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It is proved that a large class of distributed tasks cannot be solved in the pr,2s,2nct~ of faulty procc:isor~ Thb, class cmnaills 
tasks whose unsolvahility ill 111,2 pr,2senc,2 of faalls is knowB (tile cons,211sus task a~ld il!, wltianls, of. Fischer ,21 at. (1985)) as 
w,dl as some new tasks (e.g., constructing a sF, alming Ire,2). In parlicular, we hitroduce the notion of the decasion graph of a 
task. and show that cvcry problem whose 4.lcgisioil graph is disconnected cannot be solved in the presence of one faulty 
processor, By reducing the unsotval)ility of this problem to the un~olvability of tile cons,2nsus problem. The notion of 
unsolvability us,2d here is very wolff.: We say that a proto`2o! solves a given problem in spite of one hmity pro,.,2ssor if in any 
execution it sztisfies (i) all nonfauhy processors eventually halt, and (it) if no processor is faulty, it solves the problem, Hence. 
the unsolvahility of a problem in this model implies its unsolvability in other models appearing in the literature. 
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1. Int roduct ion 

T h e  model  under  inves t iga t ion  is an  asyn-  
ch ronous  ne twork  of  N processors,  where  each 
processor  has  a unique  identi ty,  in  o rde r  to ex- 
ecute  c o m m o n  tasks,  the processors  m a y  com-  
munica te  by exchang ing  messages  a long  com-  
munic .  " = 5,aks. 

Sys tem reliabil i ty is a fac'~Jr o f  crucial  effect  on  
the complexi ty  of  d is t r ibuted  task~ in asynchro-  
nous  networks.  A grea t  a m o u n t  of  effor t  has  been  
spent  in a t t emp t s  to unders tand  the  na tu re  of  that  
effect  as well as in devis ing  faul t - tolerant  proto-  

cols (el. 11-6]). 
W e  inves t igate  the existence of  protocols  for a 

c o m m o n  type of  d is t r ibuted  tasks,  namely  decision 
tasks, in the presence of  faulty processors.  W e  
a s s u m e  thz'. fa i lures  m a y  occur  wi thout  any  warn-  
ing; a fai led processor  sends  no messages ,  m a y  not  

* Part ~f this work was done while this author was at IBM 
Thomas J. Watson Research Center, Yorktown Heights, NY 
10598, U.S.A. 

recover  and  i ts  fai lure is undetectable  (fai l -s top) .  
A decis ion task is a funct ion  that  m a p s  each 

input. 'ocelot, t~a! is, a ~.eclor co .aposed  of  initial 
va lues  ass igned to the processors,  to a subset  o f  
decis ion (output )  v tc tors .  For  example ,  tile con- 
sensns  task and  tile election task are  typical dcei., 

s ion tasks. 
A protocol  solt,es a decision task it: spite o f  one 

fault  i f  in any  execut ion of  the protocol  the follow- 
ing  holds:  

(1) I f  no  processor  is faulty, the ex~.zuti~q 
te rmina tes  and  the eventual  decis ion vector  agrees  

wi th  the task function. 
(2) I f  at  mos t  one processor  is faulty, all non- 

faulty processors  eventual ly  halt. 
W e  obta in  an impossibi l i ty  result for a large 

class of  decis ion tasks in the presence of  faults,  in 
the  sense that  no  protocol  des igned to accompl ish  
such a task is gua ran teed  to ever  t e rmina te  in the 
presence  of  one  faulty processor.  T h a t  class con- 
ta ins  tasks whose  unsolvabil i ty  in the presence of  
faults  is known (the consensus  task and  its var iants ,  
cf. [41) as well as  somc  new tasks,  for example  
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conr,{rt~ctilt,e, ;l sp;In~irlg tree. We prove our  impos- 
sii>~Iity res~!ts for the very strong model  of  a 
conll::,le~e net'0,ork in wllJeh every processor knows 
ti~e identities of  all other  processors. Clearly, the 
results also apply for weaker  models  in which the 
network is not necessarily complete,  or  the identi- 
ties are mutually uiaknown. 

