
Information Processing Letters 26 (1987/88) 145-151 23 November 1987
Norlh-Holland

EXTENDED IMPOSSIBILITY RESULTS FOR ASYNCHRONOUS COMPLETE NETWORKS

Shlomo M O R A N * and Yaror~ W O L F S T A H L

lwparom,nt of Computer ScWnce, Tecknion, lsrm'l Institute of Technt,lo.,v. Ihufa, IsraH 32(]4~1

CrJnn|l~lnica|cd hy R. Wdhchn
Rec,2ivcd 5 January 1987
Revised 13 April 1987

It is proved that a large class of distributed tasks cannot be solved in the pr,2s,2nct~ of faulty procc:isor~ Thb, class cmnaills
tasks whose unsolvahility ill 111,2 pr,2senc,2 of faalls is knowB (tile cons,211sus task a~ld il!, wltianls, of. Fischer ,21 at. (1985)) as
w,dl as some new tasks (e.g., constructing a sF, alming Ire,2). In parlicular, we hitroduce the notion of the decasion graph of a
task. and show that cvcry problem whose 4.lcgisioil graph is disconnected cannot be solved in the presence of one faulty
processor, By reducing the unsotval)ility of this problem to the un~olvability of tile cons,2nsus problem. The notion of
unsolvability us,2d here is very wolff.: We say that a proto`2o! solves a given problem in spite of one hmity pro,.,2ssor if in any
execution it sztisfies (i) all nonfauhy processors eventually halt, and (it) if no processor is faulty, it solves the problem, Hence.
the unsolvahility of a problem in this model implies its unsolvability in other models appearing in the literature.

Keywords: Asynchronous system, consensus problem, distributed computation, fault tolerance, impossibility r,2suh, reliability

1. Int roduct ion

T h e model under inves t iga t ion is an asyn-
ch ronous ne twork of N processors, where each
processor has a unique identi ty, in o rde r to ex-
ecute c o m m o n tasks, the processors m a y com-
munica te by exchang ing messages a long com-
munic . " = 5,aks.

Sys tem reliabil i ty is a fac'~Jr o f crucial effect on
the complexi ty of d is t r ibuted task~ in asynchro-
nous networks. A grea t a m o u n t of effor t has been
spent in a t t emp t s to unders tand the na tu re of that
effect as well as in devis ing faul t - tolerant proto-

cols (el. 11-6]).
W e inves t igate the existence of protocols for a

c o m m o n type of d is t r ibuted tasks, namely decision
tasks, in the presence of faulty processors. W e
a s s u m e thz'. fa i lures m a y occur wi thout any warn-
ing; a fai led processor sends no messages , m a y not

* Part ~f this work was done while this author was at IBM
Thomas J. Watson Research Center, Yorktown Heights, NY
10598, U.S.A.

recover and i ts fai lure is undetectable (fai l -s top) .
A decis ion task is a funct ion that m a p s each

input. 'ocelot, t~a! is, a ~.eclor co .aposed of initial
va lues ass igned to the processors, to a subset o f
decis ion (output) v tc tors . For example , tile con-
sensns task and tile election task are typical dcei.,

s ion tasks.
A protocol solt,es a decision task it: spite o f one

fault i f in any execut ion of the protocol the follow-
ing holds:

(1) I f no processor is faulty, the ex~.zuti~q
te rmina tes and the eventual decis ion vector agrees

wi th the task function.
(2) I f at mos t one processor is faulty, all non-

faulty processors eventual ly halt.
W e obta in an impossibi l i ty result for a large

class of decis ion tasks in the presence of faults, in
the sense that no protocol des igned to accompl ish
such a task is gua ran teed to ever t e rmina te in the
presence of one faulty processor. T h a t class con-
ta ins tasks whose unsolvabil i ty in the presence of
faults is known (the consensus task and its var iants ,
cf. [41) as well as somc new tasks, for example

0{120_11~90/S7/$3.50 ~,/ 1987, Elscvi,2r Science Publishers B.V. (North-Fiolland) 145

tNI:OI~.MA'I ION P|~.O('I!S~;IN(] I.[:'I'I'I:.|~.S 23 November 1987

conr,{rt~ctilt,e, ;l sp;In~irlg tree. We prove our impos-
sii>~Iity res~!ts for the very strong model of a
conll::,le~e net'0,ork in wllJeh every processor knows
ti~e identities of all other processors. Clearly, the
results also apply for weaker models in which the
network is not necessarily complete, or the identi-
ties are mutually uiaknown.

