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We show that any m X n matrix A, over any field, can be written as a product,
LSP, of three matrices, where L is a lower triangular matrix with 1I’s on the main
diagonal, S is an m X n matrix which reduces to an upper triangular matrix with
nonzero diagonal elements when the zero rows are deleted, and P is an n X n
permutation matrix. Moreover, L, S, and P can be found in O(m*~ 'n) time, where
the complexity of matrix multiplication is O(m®). We use the LSP decomposition to
construct fast algorithms for some important matrix problems. In particular, we
develop O(m®~'n) algorithms for the following problems, where 4 is any m X n
matrix: (1) Determine if the system of equations 4X = b (where b is a column
vector) has a solution, and if so, find one such solution. {2) Find a generalized
inverse, A*, of A (i.e., AA*4 = A). (3) Find simultaneously a maximal independent
set of rows and a maximal independent set of columns of A.

1. INTRODUCTION

In 1969, Strassen discovered a fast recursive algorithm for multiplying
two n X n matrices in O(n*%!) time [8].! He also showed that any O(n%)
algorithm, where a > 2, can be used to obtain O(n*) algorithms for matrix
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'This bound has since been improved. The best bound known today is due to Coppersmith
and Winograd, and is O(n%4%-).
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inversion, computation of determinants, and solution of simultaneous linear
equations, provided that each matrix encountered during the recursion
process is nonsingular. This last result was later shown to hold for all
matrices which are initially nonsingular by Bunch and Hopcroft (see [1, 4]).
Thus, Gaussian elimination is not optimal for solving a system of simulta-
neous linear equations Ax = b when A is nonsingular. The proof in {l]
consisted of showing that any » X n nonsingular matrix 4 can be decom-
posed into A = LUP, where L is an n X n lower triangular matrix with 1’s
on the main diagonal, U is an n X n upper triangular matrix with nonzero
diagonal elements, and P is an n X n permutation matrix. Moreover, L, U,
and P can be found in O(n“) time. (Thus, to solve Ax = b, first solve
Ly = b for 7 and then solve UPX = y for X. Hence, knowing L, U, and P,
the solution ¥ can be found in O(n?) time.) When A is singular, an LUP
decomposition may not exist, and even if it exists, it may not provide a fast
algorithm for solving Ax = b (see Section 2).

In this paper, we modify the algorithm of Bunch and Hopcroft [1] to
show that any m X n matrix A (m < n) can be decomposed 1nto a product
LSP of three matrices, where L is an m X m lower triangular matrix with 1’s
on the main diagonal, S is an m X n matrix which reduces to an upper
triangular matrix with nonzero diagonal elements when the zero rows are
deleted, and P is an n X n permutation matrix. Moreover, L, S, and P can
be found in O(m* 'n) time. We then use this decomposition to develop
O(m*>~'n) algorithms for the following problems, where A is any m X n
matrix:

(1) Determine if the system Ax = b (where b is a column vector) has a
solution, and if so find one such solution. This shows that Gaussian
elimination is not optimal for solving any system of equations Ax = b.

(2) Find a generalized inverse, A*, of 4 (i.e., AA*4 = A).

(3) Find simultaneously (in 4) a maximal independent set of rows and
a maximal independent set of columns.

(4) Diagonalize 4; i.e., find an m X m nonsingular matrix X and an
n X n nonsingular matrix Y such that

XAY={I’ 0],
010

where I, denotes the r X r identity matrix.

(5) Find the rank of 4.
(6) Find the optimal (least square) solution to a (possibly inconsistent)

system of equations AX = b over the complex field.
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2. LSP DECOMPOSITION OF MATRICES

Let A be an m X n matrix (m < n). An LUP decomposition of 4 (if it
exists) is a triple (L, U, P), where L is a lower triangular m X m matrix
with 1’s on the main diagonal, U is an upper triangular m X n matrix, P is
an n X n permutation matrix, and 4 = LUP [1]. If 4 is nonsingular (i.e.,
rank(A4) = m), then an LUP decomposition of A exists, and it can be used
to obtain a solution to a system of simultaneous equations Ax = bin O(m?)

—arithmetic-operations.
AR SATLAD

In [1], an algorithm which finds an LUP decomposition of any m X n
nonsingular matrix in O(m®~'n) time is given. This algorithm provides an
O(m*~'n) algorithm to find a solution of AX = b. However, the algorithm
may fail if 4 is singular, and therefore it cannot be used to decide if a
singular system of equations Ax = b has a solution (and to find one such
solution if it exists). Moreover, we observe that if 4 is singular, then an LUP
decomposition of A may not really be useful in constructing a fast algorithm
to solve AX = b. Consider, for example, the system AX = b, where

bl

B — N

A2n><2n :[gA‘—O]! b: .
b2n

B is any n X n matrix. A4 is already upper triangular; hence, 4 = U = LUP
for L = P = I,,. However, solving UX = b is no easier than solving BZ = ¢,
where

Xn+1 b,

Ny
1l

o)
[l

and

x2n b

Remark. An LUP decomposition of a singular matrix may not always
exist. For example, one can easily check that the matrix

_|0 O
4= [1 1]
does not have an LUP decomposition.

