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1. INTRODUCTION

The sheer size of the World Wide Web (WWW) and the efforts of search engines
to index significant portions of it [Lawrence and Giles 1998] have caused many
search engines to partition their inverted index of the Web into several disjoint
segments (partial indices). The partitioning of the index impacts the manner
in which the engines process queries. Most engines also use some form of query
result caching, where results of queries that were served are cached for some
time. In particular, query results may be prefetched in anticipation of user re-
quests. Such scenarios occur when the engine retrieves (for a certain query)
more results than will initially be returned to the user.

We examine efficient prefetching policies for search engines. These policies
depend on the architecture of the search engine (which, in turn, affects its query
processing scheme) and on the behavior patterns of search engine users.

1.1 Search Engine Users

Users interact with search engines in search sessions. Sessions begin when
users submit initial queries to search engines, by typing some search phrase
that describes their topic of interest. From the user’s point of view, an engine an-
swers each initial query with a linked set of ranked result pages, typically with
10 results per page. All users browse the first page of results, which contains
the results deemed by the engine’s ranking scheme to be the most relevant to
the query. Some users scan additional result pages, usually in the natural or-
der in which those pages are presented. A search session implicitly terminates
when the user decides not to browse additional result pages on the topic that
initiated the session.

Several studies have analyzed the queries that users submit to search en-
gines, and the length of search sessions [Jansen et al. 2000; Markatos 2000;
Silverstein et al. 1998; Lempel and Moran 2003]. Three findings that these
studies share are particularly relevant to this work:

� The queries submitted to WWW search engines are very short, averaging less
than 2.4 terms per query, with over half of the queries containing just one or
two terms. These results were reported by both Silverstein et al. [1998] and
Jansen et al. [2000]. While the two studies define query terms somewhat dif-
ferently, the reported term counts may be loosely interpreted as the number
of words per query.

� Users browse through very few result pages. These studies differ in the re-
ported distribution of page views, but agree that at least 58% of the users
view only the first page (the top-10 results), and that no more than 12% of
users browse through more than 3 result pages.

While the above describes the behavior of users as they browse through
multiple result pages, statistics have also been gathered on the browsing
patterns of users as they view a single page of results. It has been observed
that users are reluctant to scroll beyond the visible part of the page, and so
search results that are “above the fold” are viewed (and clicked on) by more
users than results at the bottom of the page [Broder 2000].
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� The number of distinct information needs of users is very large, as can be
seen from the huge variety of queries submitted to search engines. However,
popular queries are repeated many times, and the 25 most popular queries
account for over 1% of all queries submitted to the engines [Markatos 2000;
Silverstein et al. 1998; Lempel and Moran 2003].

1.2 Caching and Prefetching of Search Results

It is commonly believed that all major search engines perform some sort of
search result caching and prefetching. Caching of results was noted in Brin
and Page’s [1998] description of the prototype of the search engine Google1 as
an important optimization technique of search engines. Markatos [2000] used
a log of a million queries submitted to the search engine Excite2 to demonstrate
that caching search results can lead to hit ratios of close to 30%.

In addition to storing results that were requested by users in the cache,
search engines may also prefetch results that they predict to be requested
shortly. An immediate example is prefetching the second page of results when-
ever a new session is initiated by a user. Since studies [Jansen et al. 2000;
Lempel and Moran 2003; Silverstein et al. 1998] indicate that the second page
of results is requested shortly after a new query is submitted in at least 15%
of cases, search engines may prepare and cache two (or more) result pages per
query. In Lempel and Moran [2003], a log containing over seven million queries
submitted to the search engine AltaVista3 was used to test integrated schemes
for the caching and prefetching of search results. Hit ratios exceeding 50% were
achieved. Prefetching of results proved to be of major importance, doubling the
hit ratios of small caches and increasing those of larger caches by more than
50%.

1.3 Index Structure and Query Processing Models

Inverted indices, or inverted lists/files, are regarded as the most widely applied
indexing technique [Arasu et al. 2001; Jeong and Omiecinski 1995; Tomasic
and Garcia-Molina 1993; Ribeiro-Neto and Barbosa 1998; Melnik et al. 2001;
Ribeiro-Neto et al. 1998], and are believed to be used by the major search en-
gines. As search engines index hundreds of millions of Web pages [Lawrence
and Giles 1998], the size of their inverted indices is measured in terabytes.