The  remainder  of  this paper  is organized as 
i'o]io~s: See!inn 2 provides tlre basic definitions 
ti~;cd ,~ the sequel, III ~cctioll _~ we pro; 'e our  
i~V~>,~ibiti~v result>. , \  suuunary  and conclusions 
:~re fi~*alIs given m Section 4. 

dccisio,t vahtes, respectively. A distributed decision 
task T for a network of  N processors is a mapp ing  
T :  X N --, 2 "v~, which maps  each N-tuple  in X N to 
a subset  of  N-tuples in D N, An  input vector x ~- X N 

is of  the form x = ( x p  x2 . . . . .  xN),  where x i is the 
input  value of  processor  Pi. Similarly, a decision 
vector d ~ D  N is ;~ vector  d = ( d l ,  d 2 . . . . .  dN) ,  
where d i is the decision value computeo  by  
pr,~ccssor p~, A d,cAsion task represents,  for each 
input vector  gi':e~ from some outside source, tire 
al lowable decision vectors. Tire set of  differcnt 
decision vcct,,rs in the range o f  T is called |he  
~h'ct.~'ion set of  T, and is denoted by 1)~. 

:kn asyztckmmorLs dLvtri?)lit.ed :~}'stem S is a net- 
• :.,.: rk of N (N > 2) asy~!chronnus processors where 
each processor has a uuique identity. Tile system 
is ~{ewed is an undirected graph S = (V. E) where 
v {?~. P2 . . . . .  py  } is the set of processors and  E 
i., ~lc .~v:{ ¢~i v' ~glHnullication lirfl-:s connect ing them. 
i'~cb processor knows the identities of  the 
processors on the other  ends of  its incident limks. 
Proces>ors vvmmmlica te  by sending each other  
messages l ions  the communica t ion  links. Me:,- 
~ages sen~ by nonfa~tHy processors arrive wi01 no 
c~ror irl ~i~ite h~t~ :nbour ,  dcd and unpredictable 
lime. Our rc~:H~, ~,ic proved for complcic  act- 
v, orks. in which evgQ' processor := i:onn<~'~.ed to 
{~and kr'ows 1he identities of) ali other  p ~:cessors. 

~:~ :/, ,  ,~ , e  :ei:,/: for a given nel*,'.o~k is a task 
;',hc~c a de,.:i~i~lB is to be taken I~ 3' Late network. 
l> t ,ed on input values given In the :>~ocessors. The  
decision consists of the decision values of  all the 
processors, and be!ongs to a predefined set of  
possible decisions. The  consensus task, where all 
processors are to decide or;. :}~¢ same value, and 
t~-~e election task. in which ,>.: ~ctly one processor is 
~o decide o~ an 'electio~ d u e ' .  are typical deci- 
sion u.~ s!,g s, 

%q_ now give a mo:,~ ¢2ceeise definition of  deci- 
sion tasks. Let )." ;~:',A 12 5e sets of  input values and 

l.?.emark. (~ur definition of  decision tasks assumes 
;hat, for an input set X, every vector  x e X N is a 
possible input to the task. In some scenarios it is 
assumed that the input  vectors are  restricted to be 
of  ,,vine special form; for example  it is somet imes  
req~Jired that  ail tim inputs ,,~i . . . . . .  e distinct. 
'-.!so. when the network is not  necessarily com-  
"'icte, an input  vector  for the spanning tree task 
_,hould represent  an  adjacency list of  some  graph.  
O u r  results will be  generalized to such cases in the 
sequel. 

Below, some examples  of  decision tasks are 
given. 

(1) Consen.,,c~. i,, du~ task, tire input  set is 
~zrbitrary. and each input vector  is mapped  to tile 
set 

{ 0 ,  1 . . . . .  1), (0,  0 . . . . .  0 ) } ,  

the ta~tcr being the decision set. (hi  [4], :}:e input  
set of  this tztsk was restricted to be {0, 1}; the 
result of  Fischer et ah [4] easily generalizes to 
~,and!c an arb i t rapj  input set.) 

