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Let N be a network of asynchronous processors, viewed as vertices, communicating by sending 
messages over unreliable unidirectional edges, and let r be a specified vertex in N. We consider 
the problem of constructing efficient and reliable protocols to broadcast messages from r to all 
other vertices of N: Suppose that for some vertex v in N, at least k edges must be deleted in 
order to disconnect v from r; we say that a protocol PR is reliable for v if whenever less than 
k edges fail to deliver a message broadcasted from r by PR, this message will eventually reach 
v .  A protocol is faithful if it is reliable for all vertices of the network. A general lower bound 
on the message complexity of faithful protocols, which is at most linear in the network size, 
is given. It is also shown that this bound can always be achieved by protocols which use the 
local memories of the vertices to record messages. On the other hand, it is shown that for certain 
networks, all faithful protocols that use no memory for local computations have a message 
complexity which is exponential in the network size. A characterization of networks that have 
faithful protocols with optimal message and space complexities is also given. 

1. INTRODUCTION 

We consider an asynchronous network consisting of vertices (representing proces- 
sors) which communicate by sending messages along unreliable edges. The network 
has no shared memory, so that the only way for processors to communicate is by 
sending messages. The time required for a message to go along an edge is unpredictable 
and unbounded; moreover, an edge may fail to deliver a message, either by destroying 
it or by changing its content (e.g., as a result of channel noise). It is also assumed 
that edges may fail and recover at any time, and that the network do not have a 
mechanism that detects such failures. 

A protocol (or a distributed algorithm) over such a network is an algorithm which 
is executed at each individual vertex in order to accomplish some common task, like 
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choosing a leader, reaching an agreement etc. In the last few years numerous protocols 
were designed and investigated for various classes of networks (e.g. [ 1,4-12,16,17]). 

The quality of a given protocol in a given network can be evaluated by the following 
properties: 

1. Reliability: The way the protocol fulfills its task in the presence of faulty edges, 
which may destroy or change the content of messages. 

2. Communication cost: The message complexity of the protocol in the network. 
3. Computational overhead: The space or time complexity of the protocol, which is 

the amount of space or time of the vertices in the network which is consumed by the 

While properties 1 and 2 above were studied for many protocols (e.g., the list of 
references above), only a little work on the relation between all the three properties 
above has been done. In this paper we study this relation for broadcast protocols, 
which are possibly the simplest protocols that require the cooperation of the whole 
network. Those protocols distinguish a single vertex, r,  in the network, and their task 
is to enable r to deliver messages it receives from an outside source (e.g., an upper 
layer algorithm) to all other vertices in the network. Broadcast protocols play an 
essential roll in many distributed algorithms. For instance, in most of the Byzantine 
general protocols, in each step every vertex broadcasts its current state to all other 
vertices in the network. We shall restrict the discussion to networks with unidirectional 
edges, in which each edge can deliver messages only in one specified direction (see 
[ 1,6,7,11,17]). The question whether these results can be generalized to bidirectional 
networks seems to remain an interesting open problem. It should be noted, however, 
that our results are applicable to bidirectional networks in which a failure of an edge 
to deliver messages in one direction does not imply a similar failure in the other 
direction. 

The message complexity and the space (or time) complexity of a broadcast protocol 
in a given network will be defined as a function of the number of messages broadcasted 
by the protocol. More specifically, the message complexity of a broadcast protocol is 
the maximal possible number of times a single message broadcasted from r is sent 
along edges of the network, and the space (time) complexity of such protocol is the 
amount of space (time) it consumes as a function of the number of messages it 
broadcasts. Formal definitions of these concepts will be given in the next section. In 
this paper we shall use only space complexity as a measure of the computation cost 
of a given protocol; however, generalizations of the results to similar results concerning 
time complexity are, in general, straightforward. 

Broadcast protocols with optimal message and space complexities are obtained by 
using the edges of a directed spanning tree rooted at r to broadcast messages-the 
message complexity of such a protocol is n - 1 for networks with n vertices, and the 
space complexity at each individual vertex is a constant, independent of the number 
of messages it broadcasts (or the number of vertices in the network). These protocols 
are highly unreliable, since for each vertex v, one failure of an edge to deliver a 
message may prevent v from receiving this message. In [lo] the following multitree 
approach is suggested in order to increase the reliability of the protocol: Assume that 
G contains k edgedisjoint spanning trees rooted at r .  Then by broadcasting messages 
simultaneously along the edges of each of these trees, we are guaranteed that if less 

protocol. 
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then k edges fail to deliver a message, this message will eventually reach every vertex 
in the network. Moreover, it is not hard to see that this protocol has the minimal 
possible message and space complexities required for achieving this reliability. How- 
ever, the maximum number of edge-disjoint spanning trees rooted at r equals the 
minimum number of edges whose deletion disconnect some vertex in G from r [2,13]. 
In other words: The maximum reliability that can be achieved by using such as protocol 
is determined by the “lowest common level” of the network. In this paper we deal 
with protocols that achieve, in a sense, the maximum possible reliability for each 
individual vertex in the network. We show that, unlike the cases discussed above, the 
existence of efficient protocols of this kind may depend heavily on the topology of 
the given network: 

Let v be a vertex that may be disconnected from r by deleting k edges of the network, 
but not by deleting k - i edges. Then if k or more edges may fail to deliver a message 
broadcast4 by r, no protocol can guarantee that this message will ever reach v. A 
protocol is reliable for v iff whenever less than k edges fail to deliver such a message, 
this message will eventually reach v. A protocol isfaithful iff it is reliable for all the 
vertices in the network. 

