
Partial Convex Recolorings of Trees and Galled
Networks: Tight Upper and Lower bounds

SHLOMO MORAN

Technion, Haifa

SAGI SNIR

University of California, Berkeley

and

WING-KIN SUNG

National University of Singapore

A coloring of a graph is convex if the vertices that pertain to any color induce a connected
subgraph; a partial coloring (which assigns colors to a subset of the vertices) is convex if it can
be completed to a convex (total) coloring. Convex coloring has applications in fields such as
phylogenetics, communication or transportation networks, etc.

When a coloring of a graph is not convex, a natural question is how far it is from a convex one.
This problem is denoted as convex recoloring (CR).
While the initial works on CR defined and studied the problem on trees, recent efforts aim at
either generalizing the underlying graphs or specializing the input colorings.

In this work we extend the underlying graph and the input coloring to partially colored galled
networks. We show that although determining whether a coloring is convex on an arbitrary
network is hard, it can be found efficiently on galled networks. We present a fixed parameter
tractable algorithm which finds the recoloring distance of such a network whose running time is
quadratic in the network size and exponential in that distance. This complexity is achieved by
amortized analysis that uses a novel technique for contracting colored graphs which seems to be
of independent interest.

Categories and Subject Descriptors: F.2.0 [Analysis of algorithms and problem complexity]:
General; G.2.1 [Combinatorics]: Combinatorial algorithms; G.2.2 [Graph Theory]: Trees

General Terms: Algorithms

Additional Key Words and Phrases: Convex recoloring, NP-hardness, partially colored galled

networks, partially colored trees

1. INTRODUCTION

Given a set of colors C and a graph G = (V, E) with n nodes, a (total) coloring of
G is a function from the set of nodes V to the set of colors C. The coloring C is

Author’s address: S. Moran, Computer Science dept., Technion, Haifa 32000, Israel.
S. Snir, Mathematics dept. University of California, Berkeley, CA 94720, USA.
W.-K. Sung, Department of Computer Science, National University of Singapore, Singapore.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2008 ACM 1529-3785/2008/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008, Pages 1–23.

2 · Shlomo Moran et al.

called convex if the nodes that are colored with each given color induce a connected
subgraph. A partial coloring of G is a coloring which maps some nodes to a “null
color” λ /∈ C. A partial coloring is convex if it can be transformed to a total convex
coloring by assigning colors to the nodes colored by λ.

Given an input coloring C of G, any other coloring C′ of G can be viewed
as a recoloring of C. The recoloring distance between C and C′ is the number
of nodes v ∈ V such that C(v) �= λ and C(v) �= C′(v). The minimum convex
recoloring problem or simply convex recoloring (CR), is to find for a given input
coloring C a convex recoloring C′ which minimizes the recoloring distance to C.
The corresponding minimal recoloring distance is denoted as opt(C).

Convex recoloring is a fundamental problem in combinatorial optimization and
is related to practical applications in several fields. In phylogenetic analysis, the
perfect phylogeny problem is defined as follows: Given a set of colorings on a set of
items (species), find a tree such that the items label the tree leaves and each such
(partial) coloring is convex on that tree [Semple and Steel 2003; Moran and Snir
2008]. In communication, vertices represent routers and a common color represents
a common interest or a subnetwork. The task is to decide whether, under the given
coloring, routers belonging to the same network are connected (see, e.g. [Chen et al.
2006] for a short discussion of these applications).

CR was introduced in [Moran and Snir 2008] where it was shown that the problem
is NP-hard for totally colored and leaf-colored trees (and even paths). It was also
shown there that when the tree T is totally colored and the degree is bounded by Δ,
T can be convex recolored in O(nβΔβ+2) time, where β is the number of colors that
violate convexity in the input tree. This yields a fixed parameter tractable (FPT)
algorithm [Downey and Fellows 1999] for CR when the parameter is the recoloring
distance. Subsequently, several new FPT criteria were devised or improved [Razgon
2007; Bodlaender et al. 2007; 2006]. See [Ponta 2007] for details on FPT approaches
to CR.

Approximation of CR was also investigated. In [Moran and Snir 2007] a 3-
approximation algorithm to convex recolor a tree which is partially colored is given.
The running time of the algorithm is O(cn2), where c is the total number of colors
in the tree. This was improved in [Bar-Yehuda et al. 2005], which gives a (2 + ε)-
approximation algorithm whose running time is O(n2 + (1/ε)24ε).

Due to applicability of convex coloring in more general graphs than trees, recent
studies extend CR to other graph families [Chor et al. 2007; Ponta 2007] where
r-connectivity that generalizes CR is studied. In this paper we show that finding
optimal convex recoloring in general graphs is NP-hard, even when there are only 2
colors and the coloring is total (ie there are no uncolored nodes). A galled network
is a graph in which a node is a member in at most one cycle. A positive result we
show here is an O(n2|C|Δα+2)-time algorithm for the convex recoloring problem on
both partially colored trees and partially colored galled networks, where α is the
number of colors that violate convexity in some strong sense (α is different from β
above). When the maximal degree Δ is unbounded, we improve the algorithm by a
technique based on maximum weighted matching, and give an O(poly(n)(α

log α)α)-
time algorithm for partially colored galled networks (and hence also trees). Finally,
we show that α is linearly bounded from above by the size of the solution, i.e. the
ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Partial Convex Recolorings of Trees and Galled Networks · 3

number of recolored nodes in an optimal solution. This implies that our algorithm
is an FPT algorithm for the problem, where the parameter is the size of the optimal
solution. A byproduct of this result is a polynomial time algorithm for deciding
whether a colored galled network is convex. Amortized analysis [Cormen et al.
2001] is an approach for analyzing iterative algorithm complexities when complexity
might change substantially between different iterations. Our upper bound on the
complexity of the algorithm is achieved by a novel technique of amortized analysis,
which provides a lower bound on the size of the optimal solution. Specifically,
we show that although uncoloring a single node can result in “rehabilitation” of
many “compound” colors (to be defined), the average number of such colors per
a single uncoloring is constant. As CR can be perceived as a covering problem
(see [Moran and Snir 2008; 2007] for the formal definition) where techniques for
such problems are applicable [Moran and Snir 2007; Bar-Yehuda et al. 2005], we
believe that this technique might be of independent interest and can be utilized in
different applications.

The rest of this paper is organized as follows: In the next section we provide
formal definitions that will be used throughout the rest of the paper. In Section 3
we show that the problem is NP-hard even when the set of colors is of cardinality
two. In Section 4 we provide a dynamic programming algorithm for obtaining an
optimal convex coloring for a galled network and in Section 5 we present a variant
of this algorithm which is more efficient when the maximal degree is large. Section
6 gives a lower bound on the size of the solution by the number of compound colors.
We conclude in Section 7 with conclusion and future research directions.

2. PRELIMINARIES

In this section we give formal definitions to the notions introduced in the previous
section. We consider a special type of graph: a galled network, which is an undi-
rected graph where every node occurs in at most one cycle. See Figure 1 for an
example.

Fig. 1. A galled network: every node is a member in at most one cycle.

Throughout the paper we will use the notion of an induced graph. We here define
it formally: Let G = (V, E) be a graph. For a subset V ′ ⊆ V , the graph induced by
V ′, G(V ′) is the graph (V ′, E′) where E′ is all the edges in E with two endpoints
in V ′.

Since we focus on connected sets of vertices with a common feature (color) the
notion of a carrier is central throughout the whole paper. Informally, a carrier of a

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

4 · Shlomo Moran et al.

set of vertices U represents a minimal connected subgraph containing U . A formal
definition follows.