(2) e-approximv_t,', agreement [2]: In this task, 
the input  set is the set of  real numbers ,  and the 
decision vectors sat ' sfy the following two condi-  
tions: 

Agreement:  The  decision values of  the proc- 
essors are within e of  each other. 

Validio,." The  decision value of  each processor  
must  be in the range of  the initial values of  the 
processors. 

The  decision set of  this task i~ the set of  all real 
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vectors (d I, d 2 . . . . .  d N ) satisfying [d i - di  I ~ e for 
all I ~ i, .i < N .  

(3 )  Election: in  this task,  the input set is arbi-  
trary, and exactly one processor is to decide "1"  
while all other processors are io decide "'6 . The 
corresponding decision set is given as 

{ ( L 0 , 0  . . . . .  0 ) , ( 0 ,  1 . '  a . . . . .  0), 

. . . .  (0 .0  . . . . .  0, I)}.  

A well-known version of this lask is |o clccl the 
processor had, big the itrgest input, whcrc lies are 
resolved by the (distinct) identities of tl~e 
processors, h; dris version, an iqput vector where 
x, is the largest component  is mapped lo a single 
output  vector where d, = I :;ad d~ : {/for all .I / i. 

(4) R:enLmg: |n this lark, the i,',iml set is the 
set of integers. Each input vector i:; :napped ,~; a 
.-Ang!e output vector, where tile value of each com- 
ponent  is the rank oi the cmresponding  inpat  
component ;  ties are resolved by using the (dis- 
tinct) identities of the processors. The correspond- 
ing decision set is 

{ ~r I ~r is a permutat ion of {1, 2 . . . . .  N) }. 

(5) Spanning tree: No input is needed in this 
task, :,into a complete network is assumed (see the 
abov~ Re~nart~:). inv decision vaiue of each 
processor is a set of links incident to that processor 
in a ccr~:,L,: spannhig lree of the network. 

The following definitions play an essenlia] roll 
i,~ our proof: Let T be a decision task and let i)~ 
bc T ' :  desision set. Two decision vectors dp  d z < 
D. e are edi~went if d t and d z differ in the value of 
a sing; . . . . . .  pouent  on!y n~fine tne decisio..T:.ph 
of T as  G T = ( r ,~  , E r )  wh. . e  

ET = {(dt,  d2) Idl, d2 are adjacent 

,ectors in D,~ }. 

(A decision graph may be infinilc; consider the 
approximate agreement task.) A task T is dis- 
connected if its decision graph is not connected. 

It is not hard to see that the decision graphs of 
all the examples above, except the e-approximate 
agreement, are disconnected. (Consider, for exam- 
ple, the spanning tree task: In this task, any N - 1 
decision values correspond to a set ef  spanning 
tree edges covered by N - 1 nodes, which nlnst be 
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the complete set of the spanning tree. Hence, the 
decision value of the Nth processor is completely 
determined by these of the remaining N - 1  
?~roce~v~r~.) In all t.b~e examples, the decision 
graphs  contain no edges. On the other hand, one 
can vcrif,, that the decision graph of the c-ap- 
proxilnate agreemenl task is conueclcd. 

3. ProtocoZ~' 

A protocol (also referred to as a distributed 
algorithm elsewhere) for a given network is a set of 
N programs,  each associated with a sinl,lc 
pr,~eessor in tile network. Within :1 pro|ncol,  each 
processor acls t lclermhd',&.d;y .ccord ing  to its 
program, which includes opcrations of (i) sending 
a message to a neighbour along a communicat ion 
link, (it) receiving a message, and  (i{i) processing 
information in its local memory. A processor that 
has completed its program is said to halt. Halting 
is always associated with writing a decision value. 

A configuration of the system consists of the 
memory contents of each processor (including the 
program counter 's  value) together with the mos- 
s, ages that were sent to that processor but no1 yet 
received. An initial configuration is one in which 
each processor is assigned an input value and 
none has started its program;  note that an initial 
configuration is defined by an input vector. A 
configuration is final if all processors have hailed: 
a final conf;guralion defines a decision w:clor. 
Nolo Ihat, tn a l;~nlfinal configuratioll, II;e values 
of sonic componct, ts  of the eventual decision vec- 
tor arc not yet deri~ed. Call such componems 
B-components, r e d  call a vector with B-compo- 
nents a partial decision veceor. 