The property of being faithful appears to be a natural and interesting extension of 
reliability properties of protocols studied in [ 101. The goal of this paper is to study 
the design and the cost, in term of computational overhead, of such protocols. In 
particular, we derive a general lower bound on the message complexity of faithful 
protocols, and then we show that this lower bound can always be achieved by simple 
protocols that can be designed in time that is polynomial in the size of the network. 
However, these protocols have the disadvantage that their space complexity is linear 
in the number of messages. Next we consider protocols with a constant space com- 
plexity, and show that in certain networks, if such protocols are faithful, then their 
message complexity must be larger by an exponential factor than the above mentioned 
lower bound. We conclude by showing that those networks which admit faithful 
broadcast protocols with optimal message and space complexities must satisfy a certain 
graph theoretic property, which is a generalization of Edmonds’ branching theorem 
[2,13,15,18-201. 

2. PRELIMINARY RESULTS 

2.1. Graph Theoretlc Preliminaries 

We give below some definitions from graph theory, which are used in the sequel. 
The reader is referred to any standard text book in graph theory (e.g., [3]) for a more 
detailed exposition of these definitions. 

A directed graph (digraph) G = (V ,E)  consists of a set of vertices V and a set of 
edges E,  where each edge e in E is associated with an ordecred pair of vertices (u , v ) .  
We say that e is directedfiom u to v, and denote it by u + v; we also say that e is 
leaving u and entering v, and that u is the tail and v is the head of e. The number of 
edges entering (leaving) a vertex u is denoted by din(u) (do,Ju)). For a subset F of 
E,G - F denotes the graph G’ = (V,E - F ) .  

A directed path in G is a sequence p = (&,e I ,u , . . . ,ek,uk), where ei is an edge 
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directed from ui-, to u;; V ( p )  ( E ( p ) )  denotes the set of vertices (edges) occurring in 
the path p. For s , t  E V,  an ( s , r )  path in G is a directed path from s to t. If p1 is an 
( s , v )  path andp2 is a ( v , t )  path, thenpl *p2 is the ( s , r )  path resulted by theconcatenation 
of p ,  and p2. A digraph T = ( V , E )  is a directed tree rooted at r iff r E V and T 
contains a unique ( r , v )  path for each vertex v in V - {r}. 

A set C of edges is an ( s , r )  cut iff there is a set S, C V such that s E S,, r E V 
- S, and C is the set of all the edges in G which are directed from a vertex in S, to 
a vertex in V - S,. Note that every set of vertices Sc that separates s from t uniquely 
defines an ( s , r )  cut C ,  and vice-versa. C is a minimum ( s , t )  cut if it is an ( s , r )  cut of 
minimum possible cardinality; this cardinality is denoted by &(s, t ) .  An edge e is an 
( s , t )  bottleneck in G if 8G-(cj (s, t )  = &(s, t )  - 1. Thus, e is an ( s , t )  bottleneck iff 
there is a minimum ( s , t )  cut that contains e .  

We shall use, without mentioning it, the following version of Menger’s theorem. 

Theorem [14]. Let G = ( V , E )  be a digraph. Then for each pair ( s , t )  in V there is 
a set of & ( s , t )  edge-disjoint ( s , r )  paths. 

2.2. Broadcast Protocols and Faithful Broadcast Protocols 

A broadcast network, or simply a network, is defined as an ordered pair N = ( GJ), 
where G = ( V , E )  is a digraph and r E V is a specified vertex in V .  Each vertex 
represents a processor, and the processors communicate by sending messages along 
the edges of G ,  in their specified directions. A broadcast protocol, PR, in a network 
N = ( G , r ) ,  is a protocol which is intended to deliver messages from r to all other 
vertices of G. Such a protocol consists of I l l  programs, one for each vertex v in the 
network; PR(v )  denotes the program executed by vertex v .  It is convenient to view 
PR(v )  as a nontenninating program that may include operations performed by v in its 
local memory, as well as the operations RECEIVEfe) and SEND(F). These last two 
operations use a specified buffer which may contain a single message received or sent 
by v ,  and are defined below: 

RECEIVE(e) is an operation whose argument e is an edge entering v ;  this operation 
then fetches a message that was sent along e ,  stores it in the specified buffer, and then 
deletes it from e .  If there are no messages available in e this operation does nothing. 
SEND(F) is an operation whose argument F is a subset of the edges leaving v .  This 
operation sends the message stored in the specified buffer of v along each edge in F, 
and then deletes it from the buffer. Again, if the buffer is empty then this operation 
does nothing. 

A broadcast protocol is initiated by having r send a message it receives from an 
outside source along some of the edges leaving it. For simplicity, we assume that all 
messages broadcasted by the protocol are distinct. 