Now define an L'U’P decomposition of A, where now L’ is an m X m
lower triangular matrix (possibly singular), U’ is an m X n upper triangular
matrix with nonzero diagonal elements, and P is a permutation matrix. It
can be shown that any m X n matrix 4 has an L'U’P decomposition, and
there is an algorithm to find L', U’, and P in O(m* 'n) time. However, we
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again see that an L'U’P decomposition may not be useful in solving systems
of equations. For let

A2nx2n=[g g] and b= - |,

where B is any n X n matrix. Then 4 = L' = L'U'P for U" = P = I,,. But
then the complexity of solving L'x = b is equivalent to the complexity of
solving Bz = ¢, where

xl bn+l

™I
I

and

xn b2

Ny
[l

n

In this section, we introduce a decomposition called LSP. L and P are as
in the LUP decomposition, and § is a matrix which reduces to an upper
triangular matrix with nonzero diagonal elements when the zero rows are
deleted. When A is nonsingular, LSP reduces to LUP. We shall define this
concept formally, and we shall show that an LSP decomposition of any
m X n matrix can be found in O(m*™ 'n) time. We shall also show how an
LSP decomposition can be used to construct a fast algorithm to decide if
‘Ax = b has a solution, and to find one such solution if it exists.

DEFINITION. An m X n matrix § is semi-upper triangular (s.u.t.) if
deleting the zero rows from S results in an upper triangular matrix with
nonzero diagonal elements. (By convention, the zero matrix [0],,,, 15 s.u.t.)

ExamPLE. The following matrix is s.u.t.

2 1 1
0 0 0].

0 It 2

S =

DEFINITION. Let S, ., be s.u.t. of rank r > 0. (Clearly, the rank of S is
the number of its nonzero rows.) Let S =[S, | S,], where §, is an m X r
matrix. Then an m X m matrix $¢" is a left semi-inverse of S if

S(~I)S:[I" ] and s=hs, =[£’]
ol 0 0

LEMMA 2.1. Let S =[S, ]|S,] be s.u.t. of rank r >0, where S, is an
m X r matrix. Then S'™ can be computed in O(m*) time.
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Proof. The following algorithm constructs S~V

(1) Permute the rows of S, so that the resulting matrix is of the form

0
where U is an r X r upper triangular matrix with nonzero diagonal ele-

-1

ments.
-1
Von = 211 0]
0 0

(3) Reverse the permutation done in step (1) on the columns of V. The
resulting matrix is SV,

The correctness of the algorithm is easily verified. Clearly, the time
complexity is O(m + r* + r?) < O(m*).? O

ExaMPLE. Let

2 1 1
s=lo o ol
0 1 2
Then
(2 1] ]
Slz 0 0 ) Szz 0 ]
0 1) 2
_[2 1] _,_[% —%]
U= ., U ,
0 0 1
ERE A IR
V=lo 1 ofs S7"=lo 0o 1
0 0o 0 0 0 0
Indeed,
N (10 —1]f2 11
SEYS=lo 0o 1|lo 0o o
0 0 o Jlo 1 2
1 0: -4 1 0
=10 1, 2 and STUs, =g 1l
0 0 0 | 0 0

2The inverse of an r X r triangular matrix can be found in cr® + O(r?) steps, where cn®
steps are required for matrix multiplication [1].
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We can now define an LSP decomposition formally.

DEFINITION. An LSP decomposition of an m X n matrix A is a triple
(L, S, P), where L,,,, is lower triangular with I’s on the main diagonal,
S, x, 18 su.t., and P, ., is a permutation matrix.

We now generalize the algorithm in [1, 4} to find an LSP decomposition
of an m X n matrix A (m < n). Without loss of generality, we assume that
m and n are powers of 2. If m = 1 a trivial algorithm of O(n) steps is
applied. (If A is a zero vector [0,...,0], then L =[1], S=A4,and P =1.)
For a matrix with 2m rows, the following recursive procedure is applied:

Let

where 4, and 4, are m X n matrices.

Step 1. Compute L,, §,, P,—the LSP decomposition of A4,. Let r =
rank (A,). Compute 45 = A,P; . Then
S.]
— P‘l-

45

LI
ol1,

If S, = {0],,5,» then let C’ = A, and go to step 5. (In this case, L, = I, and

where F and S} are m X r| matrices.

4,

Step 2. Compute §{7 V.

