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{1 is proved that a large class of distributed tasks cannot be solved in the presence of faulty processors. This class contaias
tasks whose unsolvability in the presence of faults is known (the consensus task and its vatiants, ¢f. Fischer et al. (1985)) as
well as some new tasks (e.2., constructing i spanning tree). In particalar, we introduce the notion of the decision graph of a
task, and show that every problem whose decision graph is disconnected cannot be solved in the presence of one faulty
processor, by reducing the unsolvability of this problem to the unsolvability of the consensus problem. The notion of
unsolvability used here is very weak: We say that a protocs! solves a given problem in spite of one faudty processor if in any
excecution it satisfies (1) all nonfauliy processors eventually hait, and (ii) if no processor is faulty, it solves the problem. Hence,
the unsolvability of a problem in this model implies its unsolvability in other models appearing in the literature.
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1. Introduction

The model under investigation is an asyn-
chronous network of N processors, where each
processor has a unique identity. In order to ex-
ecuie common tasks, the processors may com-
municate by exchanging messages along com-
munic. ks,

System reliability is a factor of crucial effect on
the complexity of distributed tasks in asynchro-
nous networks. A great amount of effort has been
spent in attempis to understand the nature of that
effect as well as in devising fault-tolerant proto-
cols (cf. [1-6)).

We investigate the existence of protocols for a
common type of distributed tasks, namely decision
tasks, in the presence of faulty processors. We
assuine the’ failures may occur without any warn-
ing; a failed processor sends no messages, may not

* Part of this work was done while this author was at 1BM
Thomas J. Watson Research Center, Yorktown Heights, NY
10598, U.S.A.

recover and its failure is undetectable ( fail-stop).

A decision task is a function that maps each
inpLi vestor, that is, a vecior coinposed of initial
values assigned to the processors, to a subset of
decision {output) vectors. For example, the con-
sensus task and the clection task are typical deci-
sion tasks.

A proiocol solves a decision task in spite of one
fault if in any execution of the protocol the follow-
ing holds:

(1) ¥f no processor is faulty, the exccution
terminates and the eveniual decision vector agrees
with the task function.

(2) If at most one processor is faulty, all non-
faulty processors eventually haie.

We obtain an impossibility result for a large
class of decision tasks in the presence of faults, in
the sense that no protocol designed to accomplish
such a task is guaranteed io ever terminate in the
presence of one faulty processor. That class con-
tains tasks whose unsolvability in the presence of
faults is known {the consensus task and its variants,
cf. [4]) as well as somc new tasks, for example
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vonstructing i spanuing tree. We prove our tmpos-
sibufity resnbis for the very strong model of a
complete network in which every processor knows
the identities of all other processors. Clearly, the
results also apply for weaker models in which the
network is not necessarily complete, or the identi-
¢ mutually unknown.

The remainder of this paper is organized as
Seetion T provides the basie definitions
in Section 3 we prove our
A summary and conclusions
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decision values, respectively. A distributed decision
task T for ars network of N processors is a mapping
T: XN = 25" which maps & cach N-tuple in XN to
a subset of N-tuples in B, An input vector x = XN
is of the form x = (X,, %,,....Xy), Where x, is the
input value of processor p;. Similarly, a decision
vector d€ DN is & vector d=(d;, d,,....dy)
where d; is the decision value computea by
processor p,. A deision task represents, for each
input vector given {rom some outside source, the
allowable decision vectors. The set of different
decision veetors in the range of T is called the
decision set of T, and is denoted by Do

Remark. Qur definition of decision tasks assumes
that, for an input set X, every vector x € XM is a
possible input to the task. In some scenarios it is
assumed that the input vectors are restricted 1o be
of sosne special form; for example. it is somctimes
rguited that all the inputs valwee are distinct.
so, when the network is not necessarily com-
slete, an input vector for the spanning tree task
should represent an adjacency list of some graph.
Our resulis will be generalized to such cases in the
sequel.

Below, some examples of decision tasks are
given.

(1) Consensws. in tins task,
erbitrary, and
set

{(1.1...,0.{0,0,...,0)],

the latter being the decision set. (In 14}, the mnut
set of this task was restricted to be {0, 1}; ¢
result of Fischer et al. [4] easily generalizes to
handle an arbitrary input set.)

(2) e-approximaze agreement {2} In this task,
the input set is the set of real numbers, and the
decision vectors satisfy the following two condi-
tions:

Agreement: The decision values of the proc-
essors are within ¢ of each other.

Validity: The decision value of each processor
must be in the range of the initial values of the
Processors.