PR is a routingprotocol iff each PR(v) contains only SEND and RECEIVE operations. 
Routing protocols are of special interest, since their executions require no computa- 
tional overhead. In fact, the “standard” protocols based on spanning trees rooted at r, 
as well as similar protocols for networks with bidirectional edges given in [lo], are 
routing protocols. It is implicit in the definition that routing protocols cannot modify 
the messages broadcasted by them. In the conclusions we shall point out some possible 
effects of removing this restriction, thus allowing such protocols to append to the 
messages they broadcast information that can be used by the protocol. 
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Let PR be a broadcast protocol on N = (G,r), and let v E V - {r}. The reliability 

(R) Whenever less than k edges fail to deliver a message broadcasted by r using 

It follows easily from the definitions that the reliability of PR for v is at most &(r,v). 

A broadcast protocol isfaithful iff it is reliable for all v E V - {r}. 

Let PR be a broadcast protocol over a network N = (G,r). The message complexity 
of PR is the maximal number of times a single message broadcasted from r may be 
received by vertices in N (by using the RECEIVE operation). The space Complexity 
of PR at a vertex v in N is the space complexity of the program PR(v ) ,  defined as a 
functionf, of the number of distinct messages received by v. Thus, a functionf, is a 
space complexity of PR(v )  if during the reception of at most n distinct messages, 
PR( v) uses at most f v (n )  space units; for this case, it is assumed that each message 
occupies one space unit. If for each v E V, f, is the space complexity of PR( v), then 
the function f defined by f ( n )  = max,(f,(n)} is a space complexity of PR. In other 
words-the space complexity of PR is the least upper bound of the space complcxities 
of tke PR(v) ’s .  

The following definition and lemma provide a simple lower bound on the message 
complexity of faithful protocols. 

Definition 2.2. 
by TR(N) ,  is the sum: 

of PR for v is the maximal number k satisfying the property (R) below: 

PR, this message will eventually reach v. 

PR is reliable for v if its reliability for v 

Definition 2.1. 

equal to &( r, v). 

Let N = (G,r) be a network. Then the total reliability of N,  denoted 

TR(N) = 2 &(r,v). 
v € V - { r }  

Lemma 2 . 1 .  Let PR be a faithful protocol in N. Then the message complexity of 
PR is at least TR(N) .  

Sketch of Proof. Assume first that N is acyclic, and consider an execution of PR 
on a single message m, such that no edge fails during this execution. We claim that 
for each v E V - {r}, v must receive m along at least aG(r,v) distinct edges entering 

Let sc(r,v) = k, and assume that during the execution of PR, v receives m along 
k’ < k edges entering it. Since N is acyclic, the tails of these k’ edges cannot receive 
any message originated by v, and hence cannot distinguish this execution from a similar 
one in which all the messages sent along these edges are destroyed. In this latter 
execution v will never receive m-contradicting the assumption that PR is faithful, 
and hence reliable for v. 

If N is not acyclic, a similar argument applies for executions in which arbitrarily 
long delays are imposed on all messages whose route close a cycle in N. The details 
are left to the reader. 

v: 

It follows that the number of edges along which m must be sent is at least 

8G(r,v) = W N )  
v E V - { r }  

which implies the lemma. 
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3. BOTTLENECKS, CRITICAL NETWORKS, AND MESSAGE-OPTIMAL 
PROTOCOLS 

Let N = ( G , r )  be a given network. Recall that an edge e in G is an ( r , t )  bottleneck 
iff ~ 3 ~ + ) ( r , t )  < &(r,r). We say that e is a bottleneck (in N )  if it is an ( r , t )  bottleneck 
for some t E V - {r}. In this section we first provide a simple characterization of 
bottlenecks, and later use this characteritation to prove the existence of message- 
optimal faithful protocols, and also to construct efficiently such protocols. 

Lemma 3.1. Let &(r,r) = k. An edge e is an ( r , t )  bottleneck iff in every set of k 
edge-disjoint ( r , t )  paths, one of the paths contains e. 

Proof. 

Lemma 3.2. Let N = ( G , r )  be a network, and let the edge u + v be a bottleneck 
in N. Then e is an ( r , v )  bottleneck. 

Proof. By definition, e is an ( r , t )  bottleneck for some t E V - {r}. If t = v then 
we are done, so assume that t f v .  

Let & ( r , v )  = 1 .  By Lemma 3.1, it is suffices to show that in every set bl,. . . p , }  
of 1 edge-dijoint ( r , v )  paths one of the pi’s contains e. We shall assume that there is 
such a set in which e is not used by any of the pi’s,  and derive a contradiction. 