Step 3. Let F/ . be the matrix obtained by adding to F m — r, zero
columns, i.e., F' = [F|0]. Compute F’S{~ . By Lemma 2.1,

1
S{s; =[_’;].
0

1
Fs(Vs; = [F]0]|

Hence,

= F.
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Step 4. Compute C’' = C — F'S{"YB. Then
L, | o

FS{Y| I

m

s;| B
0| C

A= 1

Step 5. Compute L,, S,, P, —the LSP decomposition of C’. If §, = [0],
then

L1 0]]l0 .
= —|(P,, whereL, =1,.
01 L, || S,
Else
L, 0 S;I BP, 'L, | O
A= P, = LSP.
FsCU | Lol s ol A

Time analysis. Let the complexity of n X n matrix multiplication be ¢cn®.
(Note that this implies multiplication of D, ,C, x,, Where m|n, takes
cm®~ !5 steps.) Let I(n) be the complexity of inverting an n X »n triangular
matrix. (As noted before, I(n) = cn® + O(n?).) Then, for m < n with m
and n powers of 2, we have the following relation for the complexity

T(m, n) of the algorithm above (we neglect lower-order terms):

11, n) < bn for some b (without loss of generality assume b < ¢).
T(2m,n) <2T(m, n) + I(m) + cm® + cm® " 'n
<2T(m, n) + 3cm™ 'n.

This easily implies (by induction) that
T(m,n) <3em* " 'n/(2°7' —2).

From the discussion above, we have our first theorem:

THEOREM 2.1. There is an O(m*~'n) algorithm to find an LSP decom-
position of any m X n matrix (m < n).

COROLLARY 2.1.  Let m < n. Each of the following problems can be solved

in O(m*~'n) time:

(1) Given an m X n matrix A, find its rank.

(2) Given an m X n matrix A and a column vector b, determine if the
system of equations Ax = b has a solution, and if so find one.



52 IBARRA, MORAN, AND HUI

Proof. (1) To compute rank(A4), decompose A into LSP. Then
rank(A4) = number of nonzero rows in S. (A different method for comput-
ing rank(A) in O(m*~'n) time is given in [9].)

(2) To solve Ax = b, decompose A into LSP. Next, solve Ly = b for .
Then solve SPx = y for x. {1

A variation of the LSP decomposition which is sometimes more conveni-
ent to use 1s given by the following definition.

DEFINITION. An LQUP decomposition of an m X n matrix 4 is a
quadruple, (L, Q,U,P), where L, ., 1s lower triangular with 1’s on the
main diagonal, ¢ and P, , are permutation matrices, and

e

where U, is upper triangular with nonzero diagonal elements.

mXxm

THEOREM 2.2. There is an O(m®~'n) algorithm to find an LQUP decom-
position of any m X n matrix (m < n).

Proof. Let A = LSP. Let Q, be an m X m permutation matrix such that

0is=|Y
0

>

where U, is upper triangular with nonzero diagonal elements. (By the
structure of §, such a Q, exists and can be easily found in O(mr) steps.) Let
Q= Q;'and U= Q8. Then LQUP = LQ; '(Q,S)P = LSP. O

3. OTHER APPLICATIONS OF LSP /LQUP DECOMPOSITION

In this section, we use the LSP/LQUP decomposition to provide fast
algorithms for the following tasks, where 4 1s an m X n nonzerc matrix:

and Y,

nXn

(1) Diagonalize A; i.e., find nonsingular matrices X, such

mxXm
that
XAY=[q£],
0l

(2) Find a maximal nonsingular square submatrix of A; i.e., find
indices 1 <i, iy,...,i, =m, 1 <j, j5,..., j, =n such that the matrix

where r = rank(A4).
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formed by the elements at the intersections of rows i,..., i, and columns
Jis« -5 j, is nonsingular, and r is maximal.

(3) Find a generalized inverse of A, i.e., a matrix 4*,,  such that
AA*A = A [2, 3, 6, 7).

Task 1 corresponds to the “classical” matrix diagonalization problem.
Task 2 is a generalization of the problem of finding a maximal independent
set of vectors (i.e., a “base”) from a given set of vectors. Task 3 has many
applications in applied mathematics [2, 3, 6, 7]. When 4 is nonsingular, fast
algorithms for these tasks follow rather easily from the LUP decomposition
[1].

First, we consider Task 1.

THEOREM 3.1.  There is an O(m® ™ 'n) algorithm to diagonalize an m X n
matrix.