The decision set of this task 15 the set of all real

the input set is
cach input vector is mapped to the
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vectors (dy, dj, ...
all T, ja N

{3) Elecrion: In this task, the input set is arbi-
trary, and exactly one processor is to decide “17
while all other processors are io decide “0 . The
corresponding decision set is given as

{(1.0,0,...,0), (0, 1.0 0,...,0),
e (000, )

dy ) satisfying |d; — d;| <« for

A swell-known version of tlus task is Lo cleet the
processor having the fargest input, where lics are
resolved by the (distinct) identities of the
processors. In this version, an input vector where
x, is the largest component is mapped to 2 single
output vector where d, = Land d) = O foraily 7 &

(N Remienge In this task, the fapot setis the
set of integers. Each input vecter i mapped to ¢
single output vector, where the value of cach com-
ponent is the rank of the coiresponding input
component; ties are resolved by using the (dis-
tinct) identities of the processors. The correspond-
ing decision set is

{=|wis apermutation of {1, 2,....N)}.

{5) Spasning tree: No input is needed in this
task, wince a complete network is assumed (sce the
above Rewnark). ihe decision vaiue of each
processor iS a set of links incident to that processor
in a cortrin spanmng tree of the network.

The following delinitions play an essential roll
in our proof: Let T be a decsion task and let D,
be 7 dectsion set. Two decision vectors ¢, d,
Dy are addincent if d, and &, diifer in the value of
a sing.. ..uponent only Nefine tne decisior go.ph
of Tas G ={(D, X )whue

Er={{d,,4,)|4,, 4, are adjacent
ectors in By Y.

(A decision graph may be infinite; consider the
approximate agreement task) A task T is dis-
connected i its decigion graph is not connected.
1t is not hard to see that the decision graphs of
all the examples above, except the e-approximate
agreement, are disconnected. (Consider, for exam-
ple, the spanning tree task: In this task, any N — 1
decision values correspond to a set of spanning
tree edgas covered by N — T nodes, which must be
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the complete set of the spanning tree. Hence, the
decision value of the Nth processor is completely
determined by these of the remaining N -1
precessaee ) In all thece examples, the decision
graphs contain no edges. On the other hand, one
can verifv that the decision graph of the e-ap-
proximate agreement {ask is connected,

3 Protocols

A proiocol {also referred to as a distributed
algorithm elsewhere) for a given network is a set of
N programs, ecach associated with a single
processor in the network. Within a protocol, cach
processor acts detenannmicaily according o is
program, which includes operations of (i) sending
a message 10 a neighbour along a communication
ink, (ii) receiving a message, and (iii) processing
information in its local memory. A processor that
has completed its program is said to Jaift. Halting
is always associated with witing a decision value.

A configuration of the system consists of the
memory contents of each processor (including the
program counter’s value) together with the mes-
cages that were sent 1o that processor but not yet
received. An initial configuration is one in which
each processor is asgsigned an input value and
none has started its program; notz that an initial
configoration is defined by an input vector. A
configuration is final if all processors have balted:
a final corfpuration defines a deeision veetor.,
Note that, m a uonhaal configuration, the values
of some componerts of the eventual decision vee-
tor are not yet defined. Call such components
B-components, and call a vector with B-compo-
nents a partial decision vector.

Let d, be a decision vector. A partial decision
vector 4, is extendible 1o &, if it is possible to
obtain ¢, by replacing all the B-components of 4,
by appropriate decision valucs.

An execution of a protocol P is a sequence of
events, each being cither sending a message, re-
ceiving a message or deing some local computa-
tion.

Definition. A protocol P solves a tast T if for
every vector d € Do there is some exzscution of P
which yields d.
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2.4 System unrelicbility

Decision tasks are soivable provided that the
corresponding function is computable and the
participating processors are completely reliabie.
Real systems, however, may be subject to processor
faults. In this section we discuss the impaci of
unreliability on decision tasks in the presence of
faults.

First, we define the notion of failure (fail-stop):
A processor is faulty in an execution if all mes-
sages sen. oy that processor after a certain time
are destroyed.

Since the model is fully asynchronous, in the
sense it no asswmptions are made about mes-
sage delays, there is no way a processor can detect
the failurc of another processor, for there is no
way to tell whether the latter is faulty or its
messages are delayed. This fact is of crucial effect
on the solvability of various tasks in unreliable
distributed systems. For example, assume that
there is an election protocol that whenever at most
one pracessor {ails, halts with exactly one processor
clected (i.e., outputs “17), and consider the follow-
ing scenario. The protocol is executed, and some
processor outputs “1”. However, all messages sent
by that processor informing the network about its
election are delayed. In this case, the network
cannct decide whether or not this processor al-
ready had output “1”, and hence whether a leader
was already elected or not. It follows that the
protocol cannot guaraniee that exactly one
processor will be elected in the presence of a
faully processor.