Let tiG (r , t )  = k and let C = {el,. . . ,eJ be a minimum ( r , t )  cut containing e = 
ek. For i = 1, . . . ,k let ei = ui + vir where ui E Sc and vi E V - Sc (vk = v ) .  
Since C is also an ( r , v )  cut, each ( r , v )  path p i  must contain at least one edge of C. 
By the assumption, none of the pi’s contains e = ek, and hence k > 1. Without loss 
of generality, let ei be the last edge of C occumng in p i  for i = 1, . . . ,1. Then each 
p i  = pi l  - pR, where pi l  is an ( r ,v i )  path, whose last edge is ei, and pi2 is a ( v i , v )  
path, with V@,) C V - Sc (if vi = v then p12 is the empty path.) Similiarly, there 
are k edge-disjoint ( r . r )  paths {q l ,  . . . ,qJ, where each qi contains exactly one edge 
of C. Let qi = qil * qn, where qil is an ( r , v i )  path whose last edge is ei and q12 is an 
(v i , r )  path. In particular, qkl is an ( r , v )  path and V(qk l )  

The proof is now completed by the observation that the set of paths {qil - pi2: i = 
1 ,  . . . , I }  U {qkl} is a set of 1 + 1 edge-disjoint ( r , v )  paths. Thus we have that 1 + 

Definition 3.1. A network N = (G , r )  is critical if every edge e in G is a bottleneck 
in N. 

By Menger theorem [ 141. 
c 

Sc U {v}.  

1 S f jG(r .v )  = 1. which is the desired contradiction. 

The main positive result of this paper will follow from the next theorem: 

Theorem 3.3. Let G = ( V , E )  be a digraph and let r E V be such that N = (G , r )  
is critical. Then for every v E V - {r} it holds that din (v )  = f jG(r ,v ) .  In particular 
(El = TR(G,r).  

Clearly, for all v it holds that di,,(v) 2 8 d r , v ) .  Assume, for contradiction, 
that for some v we have that din( v )  > 6,( r, v ) .  Then, clearly, at least one of the edges 
entering v is not an ( r , v )  bottleneck. Let e be such an edge; then by Lemma 3.2, e 
is not an ( r , t )  bottleneck for any r E V, which contradicts the assumption that G is 
critical for r .  

Proof. 
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Corollary 3.4. Given G = ( V , E )  and r. there is an O(lE1 * TR( G J ) )  algorithm to 
construct a subgraph G' = (V ,E ' )  of G such that (G' , r )  is critical and TR((G, r ) )  = 
TR((G' , r ) ) .  

Proof. (An outline): G' is constructed by repeatedly deleting from E edges u + 
v which are not ( r .v )  bottlenecks. By Lemma 3.2 the deletion of such edges does not 
decrease TR(G,r). The task is accomplished by solving I l l  - 1 maximum flow 
problems, in the following way: 

For each vertex v, in its turn, compute a maximurn (0 - 1) flow from r to v, and 
delete all the edges entering v whose flow function is 0 in this flow. Clearly, those 
edges are not ( r , v )  bottlenecks, and hence, By Lemma 3.2, are not ( r , t )  bottlenecks 
for any vertex t .  Note that after the deletion of those edges we must have that di,,(v) 
= aG(r,v),  as a maximum (0-1) flow from r to v consists of 8 G ( r , ~ )  edge-disjoint 
( r , v )  paths. It follows that the graph G' produced after the procedure is repeated for 
all vertices in V - {r} has exactly TR(G,r )  edges, and &'(r,v) = 8 G ( r , ~ )  for all v 
E V - {r}.  

The computation of a maximum (0 - 1) ( r , v )  flow can be done by using one of 
the algorithms for maximum flow which are based on the construction of augmenting 
paths [3], in O(&(r,v) * [El) t h e ,  since it requires the construction of EG(r,v) aug- 
menting paths, each in O(lEl) time. The total time required by the algorithm is, therefore 

e 

O ~ G ( T , V )  ' [El = O(TR(G,r) .  [El) ( vEV-(r}  ) 
as claimed. 

Theorem 3.5. For any network N = ( G , r )  there is a faithful protocol of optimal 
message complexity and linear space complexity. Moreover, such a protocol can be 
designed in O(lE1 * TR(G,r)) time. 

Prouf. Let G' = (V,E' )  be a subgraph of G critical for r.  We define a protocol 
PR which uses the edges in E' to broadcast messages originated by r: 

Let v E V - {r} be given. Let { e l ,  . . . ,eJ be the edges in E' entering v and let 
F, be the set of edges in E' leaving v (note that by Theorem 3.3 we must have that 
k = ti,( r ,v)) .  The protocol PR(v) at vertex v is given below (the RECEZVE and SEND 
operations in it were defined in Section 2.2). This protocol uses a list OLD to record 
the messages received by v.  

repeat 
for i = 1 to k do 

begin 
RECEIVE ( ei) ; 

ifthe message received is not 
in OLD then 

begin 
add the message to OLD; 
SEND (Fv) 

end (of the if statement); 
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end (of the for statement) 
for ever 

The protocol at vertex r ,  PR(r ) ,  will send each message broadcasted from r on all 
edges in E’ leaving r .  

Clearly, every message broadcasted from r will be sent at most one time along each 
edge in E’,  and hence the message complexity of PR is bounded by IE’I = TR(G,r ) .  
Also, if for some v E V ,  less than &(r,v) edges fail to deliver a message broadcasted 
by r, then G’ contains an ( r , v )  path p which contains none of these faulty edges. 
Hence that message will be forwarded along the edges of p with no interruptions, and 
will eventually reach v .  This means that PR is reliable for each v E V - {r},  and 
hence is faithful. 