Proof. Let A = LQUP be the decomposition described in Theorem 2.2,

e,
Ume :[Ul F] = Q—IL_IAP—la
0'"0

where U, is an r X r nonsingular, upper triangular matrix. Let X = Q@ ~'L ™!
and Y=PY,
where

Then

XAY = UY’ :[1’ 0].
000

The time to compute X is clearly O(m®). To compute Y, we first have to
compute Y’. Computing U, 'F requires O(7* 'n) time. Now Y’ has less
than n(r + 1) nonzero entries. Thus, P 'Y’ can be computed in O(nr)

additional steps. It follows that diagonalization can be carried out in
O(m*~'n) steps. O

Note. The matrix
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(U, and F defined above) has rank n — r. Moreover, AN = [0],,,(,,—,,. That

is, the columns of N form a basis for the null space of 4. Thus, if AX = b
has a solution, then we can find all solutions in the form X, + Ny, where X,
is some solution (obtained, e.g., as in Corollary 2.1) and 7 is any n — r
element vector.

We now consider Task 2. We will need the following definition [5].

DEFINITION. Let A4,,,, be a given matrix, and 1 <i,,i,,...,i, <m
1 <j, jpyeors y=n.Then Aiy,..., i, |j,..., j,] denotes the submatrix of
A formed by the elements at the intersections of rows i, ..., i, and columns
Jis---» Jp- If A 1s of rank r and for some i,..., i, j,..., j,A = Ali,,..., i,
lii>---» J,] is nonsingular, then 4’ is a maximal nonsingular square subma-
trix of A.

It is known that for A of rank r, Ali,..., . |j,..., J]is nonsingular if
and only if rows 4, ,..., 4, are 1ndependent and columns A, ..., A/ are
mdependent The followmg lemma provides an easy way to fmd a nonsmgu-
lar Aliy,..., i, |ji,..., j,] from the LSP decomposition of A.

LEMMA 3.1. Let A= LSP beof rank r. Let i,,..., i, be the nonzero rows
of S, and P(1) =j,,..., P(r) = j,. (P(i) is the image of i under permutation
P)? Then Ali\,...,i.|j,---» J,] is nonsingular.

Proof. We need only show that rows 4,,..., 4; are independent, and
columns A%, ..., A’ are independent, Clearly, rows §;,..., S; are indepen-
dent. One can eas1ly verify that LS[i,,..., i, |1,2,...,n]1=L[i,...,i,|
ieooos 8,181,005 0,]1,2,..., n]. Since L is lower triangular and nonsingu-
lar,-sois L[i|,..., i, |i,..., ] Hence, LS[i,,...,i.|1,2,..., n] is nonsin-
gular, which means that rows i,...,i, in LS are linearly independent.
Clearly, the multiplication of LS on the right by a permutation matrix P
does not change this fact. It follows that 4, ,..., 4; are independent. Now
columns S', ..., S” are independent, and therefore so are the first r columns
in LS. It follows that in A = LSP, columns P(1),..., P(r) are independent.
4

From Lemma 3.1, we have

THEOREM 3.2. There is an O(m®~'n) algorithm to find a maximal nonsin-
gular square submatrix of an m X n matrix.

Finally, we consider Task 3. Recall that A%, . is a generalized inverse of
A, 5, if AA*A = A. A reflexive generalized inverse of A, , 15 a matrix 47,

satisfying 44’4 = A and A"AA” = A" [3]. In general, a reflexive generalized

3We can consider P as a permutation rather than a permutation matrix.
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inverse 1s not unique. However, if 4 is square and nonsingular, then
A" = A7} and is therefore unique.

THEOREM 3.3. There is an O(m®~'n) algorithm to find a reflexive gener-
alized inverse of A.

Proof. By Theorem 3.1, we can compute X and Y in time O(m® 'n)

such that
L ‘ 0‘
0 0 er'a'

Then A* is a generalized inverse if and only if

A* = Y{ L ‘ U] X
viw
for some U, V, W. A" is a reflexive generalized inverse if and only if

I U]X
vIivu

XAY =

A" =Y

for some U, V (see [2,3]). D
Let us restrict ourselves now to matrices over the complex field. The

Moore~Penrose or pseudoinverse A%, of A satisfies
AA'™A = A,
ATAAT = 4Y,
(44N = 441,
(A'4)7 = 4t4,

where A7 is the conjugate transpose of 4. It can be shown that, for a
complex 4, 4" is unique [3].* A" has the additional property that X, = A% is
the optimal solution to the (p0551b1y inconsistent) system AX = b, in the
sense that for all vectors X, | AX, — bll < || Ax — bl and || 4%, — bl =
| AX — b implies || x|l < (I %]I.

THEOREM 3.4. A" can be computed in time O(m® 'n).

Proof. Consider A = LQUP. Since the last m — r rows of UP are zeros,
A =LQ UP, where LQ is the first  columns of LQ and UP is the first r
rows of UP. It is easily verified that 4" = UP"(UP UP")y~(LO"LQ) 'LO".
(0}, x» = [0],xp-) The total time is O(m®'n + r=) = O(m® 'n). O

“A" may not exist for matrices over fields with finite characteristic (where A" is interpreted
as the transpose of 4).
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