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We consider the problem of covering a weighted graph G =(V, E) by a set of
vertex-disjoint paths, such that the total weight of these paths is maximized. This
problem is clearly NP-complete, since it contains the Hamiltonian path problem as a
special case. Three approximation algorithms for this problem are presented, exhibiting
a compiexity-performance trade-off. First, we develop an algorithm for covering
undirected graphs. The time complexity of this algorithm is O(|E|log|E]), and its
performance-ratio is 3. Second, we present an algorithm for covering undirected
graphs, whose performance-ratio is 5. This algorithm uses a maximum weight matching
algorithm as a subroutine, which dominates the overall complexity of our algorithm.
Finally, we develop an algorithm for covering directed graphs, whose performance-
ratio is . This algorithm uses a maximum weight bipartite matching algorithm as a
subroutine, which dominates the overall complexity of the algorithm.

1 INTRODUCTION

Let G =(V, E) be a (possibly directed) graph with no self-loops and parallel
edges (or anti-parallel edges), and let Wg: E— Z** be a weight function. A
path in G is either a single vertex ve V or a sequence of distinct vertices
(vy, v3,..., tx), where (v;, vi,,)€ E for 1=i=<k—1 (in a directed graph,
(vi, v;) is taken to be an edge from v; to v;). A path cover (abbrev. cover) of G
is a set of vertex-disjoint paths that cover all the vertices of G. The weight of a
cover S, denoted by Wg(S), is the total sum of the weights of the edges

*Z* is the set of positive integers.
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included in 8. A cover of the maximum possible weight is un aptimal cover of
Cr, and its weight is denoted by B(G).

The concept of graph covering arises in various applications, such as
mapping parallel programs to parallel architectures [10] and code optimization
[3). Unfortunately, the optimal covering problem is NP-complete even for
cubic d-connected planar graphs where no face has fewer than five cdges [8],
There are, however, several results on optimal covering of restricted classes of
graphs. Hoesch et al. have derived in [2] an efficient optimal covering
algorithm for undirected trees. Their result was generalized by Pinter and
Wollstahl [10], who developed a lincar optimal covering algorithm for un-
directed graphs where no two cycles share a vertex. Moran and Wolfstahl have
developed a linear optimal covering for cact, i.c., undirected praphs where no
edpe lics on more thun one eyele [9]. Bodlaender has developed a polynomial
time algorithm [4] for optimal covering of classes of graphs with bounded
trecwidth (see [1] for 4 related result), Boesch and Gimpel [3] have reduced
the problem of covering o anected acyelic graph to the matching problem, All
the above warks consider nonweighted graphs only, in which case an optimul
cover can be cquivalently delined as a cover with the minimum number of
paths,

Motivaled by the NP-completeness of the optimal covering problem, we set
out to develop appreximation algonthms for opumal covering of praphs.
Define a covering ulgorvithm to be an r-approximation afgorithm if for any
graph G = (¥, E) and a weight function Wg: E— Z°, the algorithm produces
a cover 8 such that [Wo(S)/B{G)] = r. In this case. r is called the per-
formance-ratio of the algorithm. Three r-approximaton covering algorithms
are presented. First, we develop a 3-approximation algorithm for covering
undirected graphs, called Algorithm A. The time complexity of this algorithen
is O E| log | E]. Sceond. we present a § -upproximation algorithm for covering
undirected graphs, called Algorithm B. This algorithm uses a maximum weiph
matehing algorithm as 4 subroutine, the complesity of which dominates the
overall complexity of Algorithm B, Finally, we develop a 3-approximation
algorithm for covering dirceted graphs, ¢alled Algorithm © This algorithm
uses domaximunt weighl hiparite madching alganithm as a subrouwnne, the
commplexity of which dominates the overall complesity of Algorithm €

"

2. A }-APPROXIMATION COVERING ALGORITHM

Our fist approximation algorithm, named algorithm A, is presented below,
The algorithm is wtemded for covoring undirected graphs, Tnformally. Al-
gorithm A operates as follows: Tt initially constructs a cover constituting of all
the vertices of G and no edges. This mitial cover, where each vertex s a path
by itself, has o weight of zero, The algorithm then proceeds to increase the
weight of the cover by adding edges between endpaints of existing paths so as
to create longer paths, The edges used to create longer paths from existing
ones are chosen modescending order of weight. Once an cdge e = (w, vl is




VERTEX-DISJOINT PATHS OF MAXIMUM TOTAL WEIGHT 57

chosen for the cover, the edges that, by the choice of e, cannot be chosen
Imter, are ruled out. (These are the redundani edges, |.c, edges incident 10
vertices x €4, v}, where x is not an endpoint of a path in the cover.) When
the weight of the cover cannot be increased any more, the algorithm ter-

finates.