The remainder of this paper is organized as
i'o]io~s: See!inn 2 provides tlre basic definitions
ti~;cd ,~ the sequel, III ~cctioll _~ we pro; 'e our
i~V~>,~ibiti~v result>. , \ suuunary and conclusions
:~re fi~*alIs given m Section 4.

dccisio,t vahtes, respectively. A distributed decision
task T for a network of N processors is a mapp ing
T : X N --, 2 "v~, which maps each N-tuple in X N to
a subset of N-tuples in D N, An input vector x ~- X N

is of the form x = (x p x2 xN), where x i is the
input value of processor Pi. Similarly, a decision
vector d ~ D N is ;~ vector d = (d l , d 2 dN) ,
where d i is the decision value computeo by
pr,~ccssor p~, A d,cAsion task represents, for each
input vector gi':e~ from some outside source, tire
al lowable decision vectors. Tire set of differcnt
decision vcct,,rs in the range o f T is called |he
~h'ct.~'ion set of T, and is denoted by 1)~.

:kn asyztckmmorLs dLvtri?)lit.ed :~}'stem S is a net-
• :.,.: rk of N (N > 2) asy~!chronnus processors where
each processor has a uuique identity. Tile system
is ~{ewed is an undirected graph S = (V. E) where
v {?~. P2 py } is the set of processors and E
i., ~lc .~v:{ ¢~i v' ~glHnullication lirfl-:s connect ing them.
i'~cb processor knows the identities of the
processors on the other ends of its incident limks.
Proces>ors vvmmmlica te by sending each other
messages l ions the communica t ion links. Me:,-
~ages sen~ by nonfa~tHy processors arrive wi01 no
c~ror irl ~i~ite h~t~ :nbour , dcd and unpredictable
lime. Our rc~:H~, ~,ic proved for complcic act-
v, orks. in which evgQ' processor := i:onn<~'~.ed to
{~and kr'ows 1he identities of) ali other p ~:cessors.

~:~ :/, , ,~ , e :ei:,/: for a given nel*,'.o~k is a task
;',hc~c a de,.:i~i~lB is to be taken I~ 3' Late network.
l> t ,ed on input values given In the :>~ocessors. The
decision consists of the decision values of all the
processors, and be!ongs to a predefined set of
possible decisions. The consensus task, where all
processors are to decide or;. :}~¢ same value, and
t~-~e election task. in which ,>.: ~ctly one processor is
~o decide o~ an 'electio~ d u e ' . are typical deci-
sion u.~ s!,g s,

%q_ now give a mo:,~ ¢2ceeise definition of deci-
sion tasks. Let)." ;~:',A 12 5e sets of input values and

l.?.emark. (~ur definition of decision tasks assumes
;hat, for an input set X, every vector x e X N is a
possible input to the task. In some scenarios it is
assumed that the input vectors are restricted to be
of ,,vine special form; for example it is somet imes
req~Jired that ail tim inputs ,,~i e distinct.
'-.!so. when the network is not necessarily com-
"'icte, an input vector for the spanning tree task
_,hould represent an adjacency list of some graph.
O u r results will be generalized to such cases in the
sequel.

Below, some examples of decision tasks are
given.

(1) Consen.,,c~. i,, du~ task, tire input set is
~zrbitrary. and each input vector is mapped to tile
set

{ 0 , 1 1), (0, 0 0) } ,

the ta~tcr being the decision set. (hi [4], :}:e input
set of this tztsk was restricted to be {0, 1}; the
result of Fischer et ah [4] easily generalizes to
~,and!c an arb i t rapj input set.)

(2) e-approximv_t,', agreement [2]: In this task,
the input set is the set of real numbers , and the
decision vectors sat ' sfy the following two condi-
tions:

Agreement: The decision values of the proc-
essors are within e of each other.

Validio,." The decision value of each processor
must be in the range of the initial values of the
processors.