Definition 2.1. Let U ⊆ V be a set of nodes. Then a set of nodes W is a carrier
of U if

(1) U ⊆W ,
(2) G(W), the subgraph induced by W , is connected,
(3) No proper subset of W has the above two properties

We comment that in general there can be many possible carriers for a given set
U , but carriers on trees are uniquely defined - which seems to be a main reason
why convex recoloring on tree is easier than on more complicated graphs.
In the algorithmic part as well as in the analysis

(Sections 4,6), we will have a special treatment for cycles. Therefore, we make
this distinction:

Definition 2.2. An edge (node) is a tree edge (node) if it is not on a cycle, oth-
erwise it is a cycle edge (node).

Connected subgraphs whose removal from the graph leaves at most two connected
components are used both in our lower and upper bounds. For this we define:

Definition 2.3. For a subset of nodes W ⊆ V , the super degree (or s-degree for
short) of W is the number of connected components in G(V \W).

Throughout, we will consider super degrees of sets W for which the induced graph
G(W) is connected.

2.1 Colored Graphs

Consider a set of colors C, and a null color λ /∈ C. A colored graph is a pair
(G = (V, E), C) where C is a coloring of G, that is, a function C : V → C ∪ {λ}.
C is said to be total if C(v) �= λ for every v ∈ V and partial otherwise. Consider a
coloring C and a color d ∈ C. We say that a set W ⊆ V is a carrier(C, d) under
C (or just d-carrier for short when it is clear from the context) if W is a carrier of
C−1(d) (i.e., W is a carrier of all the nodes colored by d).

Definition 2.4. A colored galled network (GN, C) is convex if there exists a set
{CAd : d ∈ C(V) \ {λ}} such that for each d, CAd is a d-carrier, and for each pair
of colors {d, d′}, it holds that CAd ∩CAd′ = ∅.
Alternatively, we say that a coloring C is convex if the null-colored nodes can be
colored (or C can be completed to a total coloring), such that every color induces a
connected subgraph.

The distinction between “easy to handle” colors and “hard to handle” colors is
crucial in this work. Informally, a color d is easy (called pure) if G can be splitted
to at most three connected components, such that one component contains all the
vertices colored by d and no other color (but possibly null colored vertices). See
Figure 2. A color which is not pure is compound.
ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Partial Convex Recolorings of Trees and Galled Networks · 5

Definition 2.5. A color d ∈ C is called pure in a partially colored graph (G, C)
if there exists a d-carrier W with s-degree at most two and which does not contain
nodes colored by a color d′ �= d (See Figure 2.). Otherwise, d is compound.

The number of compound colors in a colored graph (G, C) is strongly related to
both upper and lower bounds of our algorithms, and is denoted by α.

Fig. 2. Empty triangles are uncolored nodes. The color• is pure since it has a (single) carrier

containing only• or uncolored nodes, and the number of neighbors of this carrier is two (s −
degree = 2). The color � is compound since it has no such carrier (its sole carrier contains nodes
of different color).

2.2 Recoloring

Given a colored graph (G, C), any other coloring C′ of G is viewed as a recoloring
of C. A recoloring C′ of C is said to retain (the color of) a node v if C(v) = C′(v).
If C(v) �= λ and C(v) �= C′(v), C′ overwrites v. We say that C′ uncolors a node v
if C(v) �= λ and C′(v) = λ (that is, an erasure — a special type of an overwrite).
For a subset U of V , the restriction of C to U , C|U , is the coloring obtained from
C by uncoloring all the nodes in V \ U .

For each recoloring C′ of C we associate a cost, costC(C′) (or cost(C′) when C
is clear), which is the number of nodes overwritten by C′. The convex-recoloring
cost of a coloring C is defined by opt(C) = minC′{costC(C′)}, where the minimum
is taken over all convex recolorings of C. A convex recoloring C∗ with cost(C∗) =
opt(C) is an optimal convex recoloring of C.

Observe that if a colored graph (G = (V, E), C) can be convex recolored by
overwriting a subset X of V , then the colored graph can also be convex recolored
by uncolored X . Hence, computing an optimal (convex) recoloring can be defined
as a minimum cost covering problem, as follows: Let (G = (V, E), C) be a colored
graph. We say that a set of nodes X is a convex cover (or just a cover) for (G, C) if
the (partial) coloring (G, C|[V \X]) is convex (i.e., C can be transformed to a convex
coloring by overwriting the nodes in X).

We complete this section with a definition and a simple observation which will
be useful in the sequel. We consider only special types of convex recolorings of the
given coloring C. Informally, these recolorings do not introduce new colors rather
use only original colors. Moreover, for every color in the recoloring, at least one
vertex retained its original color. Therefore we say that this color was expanded
from this (or others) vertex. Formally: let (G, C) be a (partially) colored graph
and let C′ be a total convex recoloring of C with C′ = C′(V). A color c ∈ C′ is
expanding with respect to C and C′ (or simply expanding) if there is at least one
node v s.t. C(v) = C′(v) = c. The coloring C′ is an expanding recoloring of C if
every color c ∈ C′ is expanding.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

6 · Shlomo Moran et al.

Observation 2.6. Let (G, C) be a colored graph. Then there exists an optimal
convex recoloring of C which is an expanding recoloring of C.

Proof. Let C′ be an optimal recoloring of C which uses a minimum number of
colors (i.e. |C′(V)| is minimized). We shall prove that for every color c ∈ C′(V)
there is a node v s.t. C(c) = C′(v) = c.

If C′ uses just one color c, then by the optimality of C′, there must be a node
v such that C(v) = c and the claim is proved. So assume that C′ uses at least
two colors. Assume, for contradiction, that there is a color c used by C′ for which
there is no node v s.t. C(v) = C′(v) = c. There must be an edge (u, v) such that
C′(u) = c but C′(v) = d �= c. Let C′′ be a coloring which is identical to C′ except
that all nodes colored c are now colored by d. Then, C′′ is an optimal recoloring of
C which uses a smaller number of colors, a contradiction.

3. NP HARDNESS

This section shows that computing the convex recoloring cost of a colored graph is
NP-hard even when we have only 2 colors (i.e. C = {1, 2}) and the coloring is total
(ie C(v) �= λ for all nodes v). Our proof is based on a polynomial-time reduction
from the set cover problem (which is an NP-complete problem, see [Garey and
Johnson 1979]).

Set Cover Problem: Given a set V , a family F of subsets of V , and an
integer k (k < |F|), can we find at most k sets F1, F2, . . . , Fk in F such that
V = F1 ∪ F2 ∪ . . . Fk?

An input to the Set Cover problem as above is reduced to a colored graph (G, C)
as follows.

—G = (V ∪ F , E) where E = {(v, F) | F ∈ F , v ∈ F} ∪ {(F1, F2) | F1, F2 ∈ F}.
—C is the total coloring defined by C(v) = 1 for v ∈ V and C(F) = 2 for F ∈ F .

It is easy to check that (G, C) can be constructed in O(|V ||F|) time.

Lemma 3.1. Suppose F ′ = {Fi1 , Fi2 , . . . , Fik
} ⊆ F is a set cover of V . Then,

F ′ is a convex cover of (G, C).

Proof. We will show that if all nodes in F ′ are recolored by 1, the coloring
becomes convex. Since F is a clique, the 2-nodes still induce a clique. The 1-nodes
from a connected subgraph since F ′ is a set cover.

Lemma 3.2. Let S ⊆ V ∪F be a convex cover of (G, C). Then there exists a set
T ⊆ F s.t. |T | ≤ |S| and T is a set cover of V .

Proof. If |V | ≤ 1 then C is convex and the lemma holds, so assume that |V | > 1.
Let S1 = S ∩F and S2 = S ∩ V . Suppose S2 = {v1, v2, . . . , vx}. For every vi ∈ S2,
let Fi be a set in F such that vi ∈ Fi. Let T = {F1, F2, . . . , Fx} ∪ S1. Note that
|T | ≤ |S|.