The complexity of designing PR is the complexity of constructing G’, which by 
Corollary 3.4 is O(lE1 * TR(G,r ) ) .  w 

4. NETWORKS THAT HAVE NO EFFICIENT AND FAITHFUL ROUTING 
PROTOCOLS 

In this section we prove that in some cases, using the local memory of the nodes 
in the network is essential for achieving message efficient faithful protocols; in par- 
ticular, it is shown that for certain networks, every faithful routing protocol must have 
an exponential message complexity. We start with the following observation: 

Let PR be a routing protocol over a network N = ( G , r ) .  Then, without loss of 
generality, we may assume that for each vertex v in V ,  P R ( v )  is of the form: 

repeat 
RECEIVE (e 
SEND (F 

RECEIVE ( ek) 
SEND ( F k )  

for ever 

where e l ,  . . . ,ek are distinct edges entering v and F1, . . . ,Fk are subsets of the 
edges leaving v (some of which are possibly empty). In particular, we may assume 
that for each edge u -4 v .  the operation RECEIVE(e) appears at most one time in 
PR( v ) :  If it appears more than once, then we restrict our discussion to those executions 
of PR in which all the messages that arrive on e are fetched by the lirst occurrence 
of RECEIVE(e) in PR( v ) ,  which makes this protocol behave exactly like one in which 
RECENE(e)  appears exactly once. 

It follows that each PR(v) may be identified by a binary relation {(elfl). . . . ,(ekfk)}, 
where el,  . . . ,ek are (not necessarily distinct) edges entering v,  f l ,  . . . ,h are edges 
leaving v,  and every message received by PR(v) via ei is sent by PR(v )  along fi. 
Hence, a routing protocol PR can be identified by: 

1) The binary relation R which is the union of the binary relations related to P R ( v )  
over all v E V ,  and by 



MESSAGE COMPLEXITY VS. SPACE COMPLEXITY 513 

U V 

a b 

"'V' 
r 

FIG. 1. The graph B .  

2) the edges leaving r along which P R ( r )  sends the messages it receives for broad- 
casting. 

Lemma 4.1. Let PR be a faithful routing protocol in a network N = ( G , r ) ,  let R 
be the corresponding binary relation and let u 1* v be an ( r , r )  bottleneck in G. Then 

(i) There is an edge f entering u such that Cfe) E R. 
(ii) If r # v, then there is an edge g leaving v such that (e,g) E R .  

Proof. We prove only (i), as the proof of (ii) is similar. By the definition of R ,  
if (i) is false then no message received by P R ( u )  is forwarded via e. Let C be a 
minimum (s,r) cut containing e. Then if all the edges in C except e fail, no message 
broadcasted from r will reach t-contradicting the assumption that PR is faithful, and 
hence is reliable for f. 

Let B be the graph in Figure 1. For this graph we can prove the following: 

Lemma 4.2. Let PR be a faithful routing protocol in the network N = (l3.r). Then 
a message m received by P R ( c )  on e3 or on e4 must be forwarded by it along eS. 

Proof. 
1) e3 is an (r,v) bottleneck. 
2) e4 is an ( r , u )  bottleneck. 
3) e5 is the only edge leaving c. 

It is easily verified that the following holds in B: 

The lemma now follows by applying Lemma 4.1 (ii) to e3 and to e4. 

Corollary 4.3. Whenever no edge fails to deliver a message m broadcasted by a 
protocol satisfying Lemma 4.2, m is forwarded twice along es. 

Proof. Since both el and ez are (s,c) bottlenecks, every message m broadcasted 
by r must be sent along both el and e2. Since e3 [e4] is an ( s , v )  bottleneck [ (s ,u )  
bottleneck], Lemma 4.1 (i) implies that a[b] forwards m along e3[e4]. Thus, m will 
reach c twice: once along e3 and once along e4. Therefore, by Lemma 4.2, m will be 
forwarded twice along e5, as claimed. 
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FIG. 2. The graph M. 

Note. It is easily observed that Lemma 4.2 and Corollary 4.3 are valid for any 
faithful protocol PR in ( B . r )  and for any message m, provided P R ( c )  cannot decide, 
upon receiving m on e4, whether it had already received it on e3 (or vice versa). We 
claim that if P R ( c )  can decide for every message m received on e4 whether it had 
already received it on e3. then the (bitwise) space complexity of P R ( c )  is at least linear 
(in the number of messages): 

Suppose that n messages ml, . . . .m, are broadcasted by P R .  By the faithfulness 
of PR,  they all must be forwarded via e3 and e4. suppose that a certain subset of them 
is destroyed while sent through e3, and that all the undestroyed messages arrive c on 
e3 before any of them arrive on e4. Then, under the assumption above, P R ( c )  must 
be able to decide for every message mi whether or not it received it on e3 ( i  = 
1, . . . ,n). The only information P R ( c )  may use for this task is the content of c's 
local memory (which includes the state of PR(c ) ,  i .e . - the value of its program 
counter). 

There are 2" possible subsets of {mi, . . . ,m,}, and no two distinct subsets can be 
recorded by the same memory content. Thus, the number of distinct memory contents 
that may be used by P R ( c )  during the broadcasting of n messages is at least 2", and 
hence at least one of them must require n bits. We conclude that if PR is a faithful 
protocol with sub-linear (bitwise) space complexity, than Lemma 4.2 and Corollary 
4.3 still hold for certain messages m in certain executions of P R .  