The decision set of this task i~ the set of all real

146

Vohlllle 26, Nulnbcr 3

vectors (d I, d 2 d N) satisfying [d i - di I ~ e for
all I ~ i, .i < N .

(3) Election: in this task, the input set is arbi-
trary, and exactly one processor is to decide "1"
while all other processors are io decide "'6 . The
corresponding decision set is given as

{ (L 0 , 0 0) , (0 , 1 . ' a 0),

. . . . (0 .0 0, I)}.

A well-known version of this lask is |o clccl the
processor had, big the itrgest input, whcrc lies are
resolved by the (distinct) identities of tl~e
processors, h; dris version, an iqput vector where
x, is the largest component is mapped lo a single
output vector where d, = I :;ad d~ : {/for all .I / i.

(4) R:enLmg: |n this lark, the i,',iml set is the
set of integers. Each input vector i:; :napped ,~; a
.-Ang!e output vector, where tile value of each com-
ponent is the rank oi the cmresponding inpat
component ; ties are resolved by using the (dis-
tinct) identities of the processors. The correspond-
ing decision set is

{ ~r I ~r is a permutat ion of {1, 2 N) }.

(5) Spanning tree: No input is needed in this
task, :,into a complete network is assumed (see the
abov~ Re~nart~:). inv decision vaiue of each
processor is a set of links incident to that processor
in a ccr~:,L,: spannhig lree of the network.

The following definitions play an essenlia] roll
i,~ our proof: Let T be a decision task and let i)~
bc T ' : desision set. Two decision vectors dp d z <
D. e are edi~went if d t and d z differ in the value of
a sing; pouent on!y n~fine tne decisio..T:.ph
of T as G T = (r ,~ , E r) wh. . e

ET = {(dt, d2) Idl, d2 are adjacent

,ectors in D,~ }.

(A decision graph may be infinilc; consider the
approximate agreement task.) A task T is dis-
connected if its decision graph is not connected.

It is not hard to see that the decision graphs of
all the examples above, except the e-approximate
agreement, are disconnected. (Consider, for exam-
ple, the spanning tree task: In this task, any N - 1
decision values correspond to a set ef spanning
tree edges covered by N - 1 nodes, which nlnst be

INFORMATION PROCI~SSING LI{TI'|IRS 23 November 1987

the complete set of the spanning tree. Hence, the
decision value of the Nth processor is completely
determined by these of the remaining N - 1
?~roce~v~r~.) In all t.b~e examples, the decision
graphs contain no edges. On the other hand, one
can vcrif,, that the decision graph of the c-ap-
proxilnate agreemenl task is conueclcd.

3. ProtocoZ~'

A protocol (also referred to as a distributed
algorithm elsewhere) for a given network is a set of
N programs, each associated with a sinl,lc
pr,~eessor in tile network. Within :1 pro|ncol, each
processor acls t lclermhd',&.d;y .ccord ing to its
program, which includes opcrations of (i) sending
a message to a neighbour along a communicat ion
link, (it) receiving a message, and (i{i) processing
information in its local memory. A processor that
has completed its program is said to halt. Halting
is always associated with writing a decision value.

A configuration of the system consists of the
memory contents of each processor (including the
program counter 's value) together with the mos-
s, ages that were sent to that processor but no1 yet
received. An initial configuration is one in which
each processor is assigned an input value and
none has started its program; note that an initial
configuration is defined by an input vector. A
configuration is final if all processors have hailed:
a final conf;guralion defines a decision w:clor.
Nolo Ihat, tn a l;~nlfinal configuratioll, II;e values
of sonic componct, ts of the eventual decision vec-
tor arc not yet deri~ed. Call such componems
B-components, r e d call a vector with B-compo-
nents a partial decision veceor.

Let d~ be a decision vector. A partial decision
vector t] 2 IS exlendibh, to d I if it is possible to
obtain d t by replacing all tllc l;-c~nnponcnls t~!' de
by appropriate decision values.

An execution of a protocol P is a scquence of
events, each being either sending a message, re-
ceiving a mcssage or doing some local computa-
tion.

Definition. A protocol P solves a last, T if for
every vector d E Dr t there is some execution of P
which yields d.