By definition, S2 ⊆ F1 ∪F2 ∪ . . .∪Fx. Since |V | > 1 and S is a convex cover, for
every v ∈ V \ S2, there exists F ∈ S1 such that v ∈ F . Hence, V \ S2 ⊆ ∪F∈S1F .
Thus, T is a set cover of V .

By the above two lemmas, we have the following theorem.
ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Partial Convex Recolorings of Trees and Galled Networks · 7

Theorem 3.3. The convex recoloring of a graph is NP-hard even when restricted
to graphs which are totally colored by two colors.

4. A DYNAMIC PROGRAMMING ALGORITHM FOR COMPUTING A COVER

4.1 High Level Overview

We start with a very high-level overview of the algorithm. The general structure of
the algorithm is a standard bottom-up dynamic programming type (see e.g. [Sankoff
1975]) but with proper modifications to handle convexity and/or cycles. We root
the graph arbitrarily and work from leaves to top. At every node, we keep for
certain subsets of colors, the cost of the optimal recoloring of the graph rooted at
that node, using colors from these subsets solely. The main challenge we encounter
is to minimize the number of subsets we keep, while guaranteeing that there is
an optimal recoloring with one of these subsets. We handle cycles in some novel
technique of “untying” the cycle at each of its edges and subsequently solve it with
our tree algorithm.

4.2 The Formal Algorithm

Consider a colored galled network (G, C) where G is of size n and maximum degree
Δ. Let U = (V, E) be a rooted acyclic galled network formed by rooting G at an
arbitrary node r, from which all other nodes are accessible by directed paths. For
any cycle CY (in the underlying graph), there is a single node in CY which is either
the root r or it has an incoming tree edge. This node is denoted as a split node.
Cycle edges are directed in an acyclic manner so that every node in the cycle is
reachable from the split node.

Let A be the set of all split nodes and tree nodes in U . For every v ∈ A, let Uv

be the subgraph reachable from v (i.e. Ur = U). V (Uv) denotes the set of nodes in
Uv.

Definition 4.1. For a set of colors D, opt(D, Uv) is the minimum cost of a convex
recoloring of the colored galled network (Uv, C|V (Uv)) with the constraint that the
recolored graph uses colors from D only.

Definition 4.2. opt(D, Uv, d) is the minimum cost of a convex recoloring of the
colored galled network (Uv, C|V (Uv)) with the constraint that the recolored graph
uses colors from D only and the color of node v is d (for some d ∈ D).

Note that our aim is to compute opt(C, Ur). We also have the following observa-
tion.

Observation 4.3. For all v ∈ A, D ⊆ C, opt(D, Uv) = mind∈D opt(D, Uv, d).

Our algorithm is based on the improvement of [Bar-Yehuda et al. 2005] to the
basic dynamic programming algorithm of [Moran and Snir 2008], based on the
following observation: According to Observation 2.6, the convex recoloring cost can
be computed by considering only expanding convex recolorings. Hence it suffices to
compute opt(D, Uv, d) only for sets D of colors which are used in some expanding
convex recoloring of U . We call such sets of colors legal. The following definition
characterizes these legal sets (D denotes C(U) \ D, i.e. the complement of D).

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

8 · Shlomo Moran et al.

Definition 4.4. A set of colors D is legal for Uv and d if D \ {d} ⊆ C(Uv) and
D \ {d} ⊆ C(U \ Uv).

Example: let C(Uv) = {1, 2}, C(U \Uv) = {1, 3, 4} and d=3. Then D1 = {1, 2, 3}
is legal for Uv and d but D2 = {1, 3} is not (since D2 \ {d} = {2, 4} �⊆ {1, 3, 4} =
C(U \ Uv)). The following observation follows directly from the definition of ex-
panding convex recoloring.

Observation 4.5. Let C′ be an expanding convex recoloring of (U, C), and as-
sume that for some tree node v ∈ A, C′(v) = d. Then C′(Uv) ⊆ D for some set D
which is legal for Uv and d.

Below, we describe a recursive formula for computing opt(D, Uv, d) for all v ∈ A
and all sets D which are legal for Uv and d. By Observations 4.5 and 2.6, this
suffices for computing optimal convex recolorings.

For any v ∈ A, we distinguish between the cases where v is a leaf, a tree node,
or a split node.

Leaf Nodes
For every leaf node v of U , D ⊆ C, and d ∈ D, we have opt(D, Uv, d) = δ(d, C(v))

where δ(c, c′) = 1 if c �= c′ and 0, otherwise.

Tree Nodes
For defining the recursive formula for a tree node v, we use the following nota-

tions.

Definition 4.6. An ordered partition of a set S into k subsets is a tuple (S1, . . . , Sk)
of disjoint subsets of S, some of which may be empty, s.t. ∪k

i=1Si = S.

Definition 4.7. Let v be a tree node with k children v1, . . . , vk, d be a color, and
D be a legal set for Uv and d. A legal ordered partition for v, D and d is an ordered
partition (D1, . . . ,Dk) of D \ {d} s.t. for each i, Di is legal for Uvi and d.

The set of legal ordered partitions for v, D and d is denoted LP(v,D, d). NP(v,D, d)
is the cardinality of LP(v,D, d). By convention, NP(v,D, d) = 0 if D is not legal
for Uv and d.

Legal ordered partitions are related to expanding recoloring by the following
observation, which is implied directly by Observation 4.5.

Observation 4.8. Let C′ be an expanding convex recoloring of (G, C), let v be
a tree node with k children v1, . . . , vk, and let C′(v) = d. Then there is a set D
which is legal for Uv and d, and a legal ordered partition (D1, . . . ,Dk) ∈ LP(v,D, d)
s.t. C(Uv) ⊆ D and for all i, C(Uvi) ⊆ Di ∪ {d}.

By Observation 2.6, it suffices to consider only colorings which correspond to
legal ordered partitions as in Observation 4.8 above. We bound the complexity of
the algorithm by bounding the number of legal ordered partitions NP(v,D, d). For
this, let v be a node and c be a color.

Definition 4.9. index(v, c) is the number of connected components of U(V \{v})
(the subgraph of U induced by V \ {v}), which contain nodes colored by c.
ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Partial Convex Recolorings of Trees and Galled Networks · 9

index(v, c) can be found easily by a simple BFS search from v. For the singular
case that v is the only node of its color class, we define index(v, C(v)) = 1, so we
get index(v, c) ≥ 1 for every color c. Observe that for a tree node v, index(v, c) > 1
iff v lies in a path connecting two nodes of color c, which implies the following.

Observation 4.10. If |C| > 2 then for each tree node v there is at most one
pure color c for which index(v, c) > 1.

Proof. Assume by contradiction that |C| > 2 and there are two pure colors c, c′

for which index(v, c) > 1 and index(v, c′) > 1 (see Figure 3 left). Consider any
two carriers of c and of c′. Then the s-degree of each of these carriers is at least
2 since v is a tree node and these carriers intersect at v. Adding a third color c′′

will increase the s-degree of at least one of the carriers (see Figure 3 right), which
is the desired contradiction.

c’

vvc

Fig. 3. For |C| > 2, v is in the carriers of at most one pure color.

Observation 4.11. Assume |C| > 2. Then for v ∈ V and d ∈ C,∑
D⊆C

NP(v,D, d) =
∏

c∈C\{d}
index(v, c) ≤ Δα+1

where Δ is the maximum degree of the tree T .