Let d~ be a decision vector. A partial decision 
vector t] 2 IS exlendibh, to d I if it is possible to 
obtain d t by replacing all tllc l;-c~nnponcnls t~!' de 
by appropriate  decision values. 

An execution of a protocol P is a scquence of 
events, each being either sending a message, re- 
ceiving a mcssage or doing some local computa-  
tion. 

Definition. A protocol P solves a last, T if for 
every vector d E Dr t there is some execution of P 
which yields d. 
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2.4. System unreliabi#o, 

Decision tasks are solvable provided that the 
corresponding function is computable  and the 
participating processors are completely reliable. 
Real systems, however, may be subject to processor 
faults. In this section we discuss the impact  of 
unreliability on decision tasks in tile presence of 
faults. 

First. we define tile notion of failure (fail-stop): 
A processor is findty in an execution if all mes- 
sages sen, ay that processor after a certain time 
are destroyed. 

Since tne model is fully asynchronous,  in the 
sense thal no assumptions are made about  mes- 
sage delays, there is no way a processor can detect 
the failure of another processor, for there is no 
way to tell whether the latter is faulty or its 
messages are delayed. This fact is of crucial effect 
on the solvability of various tasks in unreliable 
mstributed systems. For example, assume that 
there is an election protocol that whenever at most 
one pr,~cessor fails, halts with exactly one processor 
elected (i.e., outputs " i " ) ,  and consider the follow- 
ing scenario. The protocol is executed, and some 
processor outputs  "1" .  However, all messages sent 
by that processor informing the network about  its 
election are delayed. In this case, the network 
cannot decide whether or not this processor ab 
ready had output " t " ,  and hence whether a leader 
was already elected or not. It follows that the 
protucol cannot guarantee that exactly one 
processor will be elected in the presence of a 
fauky processor. 

( 'onsequcntly, we focus our atten~i,~;~ to n 
weaker form of solvability in the presence of 
faults, as follows. Let T be a decision task. A 
protocol P solves T in spite of one/hul t  if the 
following hold for any execution of P: 

(1) If no processor is faulty, then P solves T. 
(2) tf  at most one processor is faulty, then all 

nonfautty processors eventual!y halt. 
, decision task is solvable in spite of  one fault if 

there exists a protocol tha; soi~es that task in spite 
of one fault. 

Note that if a task T m;;ps ;~J! input vectors to a 
sin,ale decision vector, the~ T k- trivia!ly solvable 
in spite of one fault. More generally, if the deci- 

sion value of each processor is a function of its 
input only, then the task is solvable in the pres- 
ence of arbi trary many faults. Such tasks are not 
considered in the sequel. 

3. Main results 

In tiffs section we first prove that n:~ dis- 
connected decision ~ask is solvable in spite of one 
fault, and then we generalize that result to tasks 
with restricted input sets. Our  proof  uses a theo- 
rem proved by Fischer, Lynch and  Paterson [4 !. 
restated below in terms of our  model. 

3.1. Theorem ([4]). No protocol solves the consensus 
task in spite of  one fault. 

Remark. The theorem applies here al though our 
model slightly differs from the model of Fischer et 
al. [4]. In part icular,  Fischer e t a l .  proved that, in 
the presence of a faulty processor, the system is 
not guaranteed to ever enter a configuration lead- 
ing to just  a single decision vector. This can  be 
shown to be equivalent to our definition of  un- 
solvability. 

First, we prove two ]emmas. These lemmas 
describe properties of decision tasks, to be used in 
tlae proof  of the impossibility result. 

3.2. Lemma. /x,t T be a decision task and suppose 
that thc;c exists a protocol P that solves T in spite 
of  one fault. Consider an execution of  P in the 
prexence of  one faulty processor. Eventually, the 
system will enter a configuration C where N - 1 
processors have halted, and the (partial) decision 
vector corresponding to C is extendible to a decision 
vector of  T. 