Let M be a graph composed of two copies of B having a common root r, a new 
vertex f and two new edges dl 4 t and d2 4 t (see Fig. 2). 

Lemma 4.4. Let PR be a faithful routing protocol in the network N = ( M , r ) .  If no 
edge fails during the broadcasting of a message m in N using PR, then m is forwarded 
twice along f (g). 

By applying Corollary 4.3 to each copy of B in M, we get that a message 
broadcasted by r will reach dl (d2) twice. The lemma now follow by Lemma 4.1 (i), 
the fact that f and g are ( s , t )  bottlenecks, and the fact that din(dl)  = di,,(d2) = 1. 

Proof. 
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'I 

FIG. 3. The graph Gz. 

We are now ready to prove the main negative result of this paper. 

Theorem 4.5. For each n > 0 there exists a network N,, = ( G J )  with TR(N,,) = 
204 such that the message complexity of any faithful routing protocol for N,, is larger 
than 2". 
Proof. The network N, is defined as follows: N,, = (G,,r) ,  where G. is composed 

of n copies of M in the following way: Assume the n copies are M1, . . . ,M,,; for a 
vertex (edge) x in M, let xi denote the corresponding vertex (edge) in Mi,  and let rl 
= r. G, is constructed by identifying with T i ,  i = 2, . . . ,n. G2 is depicted in 
Figure 3. It is not hard to verify the following observations on G,: 

1) For i = 2, . . . ,n, 6G,(rrri) = 2. Hence, for each vertex xi in the ith copy of 
M in G,, it holds that aG,(r,xi) = 6,+,(r,x). 

2) By 1) and the fact that M is critical for r, G,, is also critical for r .  Hence TR(N,,) 
= TR((G,,,r)) = IE(G,,)l = IE(M)ln = 20n. 

3) Let PR be a faithful routing protocol on N,,. Then, by applying Lemma 4.1 to 
each of the edges entering ri, every message received by PR( T i )  on both edges entering 
it is sent by PR(ri) along the four edges leaving it. 

4) Under the assumptions of 3) above, Lemma 4.4 implies that every message sent 
by Ti  along the four edges leaving it is received by ti = ri+ twice along each of the 
edges entering it. 

Assuming that no edge fails during the execution of the protocol, and applying 3) 
and 4) above, an easy induction shows that every message broadcasted by PR is sent 
2' times on each edge entering ti. The Theorem follows by substituting i = n. 
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Nore. The note following Corollary 4.3 indicates that Theorem 4.5 might hold for 
any faithful protocol PR with sub-linear space complexity (though a formal proof of 
this could be rather involved). 

5. A GRAPH-THEORETIC CHARACTERIZATION 

In this section we show that the networks that have message-optimal faithful routing 
protocols are characterized by a property that can be viewed as a generalization of 
Edmonds’ branching theorem [2]. 
Definition 5.1. Let N = ( G J )  be a broadcast network. An optimal tree cover for 
N is a family T = {T , ,  . . . ,Ts} of edge-disjoint directed trees rooted at r satisfying: 

(a) Each Ti is a subgraph of G. 
(b) For each v E V - {r} it holds that 

8G(r,v) = I{i: 1 z s  i s s, v E v(TJ}~.  
Example. Let N = ( G , r )  be such that for each v E V - {r} it holds that &(r,v) 
= k. Then by Edmonds’ branching theorem G contains k edge-disjoint spanning trees 
rooted at r ,  which constitute an optimal tree cover for N. 

Theorem 5.1. A network N = ( G J )  has a message optimal faithful routing protocol 
iff it has an optimal tree cover. 

(i) If: Assume that N has an optimal tree cover, and let T = {TI, . . . ,TJ} 
be this cover. Let PR be a routing protocol that propagates messages from r along the 
edges of each of the Ti’s in T simultaneously. We claim that PR is faithful: 

Consider a vertex v E V - {r} such that 8G(r,v) = k, and assume that less than k 
edges fail to deliver a message broadcasted by PR. Then since there are k edge-disjoint 
trees rooted at r in T which contain v, one of these trees contains no edge that failed. 
Hence, the message propagated by PR along the edges of this tree will eventually 
reach v. Thus, PR is reliable for all v E V - {r} ,  and hence is faithful. 

To see that PR is also message optimal, we must show that its message complexity 
is bounded by TR(G,r). The message complexity of PR is clearly bounded by the 
number of edges in UiI; Ti, since PR send each message along each edge at most 
once. Thus we have that the message complexity of PR is bounded by 

Proof. 