147

Volume 26. Number 3 INFORMATION PROCESSING I.ETTERS 23 "4ovember 1987

2.4. System unreliabi#o,

Decision tasks are solvable provided that the
corresponding function is computable and the
participating processors are completely reliable.
Real systems, however, may be subject to processor
faults. In this section we discuss the impact of
unreliability on decision tasks in tile presence of
faults.

First. we define tile notion of failure (fail-stop):
A processor is findty in an execution if all mes-
sages sen, ay that processor after a certain time
are destroyed.

Since tne model is fully asynchronous, in the
sense thal no assumptions are made about mes-
sage delays, there is no way a processor can detect
the failure of another processor, for there is no
way to tell whether the latter is faulty or its
messages are delayed. This fact is of crucial effect
on the solvability of various tasks in unreliable
mstributed systems. For example, assume that
there is an election protocol that whenever at most
one pr,~cessor fails, halts with exactly one processor
elected (i.e., outputs " i ") , and consider the follow-
ing scenario. The protocol is executed, and some
processor outputs "1" . However, all messages sent
by that processor informing the network about its
election are delayed. In this case, the network
cannot decide whether or not this processor ab
ready had output " t " , and hence whether a leader
was already elected or not. It follows that the
protucol cannot guarantee that exactly one
processor will be elected in the presence of a
fauky processor.

('onsequcntly, we focus our atten~i,~;~ to n
weaker form of solvability in the presence of
faults, as follows. Let T be a decision task. A
protocol P solves T in spite of one/hul t if the
following hold for any execution of P:

(1) If no processor is faulty, then P solves T.
(2) tf at most one processor is faulty, then all

nonfautty processors eventual!y halt.
, decision task is solvable in spite of one fault if

there exists a protocol tha; soi~es that task in spite
of one fault.

Note that if a task T m;;ps ;~J! input vectors to a
sin,ale decision vector, the~ T k- trivia!ly solvable
in spite of one fault. More generally, if the deci-

sion value of each processor is a function of its
input only, then the task is solvable in the pres-
ence of arbi trary many faults. Such tasks are not
considered in the sequel.

3. Main results

In tiffs section we first prove that n:~ dis-
connected decision ~ask is solvable in spite of one
fault, and then we generalize that result to tasks
with restricted input sets. Our proof uses a theo-
rem proved by Fischer, Lynch and Paterson [4 !.
restated below in terms of our model.

3.1. Theorem ([4]). No protocol solves the consensus
task in spite of one fault.

Remark. The theorem applies here al though our
model slightly differs from the model of Fischer et
al. [4]. In part icular, Fischer e t a l . proved that, in
the presence of a faulty processor, the system is
not guaranteed to ever enter a configuration lead-
ing to just a single decision vector. This can be
shown to be equivalent to our definition of un-
solvability.

First, we prove two]emmas. These lemmas
describe properties of decision tasks, to be used in
tlae proof of the impossibility result.

3.2. Lemma. /x,t T be a decision task and suppose
that thc;c exists a protocol P that solves T in spite
of one fault. Consider an execution of P in the
prexence of one faulty processor. Eventually, the
system will enter a configuration C where N - 1
processors have halted, and the (partial) decision
vector corresponding to C is extendible to a decision
vector of T.

Proof. Since the protocol solves T in spite of one
fault, eventually all nonfauhy processors will halt.
Suppose that the partial decision vector acbieved
is not extendible to a decision vector of T. As far
as the nonfaulty processors are concexned, that
execution is indistinguishable from another execu-
tion, in which the remaining processor is not
faulty, but all messages sent by that processor are

148

Volume 26. Number 3 INFORMATION PROCESSING LETTERS 23No~ember 1987

delayed until all other processors halt. In that
execution, whel~ the remaining processor halts, the
achieved decision vector is not a decision of T,
which contradicts the assumption that the proto-
col solves T in spite of one fault. []

3.3. Lemma. Let T be a decision task. Assume that
P is a protocol that solves T in spite o f one fault ,
and let d be a decision m, ctor o f T achieved hy t,n
exccation o f P. Then, at O, N - I decision compo-
neuts ¢~" d uniquel)~ de'to?nine the ('onnected compo-
nen! of d in G,r.