Proof.  Since the protocol solves T in spite of one 
fault, eventually all nonfauhy processors will halt. 
Suppose that the partial decision vector acbieved 
is not extendible to a decision vector of T. As far 
as the nonfaulty processors are concexned, that 
execution is indistinguishable from another  execu- 
tion, in which the remaining processor is not 
faulty, but  all messages sent by that processor are 
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delayed until all other processors halt. In that 
execution, whel~ the remaining processor halts, the 
achieved decision vector is not a decision of T, 
which contradicts the assumption that the proto- 
col solves T in spite of one fault. [] 

3.3. Lemma. Let  T be a decision task. Assume that 
P is a protocol that solves T in spite o f  one fault ,  
and let d be a decision m, ctor o f  T achieved hy t,n 
exccation o f  P. Then, at O, N - I decision compo- 
neuts ¢~" d uniquel)~ de'to?nine the ('onnected compo- 
nen! of  d in G,r. 

Proof. A set of N - 1 decision components  of d 
can be viewed as a partial decision vector with 
exactly one B-component.  Consider two sucb sets. 
and let d~ and  d 2 be the corresponding partial 
decision vectors. Let e~ and  e 2 be two decision 
vectors, to which d z and  d 2, respectively, are ex- 
tendible. Both e~ and  e 2 are adjacent to d. It 
follows that both belong to the same connected 
component  (which is d's connected component) .  
[] 

~¢e are now able to state our  impossibility 
result. The next theorem shows that the class of 
disconnected decision tasks is not solvable in spite 
cff one fault. The theorem is proved by reducing 
the unsoh'abili ty of any disconnected task to the 
unsolvability of the consensus task (whose un- 
soleability in spite of one fault was mentioned 
abo~c). 

3.4. Theorem. No diseonnected task is solvable in 
~piie o f  one ft:ult. 

Proof. Let T be a dis(:or,~ccted lask, a , 0  ,et 
C~, C~ . . . . .  Cg oe the connected components  of 
G-~ (k ~> 2). Assmnc that T is solvable in spite of 
one fault by a protocol P. We show that this 
implies that there exists a protocol P~ which solves 
the consensus task in spite of one fault. 

The claim is proved by construcling W, which 
is based on P with the following modifications. 
Whenever a processor is about to halt and  write a 
decision value in P, it broadcasts  in P~ the deci- 
sion value it would have if P was executed by the 
system (call this value a ~irmal decision value) 

and  waits. Since P solves T in spite of  one fault, 
eventually N -  1 processors will broadcast  their 
virtual decision values. Thus, each nonfaulty 
processor will eventually receive N -  1 such vir- 
tual decision values that comprise, by Lemma 3.2, 
a partial  decision vector of T. 

Let O~ be a decision vector to which the partial 
decision vector achieved by processor p~ is ex- 
tendible. By Lemma 3.3, tbe connected compo- 
nent C i to which O, belongs is uniquely defined, 
independently on the actual choice of O~ Upon 
receiving N -  1 virtual decision values and de- 
termining the connected component  C i, tile 
processor will output  the pari ty bit of j and hah. 
By l .emma 3.3, all pmccs::nrs will ;~ree o n  the 
same component ,  and hence will ontput  the same 
bit. Thus, P" solves the consensus task in spite of 
one fault. 

Since assuming t.hat T is solvable in spite of 
one fault implies that there exists a protocol which 
solves the consensus task in spite of one fault, a 
contradict ion to Theorem 3.1 arises. It follows 
that  no disconnected task is solvable in spite of 
one fault. [] 

Remark. In the above proof we assumed that all 
processors agree on a certain order of the con- 
nected components  of G T. Such an agreement is 
easily achieved (with no communicat ion) if each 
processor knows the identities of all other 
processors. 

In some cases i! is interesting to have impossi- 
bility result., for tasks in wlfich ihe inputs are 
restricted to be of a special form (e.g., in many 
cases it is assumed that all input values are dis- 
tinct). Theorem 3.4 can be extended to handle this 
case as t~llows: 

Let 1 G X N bc the set of all possible inputs to a 
decision task T. Define the input graph lk~r T 
similarly to tbe definition of a deciskm graph: An 
input vector" (x~, x 2 . . . . .  x N) ~ 1 is adjacent to an 
input vector (Yl, Y2 . . . . .  y~,,)~ i iff they differ in 
the value of exactly one component.  Then we have 
the following theorem. 