5 J 

IE(T,)I = IV(Ti) - {r}l [since Ti is a tree], 
i =  1 i =  I 

J 

= 2 [{v: v E V(Ti) - {r}}l 

= c I{i: v E Ti}l [changing order of summation] 

= c t iG(r,v) [by definition of optimal tree cover] 

= TR(G,r), 

i =  I 

w€V- ( r )  

vEV-  ( r ]  

as claimed. 
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( i i )  Only i f  Assume that N has a message optimal faithful routing protocol PR. We 
define an optimal tree cover for N associated with PR as follows: 

Let R be the binary relation identified with PR, defined in Section 5: namely, R is 
the set of all pairs (e , f )  where e is an edge entering some vertex v,  f i s  an edge leaving 
v,  and PR(v) sends alongfevery message it receives on e. Let {el, . . . ,es} be the 
edges leaving r; note that each ei is a bottleneck, and hence must be used by PR. We 
use the relation R to construct an optimal tree cover T = {TI, . . . ,Ts} as described 
below: 

For i = I ,  . . . .s let Ei C E be the minimal set satisfying: 
(i) ei E Ei.  
(ii) if e E Ei and (e , f )  E R, thenfE Ei .  
Let Ti = C(E,). We claim that the family T = { T I ,  . . . ,Ts} is an optimal tree 

cover for N. We must show that the Ti’s are edge-disjoint trees rooted at r that satisfy 
the condition that for each v E V - {r} it holds that 

tiG(r,v) = I{i: 1 s i s s, v E V ( T , ) } ~ .  (*) 

The following definition is used in the proof. 

Delinition 5.2. For 1 d i d s, and for e E Ei,  D i (e )  is an integer defined by: Di(ei)  
= 1, and for e # ei, Di(e)  is the minimal integer k such that there is an edge e’ with 
Di(e’) = k - 1 and (e ’ ,e )  E R. 
Similarly, for v E V(Ti), Di(v)  is the minimal k for which there is an edge u 4 v in 
E,  with D,(e)  = k (intuitively, Di( v )  is the length of the shortest ( r , v )  path in T i ) .  

The proof proceeds now through a sequence of claims. 
(1) Ti contains an ( r , v )  path for each v E V(Ti) .  The proof of this claim is an easy 

induction on Di( v ) .  
(2) Let E’ = Uf= Ei.  Then, by definition, E‘ is the the set of all edges that deliver 

messages broadcasted by PR. 
Since PR is faithful we have, by Lemma 2.1 that IE‘I > TR(G,r), and in fact that 

for each v E V - {r} the number of edges in E’ entering v is at least &(r.v). Since 
the message complexity of PR is TR(G,r) we have that IE’I S TR(G,r). Putting the 
last two facts together we get that: 

(2a) IE’1 = TR(G,r), and hence 
(2b) for each v E V - {r } ,  the number of edges in E’ entering v is &(r,v) ,  and 

E’ contains no edges entering r. 
(2c) Each message broadcasted by PR while no edge fails is sent exactly once along 

each edge in E’. 
(3) If e # 5, and (e , f ) ,  (2,h are in R, thenf # f: Otherwise, e and 2 must enter 

the same vertex, say v,  and each message broadcasted by PR when no edge fails will 
be received by v along both e and Z; hence, this message will be sent twice alongf 
= j, which contradicts (2c) above. 

(4) For 1 d i C j S s, Ei fl E j  = @: If this is false, then there is an edge eo E 
Ei fl E j  for which k = D,(eo) is minimized. First note that eo jZ {ei ,e j} ,  since if, for 
example, ei E E j  then PR may send the same message twice along ei, in contradiction 
to (2c). This implies that k > 1 and that there are e E Ei and 5 E E j  such that D i ( e )  
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= k - 1, and both ( e,eo) and (Z,eo) are in R.  By the minimality of k we have that e 
# 5, and hence, by (3) above, eo f eo, a contradiction. 

(5 )  By (4) above, if an edge ej  fails to deliver a message broadcasted by PR, this 
message will not be sent along any edge in E j  (1 d i d s). 

(6) For each v E V - {r} ,  the number of distinct Ti’s that contain v is at 
least &(r,v): Assume, for contradiction, that &(r,v) = k and that v occurs in only 
k - 1 Ti’s, say T I ,  . . . ,Tk-i ( 1  2 1). If the edges e l ,  . . . fail to deliver a 
message broadcasted from r ,  then by ( 5 )  above this message will not be sent along 
any of the edges in UfZi Ei, and hence will never reach v-contradicting the assumption 
that PR is reliable for v. 

We now conclude the proof of the theorem: By (2b) we have that for each v E V 
- {r} the number of edges in E’ entering v is &(r.v). By (6) the number of distinct 
Ti’s that contain v is ur least 8G(r.v).  It follows that 

(a) the number of distinct Ti’s that contain v equals 6,( r ,  v), and 
(b) for each v E V( Ti) - {r } ,  Ei contains exactly one edge entering v, and Ei contains 

no edge entering r .  (a) implies that (*) hold. (b) and the fact that, by ( I ) ,  Ti contains 
an ( r , ~ )  path for each v E V(T,) ,  implies that each Ti is a tree rooted at r (see [3]). 
By (4), the Ti’s are edge-disjoint. This completes the proof of the theorem. rn 

An interesting corollary to Theorem 4.5 is that there are broadcast-networks which 
do not have an optimal tree cover. In fact, the network ( B , r )  in Figure 1 is the smallest 
example of such a network. It has been recently shown by Martin Tompa that deciding 
whether a given network has an optimal tree cover is NP-complete [20]. 