Proof. A set of N - 1 decision components of d
can be viewed as a partial decision vector with
exactly one B-component. Consider two sucb sets.
and let d~ and d 2 be the corresponding partial
decision vectors. Let e~ and e 2 be two decision
vectors, to which d z and d 2, respectively, are ex-
tendible. Both e~ and e 2 are adjacent to d. It
follows that both belong to the same connected
component (which is d's connected component) .
[]

~¢e are now able to state our impossibility
result. The next theorem shows that the class of
disconnected decision tasks is not solvable in spite
cff one fault. The theorem is proved by reducing
the unsoh'abili ty of any disconnected task to the
unsolvability of the consensus task (whose un-
soleability in spite of one fault was mentioned
abo~c).

3.4. Theorem. No diseonnected task is solvable in
~piie o f one ft:ult.

Proof. Let T be a dis(:or,~ccted lask, a , 0 ,et
C~, C~ Cg oe the connected components of
G-~ (k ~> 2). Assmnc that T is solvable in spite of
one fault by a protocol P. We show that this
implies that there exists a protocol P~ which solves
the consensus task in spite of one fault.

The claim is proved by construcling W, which
is based on P with the following modifications.
Whenever a processor is about to halt and write a
decision value in P, it broadcasts in P~ the deci-
sion value it would have if P was executed by the
system (call this value a ~irmal decision value)

and waits. Since P solves T in spite of one fault,
eventually N - 1 processors will broadcast their
virtual decision values. Thus, each nonfaulty
processor will eventually receive N - 1 such vir-
tual decision values that comprise, by Lemma 3.2,
a partial decision vector of T.

Let O~ be a decision vector to which the partial
decision vector achieved by processor p~ is ex-
tendible. By Lemma 3.3, tbe connected compo-
nent C i to which O, belongs is uniquely defined,
independently on the actual choice of O~ Upon
receiving N - 1 virtual decision values and de-
termining the connected component C i, tile
processor will output the pari ty bit of j and hah.
By l .emma 3.3, all pmccs::nrs will ;~ree o n the
same component , and hence will ontput the same
bit. Thus, P" solves the consensus task in spite of
one fault.

Since assuming t.hat T is solvable in spite of
one fault implies that there exists a protocol which
solves the consensus task in spite of one fault, a
contradict ion to Theorem 3.1 arises. It follows
that no disconnected task is solvable in spite of
one fault. []

Remark. In the above proof we assumed that all
processors agree on a certain order of the con-
nected components of G T. Such an agreement is
easily achieved (with no communicat ion) if each
processor knows the identities of all other
processors.

In some cases i! is interesting to have impossi-
bility result., for tasks in wlfich ihe inputs are
restricted to be of a special form (e.g., in many
cases it is assumed that all input values are dis-
tinct). Theorem 3.4 can be extended to handle this
case as t~llows:

Let 1 G X N bc the set of all possible inputs to a
decision task T. Define the input graph lk~r T
similarly to tbe definition of a deciskm graph: An
input vector" (x~, x 2 x N) ~ 1 is adjacent to an
input vector (Yl, Y2 y~,,)~ i iff they differ in
the value of exactly one component. Then we have
the following theorem.

3.5. Theorem. 1J a task T has a connected input
graph and a ~h'wonnected decision graph, then T is
not solvable in ,wite o f one fault.

149

Volume 26, Nmnher 3

Proof. It is sufficient to prove that the consensus
task, when generalized to have a connected input
graph, is not solvable in spite of one fault, and
then to apply the reduction of Theorem 3.4.

The proof that the consensus task, when gener-
alized in toe above manner, is not solvable in spite
of one fault follows the outlines of the proof in [4],
and is only sketched here: By definition of the
consensus task, there are two input vectors (i.e.,
initial configurations) that lead to different deci-
sions. Let x and y be these inputs. Since the input
graph is c,~rmected, there is a path h'om x to y; on
this path there must be two adjacent inputs thai
might lead to ditferent decisions. From tiffs point
on, the proof is identical to the one in [4]. []

4. Conel~ions

Impossibility results for a large class of deci-
sion tasks in the presence of faults have been
proved. This class contains tasks whose unsolva-
bifity in the presence of faults is known (the
c,,n~ensus task and its variants) as well as some
new tasks, such as election and constructing a
spanning tree. We have shown that no proto~:l
devised to accomplish a diseon ~cted decision task
is guaranteed to ever terminate in the p:esenca of
one faulty processor.