Proof. The equality follows by the fact that each legal partition for v, D and
d is defined by allocating each color c ∈ C \ {d} to one of the index(v, c) compo-
nents of U(V \ {v}) which contains a node colored by c. The inequality follows
from the following facts: Only colors c for which index(v, c) > 1 contributes to∏

c∈D\{d} index(v, c), each such color contributes a multiplicative factor of at most
Δ. There are α compound colors, and by Observation 4.10 at most one pure color
c may have index(v, c) > 1.

The algorithm proceeds in a bottom up fashion from leaves to root. For a tree
node v, the algorithm computes opt(D, Uv, d) for every d ∈ C and for every D which
is legal for Uv and d. Then by Observation 4.3, it computes opt(D, Uv).

Let R̂(D, Uv, d) = min{opt(D\{d}, Uv), opt(D∪{d}, Uv, d)}, that is: R̂(D, Uv, d)
is the minimal cost of a convex recoloring of Uv, which uses only colors from D∪{d}
and if it uses the color d then C′(v) = d.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

10 · Shlomo Moran et al.

Lemma 4.12. Let v be a tree node with k children v1, v2, . . . , vk, d be a color,
and D be legal for Uv and d. Then

opt(D, Uv, d) = δ(d, C(v)) + min
(D1,D2,...,Dk)∈LP(D\{d},v)

k∑
i=1

R̂(Di ∪ {d}, Uvi , d)

Proof. The proof of the lemma goes along the lines of the proof of Theorem
4.3 in [Moran and Snir 2008].
≤: Let (D′

1,D′
2, . . . ,D′

k) be a legal ordered partition for v D and d minimizing
the r.h.s. of the equation. Then, the coloring C′ of Uv obtained from the respective
recolorings of the subtrees Uvi , i = 1, . . . k, and in addition setting C′(v) = d, is a
convex recoloring of Uv satisfying C′(Uv) ⊆ D ∪ {d} which attains the same cost.
≥: By observation 2.6 there is an expanding convex recoloring C′ s.t. cost(C′) =

opt(D, Uv, d). By Observations 4.8, there is a legal ordered partition D1, . . . ,Dk of
D s.t. for each i, C′(Uvi) ⊆ Di ∪ {d}, and hence cost(C′) is bounded by the r.h.s.
of the equation.

Corollary 4.13. Let v be a tree node with children v1, . . . , vk. Assume that,
for every d ∈ C, every child vi of v, every Di legal for Uvi and d, the values of
R̂(Di, Uvi , d) are given. Then, the values opt(D, Uv, d) for all d ∈ C and for all legal
D with respect to d and Uv can be computed in O(k|C|Δα+1) = O(|C|Δα+2) time.

Proof. By Lemma 4.12 and observation 4.11.

Split Nodes
Let v be a split node of U , and suppose it corresponds to a length 1 + �v cycle

CYv = (v = v0, v1, v2, . . . , v�v , v = v0) in U . Note that for each vi ∈ CYv, all the
children of vi which are not in CYv are either tree nodes or split nodes.

Lemma 4.14. Let v and CYv be as above. Assume that for each node u which
is not in CYv but is a child of a node in CYv, for all d ∈ C, and for all D which
are legal for Uu and d, the values of R̂(D, Uu, d) are given. Then we can compute
opt(D, Uv, d) in O(�2

v|C|Δα+2) time.

Proof. opt(D, Uv, d) is computed (for each legal set of colors D and each d ∈ D)
as follows: For each edge e = (vi, vi+1), i = 0 . . . �− 1, we consider the subnetwork
rooted at v in which e is deleted. In each of these lv subnetworks, the split node v
and all cycle nodes are tree nodes, so for each of these nodes we use the algorithm
for tree nodes in Lemma 4.12 above, and then select the coloring of minimum cost
among these �v colorings. Since this minimum coloring is convex for the subnetwork
Uv with some edge (vi, vi+1) removed, it is also convex for Uv. We now prove that
this coloring is optimal. This is an immediate corollary of the following claim.

Claim 4.15. Let C′ be any optimal expanding recoloring for (Uv, C|V (Uv)) (recall
that C|V (Uv) is the coloring induced by C on V (Uv), the set of nodes of Uv). Then
the algorithm described above returns a recoloring with cost at most the cost of C′.

Proof. We divide into two cases:

—All nodes of CYv are colored by C′ with a single color: Then, by the inductive
arguments of Lemma 4.12, the cost of the coloring returned by the algorithm
when any of the edges (vi, vi+1) is removed is at most the cost of C′.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Partial Convex Recolorings of Trees and Galled Networks · 11

—Not all nodes V (CYv) \ {v} are colored with the same color under C′: Then
for some 0 ≤ i ≤ � − 1, vi and vi+1 are colored with different colors under C′.
Then, by the inductive arguments of Lemma 4.12, the coloring returned by the
algorithm when edge (vi, vi+1) is removed has cost at most the cost of C′.

The bound on the running time of the algorithm follows from Corollary 4.13 and
by the fact that we apply algorithm described in Lemma 4.12 �v times, each time
on paths of length O(�v).

For computing the total complexity of the algorithm, let lv = 1 for a tree node
v. Then the sum of l2v over all tree and split nodes is bounded by n2. Thus we have
the following theorem.

Theorem 4.16. opt(C, Ur) can be computed in O(n2|C|Δα+2) time.

5. FIXED PARAMETER TRACTABLE ALGORITHM FOR UNBOUNDED DEGREE
TREES

When Δ = O(α) (and in particular for fixed Δ) the algorithm from previous section
yields a Fixed Parameter Tractable (FPT) algorithm for the problem, where the
parameter is the number of compound colors α (see [Downey and Fellows 1999]).
However, when Δ = Ω(n), the bound on the running time of the algorithm from
previous section becomes Ω(nα+4) which is not FPT in α. This section gives an
algorithm whose running time is poly(n)f(α) (specifically O(n7)f(α)), making it
FPT in α. In Section 6 we will show that for a given input coloring C, opt(C) =
O(α) turning this algorithm into an FPT algorithm, where the parameter is the
cost of the optimal solution.

Our improvement is based on a faster way to compute the recursive formula in
Lemma 4.12 when Δ� α. Suppose v has children v1, v2, . . . , vk, and let Ui = Uvi ,
i = 1, . . . , k, and U0 = U \ Uv. A straightforward computation of the formula in
Lemma 4.12 requires the computation of the sum on the right hand side NP(v,D, d)
times - once for each legal ordered partition for v,D and d. This may require
checking order of kα legal ordered partitions. When k � α, a faster solution is
obtained by using minimum weight matching as follows. Let F = {c : index(v, c) =
1}, and for each of the k + 1 connected components U0, . . . , Uk, let Fi = F ∩
C(V (Ui)). Informally, the set F contains colors that appear only in one component
of G(V \ {v}) and the set Fi contains the colors that appear only in Ui (note that
Fi ∩ Fj = ∅ for every i �= j). The algorithm is based on the observation that
the allocation of colors in F is fixed in legal ordered partitions. Specifically: Let
(D1, . . . ,Dk) be a legal ordered partition for v, d and D. Then for i = 1, . . . , k, Di

must include Fi. Thus, a legal ordered partition as above is completely determined
by the allocation of colors not in F . For this, we write eachDi asDi = Fi∪Hi, where
Hi consists of all the colors c in Di for which index(v, c) > 1. Let H = ∪k

i=1Hi be
the set of all colors c in D \ {d} for which index(v, c) > 1. By Observation 4.10, H
contains at most one pure color, and hence |H | ≤ α + 1. Due to this inequality we
modify the algorithm for a tree node as follows:

For a node v with k children we first compute |H |, i.e. the number of colors c for
which index(v, c) > 1. If |H | > k then, by Observation 4.10, k ≤ α. In this case

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

12 · Shlomo Moran et al.

we proceed as in the previous section, and by Corollary 4.13 obtain running time
O(|C|αα+2) for tree nodes.