Algorithm A.

Input:  An undirected graph (i = (V, F} and a weight function We: E—»
Z¥ . ’

Qutpot: Py, a cover of G,

Method:

Initiatize: E'—§. For each v V. plo)e—v, o(v)— .
(*I{ ve Vis anendpeint of a path in the cover, then pluv) & the
parth covering v, and o(w) is the other endpoint of this puth*)

Sort the edpes of E in descending order of weight,

Loop: while © #

el

Clusese in edpe ¢ = (a0 I such thin Wele) is masenum
o e P

Il it eel @ ped el them

g are emfpoint of differen) paths®)

i
R e (A ¢ e e e
Ao ix w6 ;-| RS AT b T N l"’t‘.‘dur'uja.ll l:l.!t:l"h l'r
Ev =M (7. . chre Puled oul ¥
Moty e— o). (10 the new path just cremd, spdate a1 . .%)
* . angd el LY

Fo—iel pil. o anl gl = apl @) ovlipd p)) o=}
i |

il

Output: P, «—1{p| p is @ maximal connected component in G' = [V, E')}.

Theorem 1. Algorithm A is a l-approximation covering algorithm.
Moreaver, the algorithm can be implemented in O E| - log|E|) time,

Proof.  Ttis easy to see that A produces a cover of G: The extraction of the
edges of M Trom E in each iteration ensures that no vertex of (G'=[V, F') is
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of degree exceeding 2. The test pluw) # plo) ensures thiat G’ contains no
cycles, Thus, Pa is a cover of 4,

The following definitions are used to prove the claimed performance-ratio.
Extend the notion of weight, such that for MC E, the weight of M s defined
o be W lM)=Y ca Wile) Ancedge e E" is called an E'-edpe. Denote the
number of E'-edges incident to a vertex ve V by dafe) Given a path p e Py,
let e(p) denote the set of E-edges included in p, and let H,=
fe =(u, v)| ecelp) datte) =1},

Let €2PTHGH be an optimal cover of & Obierve that OPT{G) can be
viewed as the union of three sets, namely, E,, E;, and E,, where

(1 Ey={e={u vllee E'N QPTG
(2) Ey={e=(u, v)lec OPTIC) = E', dalu) = dali) = 1)
(3) Ey={e=1{e, p)| e OPT{G)— E", mar{clylar). dafr)) = 2},

Let e ={u, ) be an cdge of F,, Note that w amdd 0 are coverad by the sume
piath pe P, where |e(p) = 1, for otherwise. the algorithm would have included
& in P, Also, observe that W“{r]ﬁmin,-efp{ Welen). For atherwise, e.p., if
Walel = Wiley) where e, € £, the algorithm would have chosen e for P,
instead of ey. Herealter, if ¢ =(n, )¢ E; where u und v are covered by
e Pa, let Sle)=E, Clearly, far cach edge ve E; where Sted = {ey, esl.
Wale) =3 Wale) + Wale)

Let ¢ = (u, v) be an edge of £y, where, w.lo.g., datu) = 2. 1f da(p) =1 and
St=Hlej,eal Iv the ser of E-edges incidemt o uw, then Walel=
min{ Wgie), Waledl, For otherwise, e.g.. if Wale) > Wale), the algorithm
would have chosen ¢ for Pa, instead of ¢;. Using 2 similar argument, ope can
verify that if d.{p)=2 and §; ={es. €4} is the sct of E'-edges incident to o
then Wile) = mingeof Wete')} for some Se {8, 8} Hereafter, if ee £y and
5. 8 are defined as above, then the set 8 satisfying the latter inequalily is
denoted by S(e) (if §; and S; both satisfy the inequality, let Sie) = §,). Clearly,
for cach edge ¢ € £y where S(e) ={ey, o2}, Wale) =3 Wale)+ Walesd).

Using the said above, we find that

WolOPT (G = Wel E))+ Wal B+ WelEs) = W+ W+ W,

where
Wi= 2 Waled, W= ¥ Y Wale)+ Waladh
e Ey reky
el=iey. esl
and

Wi= Y N Waled + Waleal).
eEEy
Sieh=ley. el
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Let us now estimate the contribution of cach edge ec E' to W=
Wi+ W5+ W5, Let p be a path of P4, and let £ be an edge on p.

