 1 such that, every message that is sent is
delivered within ∆ attempts made to accept it. That is, there is an apriori bound on
time delivery.

Messages

0. Unordered - Messages can be delivered out of order.

1. Ordered - If m1 is sent before the message m2 (w.r.t. real time), and both message
are sent to the same process, then m1 must be received before m2. That is, messages
must be delivered in the order they are sent.

Transmission Mechanism

0. Point to point - In an atomic step a process can send to at most one process.

1. Broadcast - In an atomic step a process can send to all processes.

Receive/Send

0. Separate - In an atomic step a processes cannot both receive and send.

1. Atomic - In an atomic step a processes can receive and send.

By varying the above five parameters the authors of [DDS87] defined 32 models and found
the maximum resiliency for each one of them. These results are presented in the table in
Figure 2. In an entry of the table the letters 0, 1, n describe the maximum resilience for
the relevant model as proved in [DDS87]. (Recall that n is the number of processes, thus
when n appears in an entry it means that it is possible to tolerate any number of faulty
processes.)

We have examined all the 32 message passing models considered in [DDS87]. For each
of 30 out of those models we can either prove that it can be simulated by an asynchronous
shared memory model which support only atomic read and write operations (abbv. shared
memory model), or can prove that it cannot. By saying that model A can simulate model
A′, we mean that the existence of a protocol which solves some problem in the presence of
t failures in model A′, implies the existence of a protocol which solves the same problem in
the presence of t failures in model A. Evidently, all the impossibility results that we proved
so far hold for any model that can be simulated by a shared memory model.

Our results are also presented in the table in Figure 2. The words “Yes ” and “No
” state whether the particular model can be simulated by a shared variable model, while

16

“?” declares that we do not know the answer. To prove this results we need to use the
results from [DDS87] together with the result that it is not possible to solve the consensus
problem in an asynchronous shared memory model which support only atomic read and
write operations and where a single processes may fail.

As can be seen from the results of [DDS87] there are 19 models that can tolerate a single
process failure. Clearly this 19 models cannot be simulated by a shared memory model,
because this would imply that it is possible to solve consensus in an asynchronous shared
memory model where a single processes may fail, a claim that we know is incorrect.

As for the other 7 models for which we claim that they cannot be simulate by a shared
memory model, the proof of that follows easily from the following observation. Let A and
A′ be two models that are the same in all parameters except that in A communication
is asynchronous and in A′ communication is synchronous. If a shared memory model can
simulate A then it also can simulate A′ (and vice versa). Put another way, if A′ cannot be
simulated by a shared memory model then so do A. The correctness of this observation
follows from fact that, assuming that no write override a previous write, communication
(by reading and writing) is always instantaneous (i.e., synchronous) in a shared memory
model and hence any simulation for model A will work also for A′.

We show now how a shared memory can simulate message passing model where com-
munication is synchronous, transmission mechanism is broadcast and all the other three
parameters are set to 0.

With each process we associate an unbounded array of shared register which all processes
can read from but it only can write into. (Instead of an unbounded array we can use one
unbounded size register.) To simulate a broadcast of a message a process writes to the next
unused register in its associate array. When it has to read, it reads from each process all
the new broadcast messages.

Exactly the same simulation is used to show that a shared memory can simulate the
other three message passing models (at the upper left corner) where (1) communication is
asynchronous and transmission mechanism is broadcast, (2) communication is synchronous
and transmission mechanism is point-to-point, a (3) communication is asynchronous and
transmission mechanism is point-to-point. We notice that in this simulations we strongly
used the fact that the initial value of each shared register is ⊥ (or it is set to some other
value which is mutually known to all the processes).

Also, the simulation shows that in all of the above four models (where the parameter of
message order is 0) the fact that they can be simulated by a shared memory model holds,
even under the assumption that messages sent from one process to another are received in
the order they were sent.

9 Discussion

We used an axiomatic approach to show that there is a class of problems which cannot be
solved in a completely asynchronous shared memory system which supports only atomic
read and write operations and where multiple undetectable crash failures may occur.

We introduced a simple game and reduced the question of whether a certain problem
can be solved in asynchronous shared memory model where a number of processes may fail

17

mb 00 01 11 10 00 01 11 10
pc
00 0 0 n 0 0 0 n 0

Yes Yes No ? No No No No
01 0 0 n 0 1 n n 1

Yes Yes No ? No No No No
11 n n n n n n n n

No No No No No No No No
10 0 0 n n 0 0 n n

No No No No No No No No
s=0 s=1

Figure 2: Each entry in the table is defined by different setting of the five system param-
eters, processes (p), communication (c), messages (m), transmission mechanism (b), and
receive/send (s).

prior to the execution to the question of whether there is a winning strategy for this game.
As mentioned in the Introduction, it follows from the results in [CM89] together with

our results in section 7, that in a shared memory model which support atomic read and
write operations, a problem can be solved by a deterministic protocol that can tolerate up to
t initial failures if and only if the problem can be solved by a randomized protocol that can
tolerate up to t crash failures. This result can also be shown to hold for asynchronous mes-
sage passing model (assuming termination). It would be nice to show that this relationship
holds also for other models.