3.5. Theorem. 1J a task T has a connected input 
graph and a ~h'wonnected decision graph, then T is 
not solvable in ,wite o f  one fault. 
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Proof. It is sufficient to prove that the consensus 
task, when generalized to have a connected input 
graph, is not solvable in spite of one fault, and  
then to apply the reduction of Theorem 3.4. 

The proof  that the consensus task, when gener- 
alized in toe above manner,  is not solvable in spite 
of one fault follows the outlines of the proof  in [4], 
and is only sketched here: By definition of the 
consensus task, there are two input vectors (i.e., 
initial configurations) that lead to different deci- 
sions. Let x and y be these inputs. Since the input 
graph is c,~rmected, there is a path h'om x to y; on 
this path there must be two adjacent inputs thai 
might lead to ditferent decisions. From tiffs point 
on, the proof  is identical to the one in [4]. [] 

4. Conel~ions 

Impossibility results for a large class of deci- 
sion tasks in the presence of faults have been 
proved. This class contains tasks whose unsolva- 
bifity in the presence of faults is known (the 
c,,n~ensus task and its variants) as well as some 
new tasks, such as election and  constructing a 
spanning tree. We have shown that no proto~:l  
devised to accomplish a diseon ~cted decision task 
is guaranteed to ever terminate in the p:esenca of 
one faulty processor. 

The modal of computat ion which was used for 
the impossibility proof is very powerful, since the 
following assumptions have been made: 

(1) The underlying graph of the network is 
complete, so each processor can directly com- 
rnuuicale with any otimr processor. 

(2) The communication links arc 'orally relia- 
ble. 

(3) The type of failure is fail-stop, leaving no 
room for arbitrary or malicious behaviour of faulty 
processors. 

(4) The number of faulty processors has been 
~imited to one. 

(5) Each processor may aave a different inter- 
nal program. 

(6) The processors' identities are mutually 
known. 

(7) A protocol is co~sidered to be reliable as 
long as the failure of a single processor does not 
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prevent the others from halting (regardless of their 
decision value). 
Since most reasonable models are weaker than the 
one discussed above, our  result applies there also. 

The model is fully asynchronous in the sense 
that  both message delay and  the rate of drift of  
the processors'  internal clocks are unbounded.  
However, our  result applies to some partially syn- 
chronous models as well. Some models in which 
the consensus task (hence any disconnected task) 
is unsolvable in spite of faults are identified in [1]. 
Fo r  example, it is proved in [1] that unbounded 
message delay and an arbi trary order of message 
delivery render the consensus task unsolvable in 
spite of one fault, even if the processors are lock- 
stepped. 

The notions of a decis;on graph and  its con- 
nected components,  as well as that of the input 
graph that has been introduced in this paper seem 
to provide a convenient tool to identify tasks 
which cannot  be solved in the presence of  a faulty 
processor. 

The result has some pessimistic practical impli- 
cations. For  example, tlie unsolvability of the elec- 
t ion task in the presence of faults implies that 
serializing access to distributed network resources 
is impossible in the presence of faults, since the 
election task may be view ' as a task where 
exactly one processor is allowed to access a re- 
source. 

Since no deterministic protocol is adequate for 
handl ing disconnected decision tasks in the pres- 
ence of faults, a probabi!istic approach seems to 
be the best solution in hand for these tasks. In 
fact, a randomized asynchronous agreement pro- 
tocol like the protocol devised by Rabin [61 can be 
adapted to solve any disconnected decision task. 

Finally, it is worth mentioning that there exist 
connected tasks wbfich, apparently,  are also un- 
solvable in the presence of faults. As an example, 
consider the task where the inputs are bits, and p~ 
( l ~ i ~ < N )  has to output  the input bit of  

Pi (iraqi n).*. l- 
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