Consequently, we focus our attention to »
weaker form of solvability in the presence of
faults, as follows. Let T be a decision task. A
protocol P solves T in spite of one guult if the
following hold for any execution of P:

(1) If no processor is faulty, then P solves T.

(2) If at most one processor is fauity, then all
nonfaulty processors eveninally halt.

+ decision task is solvable in spite of one fault if
there exists a protocol that solves that task in spite
of one fault.

Note that if a task T maps sl input vectors to a
single decision vector, then T is trivially solvable
in spite of one fault. More generally, if the deci-
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sion value of each processor is a function of its
input only, then the task is solvable in the pres-
ence of arbitrary many faults. Such tasks are not
considered in the sequel.

3. Main results

In this section we first prove that no dis-
connacted decision task is solvable in spite of one
fault, and then we generalize that result to tasks
with restricted input sets. Our proof uses a theo-
rem proved by Fischer, Lynch and Paterson {4].
restated below in terms of our model.

3.1. Theorem ([4]). No protocol solves the consensus
task in spite of one fault.

Remark. The theorem applies here although our
mode! slightly differs from the model of Fischer et
al. [4}. In particular, Fischer et al. proved that, in
the presence of a faulty processor, the system is
not guaranteed to ever enter a configuration lead-
ing to just a single decision vector. This can be
shown to be equivalent to our definition of un-
solvability.

First, we prove two lemmas. These lemmas
describe properties of decision tasks, to be used in
the proof of the impossibility result.

3.2. Lemma. Let T be a decision task and suppose
that thore exists a protocol P that solves T in spite
of one fault. Consider an execution of P in the
presence of one faulty processor. Eventually, the
system will enter a configuration C where N —1
processors have halted, and the ( partial) decision
vector corresponding to C is extendible to a decision
vector of T.

Proof. Since the protocol solves T in spite of one
fault, eventually all nonfaulty procassors will halt.
Suppose that the partial decision vector achieved
is not extendible to a decision vector of T. As far
as the nonfaulty processors are conceined, that
execution is indistinguishable from another execu-
tion, in which the remaining processor is not
faulty, but all messages sent by that processor are
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delayed until all other processors halt. In that
execution, wher the remaining processor halis, the
achieved decision vecior is not a decision of T,
which contradicts the assumption that the proto-
col solves T in spiie of one fault. 0O

3.3. Lemma. Let T be a decision task. Assume that
P is a protocol that solves T in spite of one fault,
and let @ be u decision vector of T achicved by cn
execution of P. Then, any N ~ 1 decision compo-
nents of & uniquely determine the connected compo-
nent of & in Gq.

Proof. A set of N ~ 1 decision components of d
can be viewed as a partial decision vector with
exactly one B-component. Consider two such sets,
and let d, and d, be the corresponding partial
decision vectors. Let e, and e, be two decision
vectors t¢ which &, and d,, respectively, are ex-
tendible. Both e, and e, are adjacent 10 d. It
follows that both belong to the same connected
component (which is d’s connected component).
[m]

We arc now able to state our impossibility
result. The next theorem shows that the class of
disconnected deciston tasks is not solvable in spite
of one fauit. The theorem is proved by reducing
the unsolvability of any disconnected task to the
unsolvability of the consensus task (whose un-
soivability in spite of one fault was mentioned
above).

3.4. Theorem. No disconnected task is solvable in
spite of one juult.

Proof. tet T be a disconowcted task, and et
C,, C,,....C ve the connected components of
G (k> 2). Assume that T is solvable in spite of
one fault by a protocol P. We show that this
implies that there exists a protocol P¢ which solves
the consensus task in spite of one fault.

The claim is proved by construciing P¢, which
is based on P with the following modifications.
Whenever a processor is about to halt and write a
decision value in P, it broadcasts in P¢ the deci-
sion value it would have if P was exccuted by the
system (call this valuc a nirwal decision value)
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and waits. Since P solves T in spite of one fault,
eventually N —1 processors will broadcast their
virtual decision values. Thus, each nonfaulty
processor will eventually receive N —1 such vir-
tual decision values that comprise, by Lemma 3.2,
a partial decision vector of T.

Let p; be a decision vector to which the partial
decision vector achieved by processor p; is ex-
tendible. By Lemma 3.3, the connccled compo-
nent C; to which p; belongs is uniquely defined,
independently on the actual choice of p;. Upon
receiving N —~ 1 virtual decision values and de-
ermining the connected component C;, the
processor will output the parity bit of j and halt.
By Lemma 3.3, all processors will agree on the
same component, and hence will output the same
bit. Thus, P¢ solves the consensus task in spite of
one fault.