It follows from our results that for both initial failures and crash failures, there exists a
resiliency hierarchy. That is, for each 0 ≤ t < n− 1 there are problems that can be solved
in the presence of t−1 failures but can not be solved in the presence of t failures. These re-
sults extend and generalize previously known impossibility results for various asynchronous
systems.

One conclusion that follows from our results is that for solving certain problems it is
necessary to use stronger synchronization primitives than atomic read and write such as
the well known test-and-set primitive, or alternatively to use randomized protocols.

Acknowledgements: We thank Michael J. Fischer and Shmuel Katz for helpful discussions.

References

[ABD+87] H. Attiya, A. Bar-Noy, D. Dolev, D. Koller, D. Peleg, and R. Reischuk. Achiev-
able cases in an asynchronous environment. In Proc. 28th IEEE Symp. on
Foundations of Computer Science, pages 337–346, 1987.

[Abr88] K. Abrahamson. On achieving consensus using shared memory. In Proc. 7th
ACM Symp. on Principles of Distributed Computing, pages 291–302, 1988.

18

[BKWZ87] R. Bar-Yehuda, S. Kutten, Y. Wolfstahl, and S. Zaks. Making distributed span-
ning tree algorithms fault-resilient. In 4th Annual Symposium on Theoretical
Aspects of Computer Science; Lecture Notes in Computer Science 247, pages
222–231, 1987.

[BMZ88] O. Biran, S. Moran, and S. Zaks. A combinatorial characterization of the
distributed tasks which are solvable in the presence of one faulty processor. In
Proc. 7th ACM Symp. on Principles of Distributed Computing, pages 263–275,
1988.

[BW87] M. Bridgland and R. Watro. Fault-tolerant decision making in totally asyn-
chronous distributed systems. In Proc. 6th ACM Symp. on Principles of Dis-
tributed Computing, pages 52–63, 1987.

[CIL87] B. Chor, A. Israeli, and M. Li. On processor coordination using asynchronous
hardware. In Proc. 6th ACM Symp. on Principles of Distributed Computing,
pages 86–97, 1987.

[CM85] M. Chandy and J. Misra. On the nonexistence of robust commit protocols.
Manuscript, November 1985.

[CM86] M. Chandy and J. Misra. How processes learn. Journal of Distributed Comput-
ing, 1:40–52, 1986.

[CM89] B. Chor and L. Moscovici. Solvability in asynchronous environments. In Proc.
30th IEEE Symp. on Foundations of Computer Science, pages 422–427, 1989.

[DDS87] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchronism needed
for distributed consensus. Journal of the ACM, 34(1):77–97, 1987.

[DLS88] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM, 35(2):288–323, 1988.

[EFT84] H. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Springer-Verlag,
1984.

[FLP85] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, April
1985.

[Had87] V. Hadzilacos. A knowledge theoretic analysis of atomic commitment protocols.
In Proc. 6th ACM Symp. on Principles of Database Systems, pages 129–134,
1987.

[Her88] P. M. Herlihy. Impossibility and universality results for wait-free synchroniza-
tion. In Proc. 7th ACM Symp. on Principles of Distributed Computing, pages
276–290, 1988.

[LA88] C. M. Loui and H. Abu-Amara. Memory requirements for agreement among
unreliable asynchronous processes. Advances in Computing Research, 4:163–
183, 1988.

19

[MW87] S. Moran and Y. Wolfsthal. An extended impossibility result for asynchronous
complete networks. Information Processing Letters, 26:141–151, 1987.

[Tau87] G. Taubenfeld. Impossibility results for decision protocols. Technical Report
445, Technion, January 1987. Revised version appeared as Technion TR-#506,
April 1988.

[Tau89] G. Taubenfeld. Leader election in the presence of n − 1 initial failures. Infor-
mation Processing Letters, 33:25–28, 1989.

[TKM89a] G. Taubenfeld, S. Katz, and S. Moran. Impossibility results in the presence of
multiple faulty processes. Information and Computation, 113(2):173-198, 1994.
Also in: LNCS 405 (eds.:C.E. Veni Madhavan), Springer Verlag 1989, pages
109-120.

[TKM89b] G. Taubenfeld, S. Katz, and S. Moran. Initial failures in distributed computa-
tions. International Journal of Parallel Programming, 18:255–276, 1989.

20