Ribeiro-Neto and Barbosa [1998] mention three hardware configurations
that can handle large digital libraries: a powerful central machine, a paral-
lel machine, or a high-speed network of machines (workstations and high end
desktops). However, when considering the size of the indices that search en-
gines maintain, the growth rate of the Web and the large number of queries
that search engines answer each day, using a network of machines is considered
to be the most cost-effective and scalable architecture [Hawking 1997; Ribeiro-
Neto and Barbosa 1998]. Such networks operate in a shared-nothing memory,

1http://www.google.com/.
2http://www.excite.com.
3http://www.altavista.com.
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organization [Ribeiro-Neto et al. 1998] where each machine has its own pro-
cessing power (one or several CPUs), its own memory, and its own secondary
storage. The machines communicate by passing messages via the high speed
network that connects them.

Distributing an inverted index across the separate machines in the network
results in a segmented index. There are two well-studied schemes for construct-
ing a segmented index:

� Global index organization. In this scheme, the inverted index is partitioned
by terms. Each machine holds posting lists for a distinct set of terms (the
terms may be partitioned by lexicographic order, for example). The posting
list for term t holds entries for all documents that include t.

� Local index organization. In this scheme, the inverted index is partitioned
by documents. Each machine is responsible for indexing a distinct set of
documents, and will hold posting lists for all terms that appeared in its set
of documents.

Works that have compared the (run-time) efficiency of the above partitioning
schemes obtained different results for different query models. Tomasic and
Garcia-Molina [1993] simulated throughputs of systems consisting of 4 and
16 machines (hosts), for conjunctive queries. Note that in order to process con-
junctive queries, the posting lists of different terms must be intersected at some
single point. Their simulations indicate that a local index organization would
outperform a globally-partitioned index for both short and long queries. On the
other hand, Ribeiro-Neto and Barbosa [1998] used simulations coupled with
an analytical model of query evaluation to compare the two architectures for
disjunctive queries. In such queries, the contribution of each term to the over-
all score of the document is independent of the occurrences of other terms, and
can be accumulated separately. They found that for TREC-3 queries, the global
index architecture outperformed the local architecture. The authors left the
performance comparisons on very short, Web-like queries to future work. Par-
allel generation of a global index has been studied in Ribeiro-Neto et al. [1998],
while a system that crawls the Web and builds a distributed local index was
presented in Melnik et al. [2001]. Cahoon et al. [2000] evaluated the computa-
tional performance of local indices under a variety of workloads, and Hawking
[1997] examined scalability issues of local index organizations.

The prototype of Google was reported as using global index partitioning [Brin
and Page 1998]. However, as Google scaled up, the architecture changed. In a
recent paper, Barroso et al. [2003] reveal that today, each replica of Google’s
index is locally partitioned. In their terminology, the index is divided into index
shards, with each shard containing a randomly chosen subset of documents
from the full index. Barroso et al., as well as many of the above mentioned works
[Cahoon et al. 2000; Ribeiro-Neto et al. 1998; Hawking 1997; Ribeiro-Neto and
Barbosa 1998; Tomasic and Garcia-Molina 1993], describe essentially the same
model for processing queries in systems with segmented indices:

� User queries arrive at a certain designated machine, which we will call the
Query Integrator, or QI. This machine was called home site in Tomasic and
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Garcia-Molina [1993], central broker in Ribeiro-Neto et al. [1998] and Ribeiro-
Neto and Barbosa [1998], user interface (or UIF) in Hawking [1997], connec-
tion server in Cahoon et al. [2000] and Google Web server in Barroso et al.
[2003].

� The QI issues each query to the separate index segments in a manner that
depends on the partitioning scheme of the index. With local index parti-
tioning, the QI will send the query (as submitted by the user) to all seg-
ments. With global index partitioning, the QI sends each segment a partial
query consisting only of the set of terms whose posting lists are stored in the
segment.

� The QI waits for the relevant segments to return their result sets, and merges
these result sets with respect to the system’s ranking scheme. The two index
partitioning schemes imply different merge operations.

With local index partitioning, it is usually assumed that each segment has
the ability to calculate the global score of each document in its local index
with respect to all queries. Since the result sets that are returned by different
segments are disjoint, merging the various result sets is straightforward and
relatively inexpensive.

With global index partitioning, each (relevant) segment returns a ranked
document list that may overlap lists returned by other segments, and where
each score reflects only the score of the document with respect to the partial
query that segment received. The QI may need to perform set operations on
the partial result sets (for queries containing boolean operators), and might
need to weigh the scores returned from each segment differently (for example,
according to the different document-frequency values of the terms in each
partial query).

� The QI returns the merged results to the users.