If |H | ≤ k, we sketch below how to compute OPT (D, d, v) by considering all
unordered partitions of H . The number of such partitions is Bell(|H |), where
Bell(t) = O((t

log t)
t) is the number of unordered partitions of t elements to any

number of nonempty sets [Weisstein].
Let P(H) be the set of all unordered partitions of H and let S = {Z1, . . . , Z�} ∈
P(H) be one such a partition. First we observe that � ≤ |H |, and since |H | ≤ k it
holds that � ≤ k as well.

Given the partition S = {Z1, . . . , Z�} ∈ P(H), we define a weighted complete
bipartite graph BS of 2k nodes. The nodes in one side of BS correspond to the k
children of v, while the nodes in the other side correspond to sets of colors (with
index(v, c) > 1) Z1 . . . , Zk, where Z1, . . . , Z� are given by S, and Z�+1 = . . . =
Zk = φ. BS is the complete bipartite graph BS = {v1, . . . , vk}×{Z1, . . . , Zk}. The
edge weights w(vi, Zj) are defined by:

w(vi, Zj) =
{

R̂(Fj ∪ Zj ∪ {d}, Uvi , d) if Zj ⊆ Hi

∞ otherwise

The weight of the edge holds the cost of coloring Uvi with the colors Fj∪Zj∪{d}.
As the matchings in BS correspond to the expanding convex recolorings defined by
the partition S of H , we have:

Observation 5.1. Consider a node v, a color d and a set D which is legal for
v and d. Let H = {c ∈ D \ {d} : index(v, c) > 1}. Then

opt(D, Uv, d) = δ(d, C(v)) + min
S∈P(H)

MWM(BS)

where MWM(BS) is the minimum weight perfect bipartite matching of BS.

Theorem 5.2. Using the above technique the running time of the algorithm is
O(n2Δ4|C|Bell(α + 1)) ≤ O(n7Bell(α + 1)).

Proof. Let Hv denote the set H for node v. First we show that using a prepro-
cessing of O(n|C|) time, we can compute the set Hv for a given node v in O(n|C|)
time:
For a given color c, index(v, c) is computed for all v ∈ V in O(n) time by a post
order search of the tree. Hence computing index(v, c) for all v ∈ V and c ∈ C can be
done in O(n|C|) preprocessing time. Once this is done, computing the set Hv (for
any v ∈ V) is doable in O(n|C|) time. When Hv is given, we compute the minimum
weight perfect bipartite matching of BS in O(k3) ≤ O(Δ3) time [Kuhn 1955]. Since
|P(Hv)| ≤ Bell(|Hv|) ≤ Bell(α + 1), the theorem follows by replacing the factor
of Δα+1 in Theorem 4.16, which counts for the number of ordered partitions, by
Δ3Bell(α+1), which bounds the time needed to compute minimum weight perfect
matchings over all unordered partitions.

6. LOWER BOUND ON THE COVER SIZE

The previous section showed an algorithm for finding optimal convex cover (as
defined in Section 2.2) whose running time is poly(n)exp(α), where n is the number
ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Partial Convex Recolorings of Trees and Galled Networks · 13

of nodes and α is the number of compound colors. In this section we show that the
running time is bounded by poly(n)exp(k), where k is the size of an optimal cover,
by showing that the size of an optimal cover k is at least linear in the number of
compound colors α. This implies that the algorithm in Section 5 is fixed parameter
tractable when the parameter is the cover size. To simplify the presentation, we
first show the lower bound for trees, and then extend it to arbitrary galled networks.

We first introduce the notion of a colored forest and an iterative operation, called
elimination, acting on the forest. The elimination process is applied on a set of
nodes of the forest. We show that a set of nodes is a (convex) cover if and only if
the elimination process applied on it terminates with the empty forest.

Recall that for a tree T = (V, E), each subset U ⊆ V has a unique carrier,
denoted by carrierT (U) (or carrier(U) when T is clear). We will sometime use
carrier(U) to denote the (unique) subtree induced by carrier(U). For a colored
graph (G, C) and a color d ∈ C, carrierG(C, d) is a carrier of C−1(d). When G is
clear from the context, we just use carrier(C, d).

Definition 6.1. We say that a colored tree (T, C) satisfies the disjointness prop-
erty if for each pair of colors {d, d′}, it holds that carrier(C, d)∩carrier(C, d′) = ∅.
It is easy to see that a total (or partial) coloring of a tree is convex iff it satisfies
the disjointness property.

The following observation is used later in this section.

Observation 6.2. Let T = (V, E) be a tree and let U ⊆ V . Then for each
v ∈ U , Carrier(U \ {v}) �= carrier(U) iff v is a leaf in carrier(U), and in this
case carrier(U \ {v}) is obtained by removing from carrier(U) a maximal path
which starts from v and contains (other) nodes in Carrier(U) \U of degree ≤ 2 in
G(carrier(U)).

Figure 4 gives an example how a carrier is changed as a result of a node uncoloring.

6.1 Proper forests and their contractions

A partially colored forest (F, C) is a set of partially colored trees. A proper forest
is a partially colored forest in which C(T) ∩ C(T ′) = ∅ for each pair of distinct
trees T, T ′ (in particular, any partially colored tree is a proper forest). A proper
forest is convex if the coloring of each tree T in it is convex. An edge e in a proper
forest is neutral if for every color d, e /∈ carrier(C, d). In the sequel, we will restrict
ourselves only to proper forests, denoted by (F, C), where F = (V, E).

Definition 6.3. The contraction of (F, C), denoted by CON((F, C)), is a proper
forest obtained by:

—removing from F all the neutral edges, and then
—removing from the resulting forest all colorless and monochromatic trees (i.e.

trees of at most one color)

Observation 6.4. If (F, C) is proper, then CON((F, C)) is also proper.

Proof. Removal of a neutral edge from a tree T will split it into two subtrees
T1 and T2 where C(T1) ∩ C(T2) = ∅. Hence, after the removal of any neutral edge
form the forest F , the remaining forest is still proper. The observation follows.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

14 · Shlomo Moran et al.

For a coloring C, Domain(C) = {v ∈ V : C(v) �= λ} is the set of nodes to which
C assigns a color c ∈ C.

Lemma 6.5. A proper forest (F, C) is convex if and only if CON((F, C)) is the
empty graph. Hence, a subset S ⊆ Domain(C) is a cover for a forest (F, C) if and
only if CON((F, C|V \S)) is the empty graph.

Proof. Since (F, C) is proper we can assume W.L.O.G that F contains a single
tree T .

=⇒: If (T, C) is convex then carrier(C, d) ∩ carrier(C, d′) = ∅ for each pair of
distinct colors d, d′. Hence every two color carriers are separated by at least one
neutral edge, and the removal of all neutral edges splits T into monochromatic
subtrees which, in turn, are removed as well.
⇐=: If (T, C) is not convex then there exist colors d, d′ such that carrier(C, d)∩

carrier(C, d′) �= ∅. Hence, carrier(C, d)∪carrier(C, d′) is a subtree with no neutral
edges, and hence is contained in some tree created at the first step of the contraction
process. This tree has at least two colors, and hence it will not be removed at the
second step. Thus CON((T, C)) �= ∅.
6.2 The elimination process

Let (G, C) be a colored graph and let v be a node of color d �= λ. Recall that
uncoloring of v denotes the replacement of the coloring C by the coloring C′ =
C|V \{v} (i.e., by the coloring C′ which is identical to C except that the color of v
is “erased”).