6. CONCLUSIONS AND FURTHER RESEARCH 

In this paper we have studied broadcast protocols in an unreliable environment. 
These protocols achieve, in a sense, the maximum possible reliability for each indi- 
vidual vertex in the network. It was shown that there is a trade-off between the 
communication cost and the computational overhead of such protocols. In particular, 
we have shown that in certain networks, decreasing the space complexity of the protocol 
by at most linear factor may increase its message complexity by exponential factor. 

A possible way to overcome this difficulty is by allowing the protocol to use the 
messages it broadcasts to deliver information that can be used to improve its perfor- 
mance, (e.g., by appending to each message information concerning the edges/vertices 
that had already passed it). A possible drawback of such a technique is, beside the 
increase of the messages’ length, that in the case that faulty edges deliver erroneous 
messages, such errors may affect the behavior of the protocol in a way that is hard to 
predict. 

As mentioned in the introduction, broadcast protocols are the simplest possible 
protocols that require the cooperation of the full network. It is interesting whether 
similar results can be obtained for more complex protocols, like protocols for choosing 
a leader and reaching a consensus [ 1,4]. 

It is also interesting whether similar results to those obtained in this paper can be 
proved for networks with bidirectional edges. The results in [10,22] could be useful 
for this kind of research. 



MESSAGE COMPLEXITY VS. SPACE COMPLEXITY 519 

References 
[ 11 D. Dolev, M. Klawe, and M. Rodeh, An O(nlog n )  unidirectional distributed algorithm 

[2] J.  Edmonds, Edge Disjoint Branchings, in Combinatorial Algorithms. Algorithmic Press 

[3] S .  Even, Graph Algorithms. Computer Science Press (1979). 
[4] M. J. Fischer, N. A. Lynch, and M. S .  Paterson, Impossibility of distributed consensus 

with one faulty process. Proc. ACM Sym. Principles of Database Systems (1983) 1-7. 
[5 ]  G. Fredrickson and N. Lynch, The impact of synchronous communication on the problem 

of electing a leader in a ring. 16th Ann. ACM Symp. on Theory of Computing, Washington 

[6] E. Gafni and Y. Afek, Election and traversal in unidirectional networks. 3rd Ann. ACM 
Symp. on Principles of Distributed Computing, Vancouver, B.C., Canada, August (1984) 
190-198. 

[7] E. Gafni and W. Korfhage, Distributed election in unidirectional Eulerian networks. Pro- 
ceedings Twenty-Second Annual Allerton Conference on Communication, Control, and 
Computing, Allerton, IL, October 3-5 (1984). 

[8] R. G. Gallager, P. M. Humblet, and P. M. Spira, A distributed algorithm for minimum- 
weight spanning trees. ACM Transact. Programming Languages Syst. 5 (1983). 

[9] D. S.  Hirshberg and J. B. Sinclair, Decentralized extrema-finding in circular configurations 
of processes. Commun. ACM 23 (1980) 627-628. 

[ lo]  A. Itai and M. Rodeh, The multi-tree approach to reliability in distributed networks. 25th 
Symposium on the Foundations of Computer Science (Oct. 1984). 

[ l l ]  E. Korach, S .  Kutten, and S .  Moran, A modular technique for the design of efficient 
leader finding algorithms. Proceedings of the 4th symposium on Principles of Distributed 
Computing, Minaki, Canada, August (1985). 

[12] E. Korach, S.  Moran, and S .  Zaks, Tight lower and upper bounds for some distributed 
algorithms for a complete network of processors. 3rd AM. ACM Symp. on Principles of 
Distributed Computing, Vancouver, B.C., Canada, August (1984) 199-207. 

[ 131 L. LovBsz, On two minimax theorems in graph theory. J .  Combinatorial Theory (Ser. B) 
21(2) (1976) 96-103. 

[14] K. Menger, Zur Allgemeinen Kurventheorie. Fund. Math. 10 (1927) 96-115. 
[ 151 S. Moran, An improvement of an algorithm for construction of edge disjoint branching. 

[16] J. Pachl, E. Korach, and D. Rotem, Lower bounds for distributed maximum-finding 

[ 171 G. L. Peterson, An O(n1og n) unidirectional algorithm for the circular extrema problem. 

[18] Y. Shiloach, Edge disjoint branchings in directed multigraphs. fnf.  Proc. Lett. 8 (1979) 

[19] R. E. Tarjan, A good algorithm for edge disjoint branchings. fnf.  Proc. Lett. 3 (1975) 

[20] M. Tompa, private communication (1986). 
[21] P. Tong and E. L. Lawler, A faster algorithm for finding edge-disjoint branchings. fnf .  

[22] A. Zehavi and A. Itai, Three tree connectivity TR 406 CS dept Technion (March 1986). 

for extrema finding in a circle. J .  of Algorithms 3 (1982) 245-260. 

Inc. (1973) 91-%. 

D.C. (1984) 493-503. 

TR 341, Dept. of Computer Science, the Technion (1984). 

algorithms. J. ACM 31(4) (1984) 905-918. 

Trans. Programming Languages Syst. 4 (1982) 758-762. 

24-27. 

51-53. 

Proc. Lett. 17 (1983) 73-76. 

Received April, 1986 
Accepted February, 1988 