Assume first that e is an edge of 2(p) — E,.

o If ee OPT(G), then Wi(e) appears once in Wy, Also, there are, at most,
twa edges & € Ea, such that ee S(e), so Wale) appears at most twice in
W;, where in each such appearance it 5 multiplied by 1. Note that Wgle)
does not appear in Wa. Hence, ¢ contributes most 2 - W (e) to W,

o If ¢d OPT{{), then Wale) appears at most four times in W, where, in
cach such appearance, (it is multipliecd by 5 Note that Welel does not
appear in W, and Wy Hence, e contributes a1 most 2 - Wzie) to W,

Assume next that £ is an edge of B

o If ¢ € OPT(G), then Wg(e) appears once in W,. Also, there may be at most
one edge ¢' & £ such that ¢ is incident to e, so We(2) appears at most once
in W., where it is multiplied by ;3. Furthermore, there is at most one edge
e' € Fasuch that e £ §(e'), so Wele) appears at most once in Wa, where it is
multiplicd by }. Hence, ¢ contributes at most 2 - Wgle) o W

o If ¢ OPT{G), then there may be a single edge e’ € E;, such that ¢ is
meident to e, so Wi(e) appears at most once in W,, where it is multiplied
by 1. Abo, there are. wt most, two edpes ¢ € E,, such that ee §{¢), o
Wgle) appears at most once in W, where in cach appearance it =
multiplied by 1. Note that W (el does not appear in Wi Henee, ¢ con-
iribules ot most % Walel 10 W,

To summarize the above sawd, an edge ¢ on a path p€ Py contributes at
most 2 - Wolel te W It follows thil

BIGY= WolOPT(G)) = WolE))+ Wal B4 WalE) = W
= ¥ ¥ 2 Wale) =2 Wo(EN=2 Wg(Pa).

pcMareaip]

We now urn o the complexity of the algorithm. Assume V=
it Oxoooos ). The following data structures are used. "Uhe set E s
represented by a doubly linked list, The set E is represented by o list. The
set Vois represented by a table V(1. .. n] where lor each v, € V the entry
V[ i) contains the values of pie), o(w), and a pointer to an incidence list of
. This incidence list, denoted by L{w), contwins the vertices adjncent 1o p,
in . Each vertex vy in Liz) is associated with a pointer 1o the edge (v, v;)
in K, called an E-poinier. Clearly, the initialize step is linear in [ £, and the
sort step can be implemented in O E] - log| E|) time. Let e = {u;, yj) e £ be
an edge chosen at the head ot the lvop. Since the list E 15 doubly linked, the
cxtraction of ¢ from E is done in O01) time. The edges rendered redundunt
by the choice of ¢ are found, and immediately deleted, by tracing the
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E-pointers in the incidence lists of & and ;. Thus, the extraction of M from
E requires Q| M() time, so the execution time of the loop is O(|E|). The
output step is also lmear in [E| It follows that the run time of the algorithm
is O(| E| - log| E[) time ]

We note that the sorting step can be omitted when Wi is constint,
resulting in an O{|E]) algorithm. Furthermore, it can be shown that in
praphs where Wiiel = k Tor euch e € E, the algorithm produccs a cover P,
that salisfies BlGI=2 Wa(Pa) =[P k, where Py is the number of paths
that arc not solated vertices. This bound is tight, thal is, there are graphs
where the execution of the algorithm attains equality. The proof s omitted.

3. A J-APPROXIMATION ALGORITHM FOR COVERING
UNDIRECTED GRAPHS

In this section, we describe and analyze a secomd approximation algorithm
for optimal covering of undireeted graphs, named Algorithm B, In doing so.
we rely onoan algorithm for finding a maximum weight degree-constrained
subgraph of a given graph. A polynomial algorithm for the latier problem can
be derived from [5], where the linear programming approach is taken. Ano-
ther algonthm for the maximum weight degree-constrained subgraph problem,
which uses marching techniques, is given in [11)

Algorithm B

Input:  An undirected graph G =V, E) and a weight function Wi E—
i

Output: #y. o cover of G,
Method:

Step 1. Obtain a graph Gy =(V, X), XC E, where dege. (0= 2 for cach
ve Vand Wal X} is maximied,
(* Gy consists of isolated paths and cycles.*)

Step 2. Let ¢ be the set of cveles in Gy,

Step 3. Ye—le| 2 is on edge of minimueme weight are sone ¢ e C}

Stepd4, E'«-X-Y

Step 5. Outputy Py« pl pis a maximal connected component in G' =
v, ED.

Theorem 2. Algorithm B is o $-approximation covering algorithm,
Proaf. 11 s immediate that Py is a cover of G, so we begin by proving

the claimed performance-ratio,
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Let OPTIG) be an optimal cover of (5, Obscrve that W,iX)=
WolOrT(G), since the weight of X 1 maximized over all subgraphs of G
where the degree of no vertex exceeds 2.