Since assuming that T is solvable in spite of
one fault implies that there exists a protocol which
solves the consensus task in spite of one fault, a
contradiction to Theorem 3.1 arises. It follows
that no disconnected task is solvable in spite of
one fault. 0

Remark. In the above proof we assumed that all
processors agree on a certain order of the con-
nected components of Gy. Such an agreement is
easily achieved (with no communication) if each
processor knows the identities of all other
Processors.

In some cases it is interesting 1o have impossi-
bility results for tasks in which the inputs are
restricied to be of a special form (e.g., in many
cases it is assumec that all input values are dis-
tinct). Theorem 3.4 can be extended to handle this
case as follows:

Let 1€ XM be the set of all possible inputs 1o a
decision task T. Define the iupur graph for T
simnilarly to the definition of a decision graph: An
input vector (X, X,....,X) € 1 is adjacent to an
input vector (y;, ¥o.....y, Y= 1 iff they differ in
the value of exactly one component. Then we have
the following theorem.

3.5. Theorem. If a task T has a connected input
graph and a disconnected decision graph, then T is
not solvable in spite of one faulr.

149
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Proof. It is sufficient to prove that the consensus
task, when generalized to have a connected input
graph, is not solvable in spite of one fault, and
then to apply the reduction of Theorem 3.4.

The proof that the consensus task, when gener-
alized in iae above manner, is not solvable in spite
of one fault follows the outlines of the proof in [4],
and is only sketched here: By definition of the
consensus task, there are two input vectors {i.e.,
initial configurations) that lead to different deci-
sions. Let x and y be these inputs. Since the input
sraph is connected, there is a path from x to y; on
this path there must be two adjacent inputs that
might lead to ditferent decisions. From this point
on, the proof is identical to theonein [4]. O

4. Conclusions

Impossibility results for a large class of deci-
sion tasks in the presence of faults have been
proved. This cluss contains tasks whose unsolva-
bility in the presence of faults is known (the
econsensus task and its variants) as well as some
new iasks, such as election and constructing a
spanning tree. We have shown that no protocn!
devised to accomplish a discon 2cted decision
is guaranteed to ever terminate in the piesence of
one faulty processor.

The model of computation which was used for
the impossibility proof is very powerful, since the
following assumptions have been made:

(1) The underlying graph of the network is
complete, so each processor can directly com-
municate with any otiier processor.

(2) The communication hinks are *otally relia-
bie.

{3) The type of failure is fail-stop, leaving no
room for arbitrary or malicious behaviour of faulty
Processors.

(4) The number of faulty processors has been
fimited to one.

(5) Each processor may nave a different inter-
nal program.

(6) The processors’ identitics are  mutually
known.

(7} A protocol is considered to be reliable as
long as the failure of a single processar does not

130
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prevent the others from halting (regardless of their
decision value).

Since most reasonable models are weaker than the
one discussed above, our result applies there also.

The model is fully asynchronous in the sense
that both message delay and the rate of drift of
the processors’ internal clocks are unbounded.
However, our resuli applies to some partially syn-
chronous models as well. Some models in which
the consensus task (hence any disconnected task)
is unsolvable in spite of faults are identified in {1].
For example. it is proved in {1} that unbounded
message delay and an arbitrary order ol message
delivery render the consensus task unsolvable in
spite of one fault, even if the processors are lock-
stepped.

The notions of a decision graph and its con-
nected components, as well as that of the input
graph that has been introduced in this paper seem
to provide a convenient tool to identify tasks
which cannot be solved in the presence of a faulty
DrOCESSOT.

The result has some pessimistic practical impli-
cations. For example, iire unsolvability of the elec-
tion task in the presence of faults implies that
serializing access to distributed network resources
is impossible in the presence of faults, since the
election task may be view ' as a task where
exactly one processor is allowed to access a re-
source.

Since no deterministic protocol is adequate for
handling disconnected decision tasks in the pres-
ence of faults, a probabilistic approach seems to
be the best solution in hand for these tasks. In
fact, a randomized asynchronous agreement pro-
wcol like the protocol devised by Rabin [6] can be
adapted to solve any disconnected decision task.

Finally, it is worth mentioning that there exist
connected tasks which, apparenily, are also un-
solvable in the presence of faults. As an example,
consider the task where the inputs are bits, and p;
{1 i< N) has to output the input bit of

P (modny+1-
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