Let (F, C) be a colored forest and S be any subset of Domain(C), such that
(s0, . . . , s|S|−1) are the elements of S ordered lexicographically. Then, ((F0, C0), . . . , (F|S|, C|S|))
is the sequence of colored forests defined by the following elimination process:

—(F0, C0)←− CON((F, C)).
—for i = 0 to |S| − 1 do

(1) Let C′
i be the coloring obtained from Ci by uncoloring the node si.

(2) (Fi+1, Ci+1)← CON((Fi, C
′
i)).

Note that (F|S|, C|S|) = CON((F, C|V \S)). F(S) denotes the set of colored trees
which are created during the elimination process, that is

F(S) = {(T, C) : (T, C) is a colored tree in (Fi, Ci) for some i ∈ [0, |S|]},
Lemma 6.6. If S is a minimal convex cover, then F|S| is the empty forest and
|F(S)| = |S|.

Proof. Recall that (F|S|, C|S|) = CON((F, C|V \S)). Thus by Lemma 6.5, since
S is a cover, the elimination process ends with the empty forest, meaning that
each colored tree (T, C) ∈ F(S) contains a node which is uncolored during the
elimination process. If S is a minimal cover, then for each i it holds that si ∈ V (Fi)
(otherwise S \ {si} is also a cover, and S is not minimal). Thus the mapping which
maps each si on the tree Xi which contains si at the beginning of iteration i is a
bijection from the set of nodes S to the set of colored trees F(S).

For a color d ∈ C(V (Fi)), carrieri(d) denotes the carrier of d in (Fi, Ci); observe
that carrier0(d) = carrier(d). We say that a color d is compound (see Definition
2.5) if it is compound in (F0, C0).
ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Partial Convex Recolorings of Trees and Galled Networks · 15

The following lemma provides important properties of the sets of edges which
are eliminated in each iteration of the elimination process.

Lemma 6.7. Let d = C(si) for some i ∈ {0, . . . , |S| − 1}, and let E′ ⊆ E be the
set of edges removed by the contraction of (Fi, C

′
i) at iteration i of the elimination

process. Then E′ is contained in a path in carrieri(d), and for any d′ �= d, E′ ∩
carrieri(d′) = ∅.

Proof. The contraction of (Fi, C
′
i) eliminates the set of edges which become

neutral due to the uncoloring of si. This means that each such edge belongs to
carrieri(d) but not to carrieri(d′) for any d′ �= d. Also, by Observation 6.2, this
set is not empty only if si is a leaf in carrieri(d), and these edges lie on a path
which starts at si and consists of nodes of degree ≤ 2 in carrieri(d) (see Figure
4).

vv

e2e1

Fig. 4. A red (triangle) node v (left side), which is a leaf in the red carrier, is uncolored. Conse-
quently edges e1 and e2 that are in a path starting at v and consists of non-red nodes with degree
≤ 2 in the red carrier become neutral and are eliminated from the tree (right side).

6.3 Lower bound for the optimal cover of a colored forest

In this section we fix some optimal cover S of the colored forest (F0, C0) and show
that |S| ≥ α/4. For this, we distinguish between few types of compound colors,
according to their relation with the cover S:

Definition 6.8. A compound color d is active (w.r.t the cover S) if there is a
node si ∈ S so that C(si) = d. A compound color d is semi-active if it is not active
but carrier(d) contains a node of S. A compound color d is passive if it is neither
active nor semi-active, i.e., if carrier(d) does not contain a node of S.

Definition 6.9. A color d ∈ C0(F0) is said to disappear in iteration i if d ∈ Ci(Fi)
but d /∈ Ci+1(Fi+1). If d ∈ Ci+1(Fi+1) then d is said to survive in iteration i.

Clearly, there are at most |S| compound active colors. Corollary 6.11 below
implies that all carriers of semi-active colors are disjoint, and hence that each node
in S is contained in at most one such carrier, which implies that there are at most

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

16 · Shlomo Moran et al.

|S| semi-active compound colors. Claim 6.14 implies that there are at most 2|S|
passive compound colors. Hence, in total, there are at most 4|S| compound colors.

Observation 6.10. If d is not active, then for each i = 0, . . . , |S| − 1 it holds
that if carrieri+1(d) �= ∅, then carrieri(d) = carrieri+1(d).

Proof. By the fact that C−1
i (d) = C−1

i+1(d).

Corollary 6.11. If the compound colors d and d′ are not active, then carrier(d)∩
carrier(d′) = ∅. Hence there are at most |S| semi active colors.

Proof. By Observation 6.10, carrier(d) = carrier|S|(d) and carrier(d′) =
carrier|S|(d′). The claim follows since S is a cover. The second part is implied
by the fact that each carrier of semi active color must contain a node in S, and no
two such carriers can contain the same node.

Next we show that there are at most 2|S| passive compound colors.

Corollary 6.12. If d is passive, then C−1(carrier(d)) ∩ C = {d}.
Proof. Assume for contradiction that carrier(d) contains a node v with C(v) =

d′ �= d for some d′ ∈ C. Then since carrier(d) = carrieri(d) for all i, d will survive
in all the iterations, contradicting the fact that S is a cover.

Claim 6.13. A passive color d which is compound in (Fi, Ci) survives in itera-
tion i.

Proof. The color d may disappear in iteration i only if carrieri(d) (which is
carrier(d) at iteration i) is eliminated during the contraction of (Fi, C

′
i), which

means that it is transformed to a (monochromatic) tree by the removal of neutral
edges from (Fi, C

′
i). Since d is compound in (Fi, Ci), carrieri(d) either contains

nodes of color different from d, or has at least three neighbors (s-degree ≥ 3) in
(Fi, Ci). The first case is impossible by Corollary 6.12. In the second case, by
Lemma 6.7 the above the set of eliminated edges is included in a path in Fi. Since
the intersection of this path and the subtree carrieri(d) is a path, at most two
edges in this path are adjacent to carrieri(d). Thus the s-degree of carrieri(d) is
reduced by at most two, and hence the s-degree of carrieri+1(d) is at least one,
which means that it survives in iteration i.

By Claim 6.13, each passive compound color d must become pure before it dis-
appears. i.e., there is an i such that d is compound in (Fi, Ci) and it is pure in
(Fi+1, Ci+1), meaning that it becomes pure during iteration i of the elimination
process. Thus, the colored forest (Fi, Ci) contains a colored tree (T1, C1), such that
si ∈ V (T1), carrieri(d) ⊆ T1 and d is compound in (T1, C1) (see Figure 5). Let C′

1

be the coloring resulted by uncoloring si in C1. The contraction of (T1, C
′
1) (during

iteration i of the elimination process) creates a tree (T, C) in (Fi+1, Ci+1) so that
carrieri+1(d) ⊆ T and d is pure in (T, C). In this scenario, we say that d is purified
at (T, C). Figure 5 depicts a scenario where two colors are purified at a colored
tree (T, C).

By Lemma 6.6, |F(S)| = |S|. Hence in order to prove that there are at most
2|S| passive compound colors, it suffices to show that there are at most 2|F(S)|
passive compound colors. Since each passive compound color must be purified at
some colored tree (T, C) ∈ F(S), this will follow from the following claim:
ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Partial Convex Recolorings of Trees and Galled Networks · 17

.

. . .

.

.

u

si

u

e1

si

e2

Fig. 5. (T1, C1) is shown on the left. On the right, (T, C) is created by the uncoloring of node si

and the subsequent removal of edges e1 and e2. Two colors (the blue circles and pink stars) are
purified in (T, C).

Claim 6.14. For every colored tree (T, C) ∈ F(S), at most two passive colors
are purified at (T, C).