Consider the sets C and Y defined in Sweps 2 and 3, respectively, of the
algorithm. For each eycle c € C, let Wy(c) denote the sum of the weights of
the edges on ¢. Each cyele £ € C contains at least three edecs, so there is al
least ane edge. e, on ¢ with Walel={Wg{c/3). It follows that

re il - 3

Hence,

W 2W-IOFTICRY
We(Pa) = WolE)= WalX)- w.;m-h---%x?z—if—- LY

The Theorem lollows, a

The complexity of Step 1 of Algonthm B is that of the available algotithm
for finding & maximum weight degree-constrained subgraph of G=(V, E)
{here the degree bound i 2). The latter problem was reduced in [11) to the
maximum weight matching proglem on a graph G, = (V,, E,), where, in terms
ol G both | V| and | E,|are O([ElL. The maximum weight matching prolilem,
1 turn, can be solved on a graph Gy = (V,, E\) in Of| V|- (| E,\].| Vi +
| Vil bogl Vil £) time, where i, 0l = Otm logloglogend. b= max{min, 2} [6].
Henee, in terms of the original graph G, Step 1 can be exccuted in
CED wl2d, [ED + OE|loglED = ONE] loglogloga[E = O E] Tog
loglog, [V]) time. Steps 2-5 of Algorithm B can clearly be exceuted in
O F]) time, s0 Step 1 dominates the complexity of the algorithm,

4. A -APPROXIMATION ALGORITHM FOR COVERING
DIRECTED GRAPHS

In this section, we develop a f-approximaton algonithm for coverning direc-
ted graphs, called Algonithm C. The following definitions are required:

Definitions. Let G = (V. E) be a direcred graph where V = {5y, .- - - 0],
and let Wi: F—Z" be a weight function, Then, Gy =(X, Y. Ey) and
Wi by — 7" are an undirectied bipartite graph and a weighi function, res-
pecuvely, defined as follows fsee Fig. 1)

() X=ix]unue V], Y=inlue V]
12) Ey=|ix. yl|in,. )€ E}. and
(3) Wylty,. 3 = Wolin, &)} for cach (w, )c E.

e |
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N

a. The graph L~V ).

b. . and e cosnevpondiong grash G,

FlG ).

Given a directed graph G=(V.E) a fair subgraph of G is a spanning
subgraph £ =1V, Ex ). where each connected component is either a directed
path or a directed cycle Note that any matching M in Gy defines a Far suh-
praph of G, F(M)=(V, Er), and vice versa, in the following way! (x,, ¥ )€
M&iv.g) e Ep. Moreover, M and Ep are of equal weight. that is.
Wl Epd = WelMp Dt Tollows thal o masimum weight fair subgraph of (7 can
be derived from o maximum weight matching in Gy,

We are now able to deseribe Algorithm C. Given a dirceted graph G =
{ V. ) and a weight function We: Eg — " the algorithm first construcis the
graph g and the corresponding weight function, Wy, Then, the algorithm
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obtams a3 madmum weight matching of Gy, denoted by M. Using the above
obwervations, M conesponds 10 a fair subgraph of G, namely, FIA). that has
the maximum possible weight. The algorithm constructs FIM) and deletes the
cdge ol the munmun weight from each cycle m it obtaining. & mn Algonthm
B. a cover whose weight is at least {8 G).

We have thus reduced the problem of approxmaniag a directed optimal
covet of G=(V_E) to the problem of finding a maomum weght bipatite
maiching (MWBM) of Gy=(X. Y. Eg). Nate that (XU Y= Gilv],
(M Egl) = CAIE]), and the wransdformation of G to Gy can be done n lincar
time, Tlence, the onverall complexity of € s that of the available MWHBM
algornhm on Gy, (he cumrently fastest MWBM algonithm for a graph
Cr=1 V. E) runs in O V]-(LE] + | V] log] V]i) ime [12])

An interesting feature of Algodithm € 5 the following: il G s a dimected
acyche graph (DAG), then algorithm € produces an optimal cover of G
| (since, in this case. FIM) i acvclic] Hence. Algorithm € geacralizes the
vptimal covermg algorithm for DAGS of [3).

&. SUMMARY

We have presented a varicty of approximation algorithms for the optimal
covering problem. Left open, is the problem of finding a polynomial-time
approximation scheme [7] for the problem. (Note that a Jully polynomial-time \ |
approximation scheme [7] for the prablem cannet exist unless P = NP, since a

polynomial-time algorithm for the Hamiltoniun path prablem can be derived .'I

from such a scheme.) It may also be nteresting 1o device r-approximation 4

covering alporithms where r >4, JE
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