The modal of computat ion which was used for
the impossibility proof is very powerful, since the
following assumptions have been made:

(1) The underlying graph of the network is
complete, so each processor can directly com-
rnuuicale with any otimr processor.

(2) The communication links arc 'orally relia-
ble.

(3) The type of failure is fail-stop, leaving no
room for arbitrary or malicious behaviour of faulty
processors.

(4) The number of faulty processors has been
~imited to one.

(5) Each processor may aave a different inter-
nal program.

(6) The processors' identities are mutually
known.

(7) A protocol is co~sidered to be reliable as
long as the failure of a single processor does not

INFORMATION PROCESSING LETI'ERS 23 November 1987

prevent the others from halting (regardless of their
decision value).
Since most reasonable models are weaker than the
one discussed above, our result applies there also.

The model is fully asynchronous in the sense
that both message delay and the rate of drift of
the processors' internal clocks are unbounded.
However, our result applies to some partially syn-
chronous models as well. Some models in which
the consensus task (hence any disconnected task)
is unsolvable in spite of faults are identified in [1].
Fo r example, it is proved in [1] that unbounded
message delay and an arbi trary order of message
delivery render the consensus task unsolvable in
spite of one fault, even if the processors are lock-
stepped.

The notions of a decis;on graph and its con-
nected components, as well as that of the input
graph that has been introduced in this paper seem
to provide a convenient tool to identify tasks
which cannot be solved in the presence of a faulty
processor.

The result has some pessimistic practical impli-
cations. For example, tlie unsolvability of the elec-
t ion task in the presence of faults implies that
serializing access to distributed network resources
is impossible in the presence of faults, since the
election task may be view ' as a task where
exactly one processor is allowed to access a re-
source.

Since no deterministic protocol is adequate for
handl ing disconnected decision tasks in the pres-
ence of faults, a probabi!istic approach seems to
be the best solution in hand for these tasks. In
fact, a randomized asynchronous agreement pro-
tocol like the protocol devised by Rabin [61 can be
adapted to solve any disconnected decision task.

Finally, it is worth mentioning that there exist
connected tasks wbfich, apparently, are also un-
solvable in the presence of faults. As an example,
consider the task where the inputs are bits, and p~
(l ~ i ~ < N) has to output the input bit of

Pi (iraqi n).*. l-

Acknowledgment

We would like to thank the (anonymous) referee
for some helpful comments, and in part icular for

150

Volume 26, Number 3 INFORMATION PROCESSING LETTERS 23 November 1987

suggesting to extend Theorem 3.4. This suggest ion
led to the formula t ion of Theorem 3.5.

References

[1] D. Dolev, C. Dwork and L. Stockmcyer, On the minm]al
synchronism needed for distributed consensus. J. ACM 34
(1) (19871 77-97.

[2] I). I)olcv, N. Lynch, S. Pintcr, IL ~;tark and W, Weihl,
Reaching apploxinlale :lgreernenl ill |he prCSell~e of faulls,
J. ACM 33 (3) (19116) 499-516.

[3] C. Dwork, N. Lynch and L. Stockmeyer, Consensus in the
Presence of Partial Synehrony--A Preliminary Version,
Rept. MIT/LCS/TM-270, 1984.

[4] M. Fischer, N. Lynch and M. Paterson, Impossibilily of
distribuled consensus with one faulty processor, J. ACM 32
(2) (19851 373-382.

[5] L. I,amport, R, Shoslak and M, Pe;I~e, 'rile Byzantine
generals problem. ACM 'l'rnns. Progrmnmin 8 Languages &
Systems 4 (3) (1982) 382-4t11.

[6] M. Rabim Randontized Byzantine generals, in: Proc. 24th
IEEE Symp. on Foundations of Computer Science, Tucson,
AZ, November 1983.

151