Proof. Let d be a passive color which is purified at (T, C), and let (T1, C1) and
C′

1 be the corresponding tree and colorings described above. By Corollary 6.12,
carrieri(d) contains no node of color different from d. Hence d can be purified
at (T, C) only if the degree of carrieri(d) is reduced by at least one during the
contraction of (T1, C

′
1).

Let e be an edge adjacent to T which is removed by the contraction of (T1, C
′
1).

Since, by Corollary 6.11, carriers of passive colors are disjoint, e can be adjacent to
at most one carrier of a passive color in (T, C). Hence the removal of e can reduce
the s-degree of at most one carrier of such passive color. By Lemma 6.7 at most two
edges adjacent to T are removed, and hence (T, C) contains at most two carriers of
passive colors whose degrees are reduced in the contraction of (T1, C

′
1). We conclude

that at most two passive compound colors are purified in (T, C). Figure 5 depict a
scenario where exactly two colors are purified.

The above leads to the following theorem:

Theorem 6.15. α ≤ 4|S|.
Proof. There are at most |S| active compound colors, at most |S| semi-active

compound colors, and at most 2|S| passive compound colors. The theorem follows
since each compound color must be either active, semi-active, or passive.

6.4 Extension to Galled Networks

In this section we extend our results to handle galled networks. The extension
proceeds along the same lines of the proof for trees. The discussion that follows
refer to some arbitrary colored galled network (GN, C). We start with extending
some of the previous definitions.

Definition 6.16. A cycle pair is a pair of cycle edges from the same cycle.

Observation 6.17. Any removal of either a tree edge or a cycle pair partitions
the galled network into exactly two nonempty connected components, and vice versa.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

18 · Shlomo Moran et al.

Recall the convexity property of colorings of galled networks: a colored galled
network (GN, C) is convex if and only if there exists a set {CAd : d ∈ C(V)} such
that for each d, CAd is a d-carrier, and for each pair of colors {d, d′}, it holds that
CAd ∩ CAd′ = ∅.

For a galled network G, B(G) is the graph obtained from G by contracting each
cycle in G to a single node - i.e., B(G) is the biconnected graph of G [Golumbic
1980]. Clearly, B(G) is a tree. We can look at B(.) as a function that maps every
tree node or tree edge in G to itself and every cycle node or cycle edge to the node
in B(G) representing its bicomponent.

Definition 6.18. The graph induced by a set of nodes V ′ in G is called a gpath
if the graph induced by the set B(V ′) is a path in B(G).

Note that if V ′ is contained in a single cycle, then B(V ′) contains a single node.

Observation 6.19. Let GN be a galled network and u, v ∈ V (GN). Then all
the simple paths connecting u and v are contained in a single gpath in GN .

Proof. Since B(GN) is a tree, there is a single path in B(GN) connecting the
corresponding bicomponents of u and v (this path could be a single node). By
Definition 6.18 the observation follows.

Given a set of paths Π, a path p ∈ Π is minimal if it does not contain any other
path p′ ∈ Π.

The following observation is used later in this section.

Observation 6.20. Let V ′ be a subset of V s.t. G(V ′) is connected, and let
v ∈ V \ V ′. Then the union of minimal paths from v to V ′ is a gpath.

Proof. Let V ′′ ⊆ V ′ be the set of nodes in V ′ contained in minimal paths from
v to V ′. Then either V ′′ consists of two nodes on the same cycle, or V ′′ is a single
node. In the first case, if v is in that same cycle the observation follows by the
definition of gpaths. Otherwise, either |V ′′| = 2 and v is not in the cycle of V ′′, or
|V ′′| = 1. These later cases are covered by Observation 6.19 (see Figure 6).

We define a galled forest to be a disjoint union of galled networks and we say
that a galled forest is proper similar to the case of regular forests. The notion of
a neutral edge is extended to include also a neutral pair in the natural way (i.e.
a cycle pair whose removal partitions the galled network into two galled networks
with disjoint colors). We now redefine the contraction process for a galled forest
GF :

Definition 6.21. The contraction of (GF, C), denoted by CON((GF, C)), is a
proper galled forest obtained by:

—Repeatedly removing from GF neutral edges and neutral pairs1, until no neutral
edges and neutral pairs remain, and then

—removing from the resulted galled forest all colorless and monochromatic galled
networks (i.e. galled networks of at most one color)

1Note that the removal of cycle pair edges turns the remaining edges in the cycle to tree edges

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Partial Convex Recolorings of Trees and Galled Networks · 19

v

Fig. 6. V ′ are the bold nodes on the top. V ′′ consists of two nodes on the same cycle. By
Observation 6.19 the paths from V ′′ are contained in a single gpath.

The proofs of the following observation and lemma are identical to the tree case.

Observation 6.22. If (GF, C) is proper, then CON((GF, C)) is also proper.

Lemma 6.23. A proper galled forest (GF, C) is convex if and only if CON((GF, C))
is the empty graph. Hence, a subset S ⊆ Domain(C) is a cover for (GF, C) if and
only if CON((GF, C|V \S)) is the empty graph.

Corollary 6.24. The decision problem whether a colored galled network (GN, C)
is convex can be answered in polynomial time.

Proof. By Lemma 6.23 we only need to see if CON((GN, C)) = ∅, which can
be done by contracting GN . The first stage of the contraction is done by repeatedly
finding and removing neutral cycle pairs and edges, and the second by removing
colorless or monochromatic galled networks. Both stages can clearly be done in
polynomial time.

The elimination process in a galled forest is identical to that on a regular forest.
We repeat it for the sake of readability:

Let (GF, C) be a proper colored galled forest. For a set of nodes S, let ((GF0, C0), . . . , (GF|S|, C|S|))
be defined by:

—(GF0, C0)←− CON((GF, C)).

—for i = 0 to |S| − 1 do
(1) Let C′

i be the coloring obtained from Ci by uncoloring the node si.
(2) (GFi+1, Ci+1)← CON((GFi, C

′
i)).

We also define GF(S) as the set of colored galled networks which are created
during the elimination process, identically to the tree case.

Lemma 6.25. Let d = C(si) for some i ∈ {0, . . . , |S|−1}, and let E′ ⊆ E be the
set of edges removed by the contraction of (GFi, C

′
i) at iteration i of the elimination

process. Then E′ is contained in a gpath in GFi.
ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

20 · Shlomo Moran et al.

The proof is followed directly from Observation 6.20.
Here again we fix a set S that is an optimal cover and give a lower bound on its

size in terms of the number of compound colors.
We keep the definition of an active color as is, i.e. A color d is active (w.r.t the

cover S) if there is a node si ∈ S such that C(si) = d. We adjust the definitions of
semi-active and passive colors to galled forests as follows:

Let d be a color which is not active. Then the set of its carriers is fixed throughout
the elimination process (until d disappears). We select for each such color d one
of these carriers as follows: Let C′ be any extension of C|V \S to a total convex
recoloring of the input network GN . Then for each inactive color d, ̂carrier(d) =
C′−1(d). That is: ̂carrier(d) is the carrier of d in the total convex coloring C′. An
inactive color d is semi-active if ̂carrier(d) contains a node in S, and it is passive
otherwise. With these definitions, the proofs of the analogues of Observation 6.10
and Corollaries 6.11 and 6.12 are similar to the tree case, and are omitted. These
proofs imply that the carriers ̂carrier(d) of inactive colors d are disjoint, and hence
that there are at most |S| semi-active colors. They also imply that for a passive
color d, ̂carrier(d) contains no node of color d′ �= d.

Claim 6.26. A passive color d which is compound in (GFi, Ci) survives in iter-
ation i.

Proof. The color d may disappear in iteration i only if ̂carrier(d) is sepa-
rated from all other colors by the removal of neutral edges and neutral pairs from
(GFi, C

′
i). Since d is compound in (GFi, Ci), ̂carrier(d) may either contain a node

of other color or have an s-degree at least three. The former case is impossible
since d is passive, so the s-degree of ̂carrier(d) is at least three. By Lemma 6.25
the set of edges removed is contained in a gpath. Since each tree edge or cycle pair
adjacent to ̂carrier(d) contributes one to the s-degree, the removal of that gpath
decreases the s-degree of ̂carrier(d) by at most two. Hence after the contraction d
is not separated from all other colors, meaning that it survives the iteration.

Recall that a color d in a graph is pure if there is a d-carrier with no other d′-
nodes and with s-degree two.
By Claim 6.26, for each passive compound color d there is an i such that d is
compound in (GFi, Ci) and it becomes pure in (GFi+1, Ci+1) as follows: The col-
ored galled forest (GFi, Ci) contains a colored galled network (GN1, C1), such that
si ∈ V (GN1) and d is compound in (GN1, C1). Let C′

1 be the coloring resulted
by uncoloring si in C1. The contraction of (GN1, C

′
1) (during iteration i of the

elimination process) creates a galled network (GN, C) in (GFi+1, Ci+1) such d is
pure in (GN, C). In this scenario, we say that d is purified at (GN, C).

The following claim is similar to Claim 6.14, and it shows that at most two
compound colors are purified at each galled network:

Claim 6.27. For every colored galled network (GN, C) ∈ GF(S), at most two
passive colors are purified at (GN, C).

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Partial Convex Recolorings of Trees and Galled Networks · 21

e2e4

e1
si

e3

Fig. 7. Uncoloring node si in (GN1, C1) causes the removal of the two neutral pairs e1 and e2 on
the right and e3 and e4 on the left. It can be seen that the color (green triangle) at the left side
of the new galled network obtained is purified whereas the two compound passive colors at the
right (the yellow cross and brown hexagon) remain with s-degree 3.

Proof. Let d be a passive color which is purified at (GN, C), and let (GN1, C1)
and C′

1 be the corresponding galled network and colorings described above. As
noted above, ̂carrier(d) contains no node of color different from d. Hence the s-
degree of ̂carrier(d) is at least three, and d can be purified at (GN, C) only if the
s-degree of ̂carrier(d) is reduced by at least one during the contraction of (GN1, C

′
1).

The case of galled networks is more involved than trees since the contraction
process removes not only neutral edges but also neutral pairs. Therefore we need
the following auxiliary observation to complete the proof:

Observation 6.28. Let CP = {e1, e2} be a neutral cycle pair, separating the
galled network into two galled networks GN1 and GN2. Then there is at most one
(passive) color d in GN1 (GN2), such that the removal of CP decreases the s-degree
of ̂carrier(d).

Proof. We first note that the s-degree of a carrier is decreased only if it is
adjacent to a removed edge. We divide the proof into two cases:

Case 1: The two edges are adjacent to the same carrier. Then by the
previous argument only that carrier can be affected.

Case 2: Each edge of the pair is adjacent to a different carrier. Then,
it can be noted that the s-degree of both carriers is not affected.

Figure 7 shows this pictorially.
By Lemma 6.25, all the removed edges are contained in a gpath. Therefore GN

is created either by removing a neutral edge or a cycle pair at both sides. If GN
was created by removing a cycle pair, then by Observation 6.28, the s-degree of at
most one carrier ̂carrier(d) for a pure color d in GN can be reduced. The same
holds for removing a neutral tree-edge as in the tree case.
We conclude that at most two passive compound colors are purified in (GN, C).

The above leads to the following theorem:

Theorem 6.29. α ≤ 4|S|.
ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

22 · Shlomo Moran et al.

Proof. Same as for Theorem 6.15

7. CONCLUDING REMARKS AND FURTHER RESEARCH DIRECTIONS

In this work we extended the previous works on convex recoloring to handle partial
coloring and galled networks. We first showed that the decision problem of whether
a coloring of general graph is convex is NP-hard. Next we defined the notion of
compound colors in a partial coloring of galled networks and provided an algorithm
for optimal convex recoloring of galled networks that runs in time polynomial in the
size of the graph and exponential in the number of compound colors. Finally, by
using the notions of gpaths and cycle pairs, we showed that the size of an optimal
cover in a galled network is bounded from below by a linear function of the number
of compound colors.
Few further research directions come to mind:

—Is there a simple generalization of the algorithm presented here to more involved
cases of networks?

— [Bar-Yehuda et al. 2005; Moran and Snir 2007] studied the approximability of
convex recoloring for trees and paths. It is of interest whether these technique
can be employed on the graphs studied here.

ACKNOWLEDGMENTS

The second author would like to thank Satish Rao for helpful discussions. We would
also like to thanks the referees for very helpful comments.

REFERENCES

Bar-Yehuda, R., Feldman, I., and Rawitz, D. 2005. Improved approximation algorithm for
convex recoloring of trees. In WAOA.

Bodlaender, H. L., Fellows, M. R., Langston, M. A., Ragan, M. A., Rosamond, F. A., and

Weyer, M. 2006. Kernelization for convex recoloring. In ACiD. 23–35.

Bodlaender, H. L., Fellows, M. R., Langston, M. A., Ragan, M. A., Rosamond, F. A., and

Weyer, M. 2007. Quadratic kernelization for convex recoloring of trees. In COCOON. LNCS,
vol. 4598. Springer, 86–96.

Chen, X., Hu, X., and Shuai, T. 2006. Inapproximability and approximability of maximal tree
routing and coloring. Journal of Combinatorial Optimization 11, 2, 219–229.

Chor, B., Fellows, M. R., Ragan, M. A., Razgon, I., Rosamond, F. A., and Snir, S. 2007.
Connected coloring completion for general graphs: Algorithms and complexity. In COCOON.
LNCS, vol. 4598. Springer, 75–85.

Cormen, T., Leiserson, C., Rivest, R., and Stein, C. 2001. Introduction to algorithms. MIT
Press.

Downey, R. G. and Fellows, M. R. 1999. Parameterized Complexity. Springer.

Garey, M. and Johnson, D. 1979. Computers and Intractability – A Guide to the Theory of

NP-Completeness. W. H. Freeman and Company, New York.

Golumbic, M. C. 1980. Algorithmic Graph Theory and Perfect Graphs. Academic Press.

Kuhn, H. 1955. The hungarian method for the assignment problem. Naval Research Logistics
Quarterly , 83–97.

Moran, S. and Snir, S. 2007. Efficient approximation of convex recolorings. Journal of Computer
and System Sciences 73, 7, 1078–1089. preliminary version appeared in APPROX-RANDOM,
2005, pp. 192-208.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

Partial Convex Recolorings of Trees and Galled Networks · 23

Moran, S. and Snir, S. 2008. Convex recolorings of strings and trees: Definitions, hardness

results and algorithms. Journal of Computer and System Sciences 74, 5, 850–869. preliminary
version appeared in WADS, 2005, pp. 218-232.

Ponta, O. 2007. The fixed-parameter approach to the convex recoloring problem. Ph.D. thesis,
Mathematisches Institut, Ruprecht-Karls-Universität Heidelberg.

Razgon, I. 2007. A 2O(k)poly(n) algorithm for the parameterized convex recoloring problem.
Information Processing Letters 104, 2, 53–58.

Sankoff, D. 1975. Minimal mutation trees of sequences. SIAM Journal of Applied Mathemat-
ics 28, 1, 35–42.

Semple, C. and Steel, M. 2003. Phylogenetics. Oxford University Press.

Weisstein, E. W. Bell number. From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/BellNumber.html.

...

ACM Transactions on Computational Logic, Vol. V, No. N, November 2008.