We consider a cache-augmented process, in which the QI maintains a query-
result cache. Upon receiving a query from a user, the QI first checks if the
cache contains results for that query. If so, the cached results are returned to
the user, without forwarding the query to any of the segments. If the query
cannot be answered from the cache, the QI processes the query as described
above, and upon completion, caches the merged results.4

1.4 This Work

When considering the query processing model described above in the context of
Web search engines, we note that merged results are returned to users in small
batches (typically 10 at a time), in decreasing order of relevance (as ranked
by the search engine). The QI, however, may prepare more results than are
needed to populate the first batch, and cache them for future use. This raises
the issue of optimizing the number of prefetched results in systems where the
cost of processing uncached queries increases with the number of results that
are fetched: prefetching a large number of results per query will be costly at

4The maintenance of the cache is not considered in this work. In particular, we do not examine how
cached entries are replaced or how the freshness of the results is maintained.
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Table I. Summary of Notations

Symbol Denotes
a shorthand for β A
b shorthand for (ω + 2αm)
c shorthand for (log C + αm)
d shorthand for αA log m
m number of segments in index
p probability of viewing result page k when viewing page k − 1
q quality criterion of QI
r number of result pages to fetch
ropt optimal integral value of r
A number of results per result page
C number of relevant results per segment
ω work needed to identify results in each segment
W (r) work required for fetching r result pages per query
lq(r, m) number of results to fetch from each segment so that the best r A

results are collected with probability at least q; equals l̃q(r A, m)
α multiplies the computations of the QI in W (r)
β multiplies the required caching space in W (r)

first, but may pay off should the user request additional batches of results (since
these will already be cached). The tradeoff between the amount (and cost) of
result prefetching and the possibility of serving subsequent queries from the
cache is the main topic of this paper. As popular search engines process millions
of queries every day, efficient prefetching policies can help reduce both the
hardware requirements and the response time of the engines. Note that we
also associate the cache space that is occupied by the prefetched results with
the cost of prefetching. Assuming a fixed-size cache, increasing the number of
prefetched results per query may decrease the number of queries whose results
can be simultaneously cached. This may lead to lower cache hit ratios, and to
an increase in the load of the engine.

Another issue arising from the query processing model, is the relationship
between the number n of results that the QI decides to prefetch per query,
and the number l of results that it should ask of each segment. Specifically,
consider an engine that uses local index partitioning into m segments, and
whose policy is to prefetch n results per query. It may happen that all of the
top results reside on a particular segment. Therefore, in order to be certain
that indeed all top n results are obtained, it is necessary to collect the top-n
results of each segment (setting l = n). However, assuming that documents
are partitioned randomly and independently into the segments, the QI may
be able to collect considerably fewer results from each segment and still, with
very high probability, obtain all of the top n results. Thus, when optimizing the
number of prefetched results n, the behavior of l with respect to n must also be
considered.

The rest of this paper is organized as follows. Section 2 formally presents the
problems studied and the notations used throughout this paper. The notations
are summarized there in Table I. We model both the search engine’s query
service process and the users’ behavior. We then define the cost of prefetch-
ing a given number of results in terms of a cost function that is analyzed and
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optimized in later sections. Section 3 presents an algorithm that optimizes the
prefetch cost function for two special cases. The first case deals with inverted
indices that fit on a single machine. This single machine scenario also mod-
els serving single-term queries (which are quite common on the Web) with a
globally-partitioned index. The second special case deals with a scenario in
which the engine guarantees that the users receive absolutely optimal results,
using worst-case assumptions on the distribution of relevant documents in
local-index partitions. The main body of work is contained in Section 4, which
presents algorithms that solve and approximately solve the optimization prob-
lem for locally partitioned indices with an arbitrary number of segments, among
which the documents are randomly distributed. Sections 5 and 6 tackle sev-
eral aspects of the combinatorial problem of setting the number of results that
should be retrieved from each segment in order to provide quality merged re-
sults to the users. Section 7 discusses the practical impact that our results may
have on search engine engineering. Conclusions and suggestions for future re-
search are made in Section 8.

2. NOTATIONS AND FORMAL MODEL

2.1 The User

Our work requires a model for the manner in which search engine users conduct
search sessions (as defined in Section 1.1). Following evidence that the “deeper”
the result page, the less users view it [Lempel and Moran 2003], and similar to
the model adopted in Wolf et al. [2002], we chose to model the number of result
pages that users view per session as a Geometric random variable u ∼ G(1− p).
According to this model, users view result pages in their natural order, and the
probability of a user viewing exactly result pages 1, . . . , k (not viewing result
pages k + 1 and beyond) equals (1 − p)pk−1. In other words, upon viewing a
result page, the user requests the next page with probability p.

An important property of the Geometric distribution is the fact that it is
memoryless:

Pr(u ≥ s + t | u ≥ s) = pt ∀s, t ∈ IN

Assume that the complexity of retrieving ranked results is also “memoryless”,
meaning that the complexity of retrieving the results that rank in places n, n+
1, . . . , n+ (k − 1) depends only on the number of results retrieved, k. As we will
see, this assumption holds in our model, provided that the identity of the result
that ranks in place n− 1 is known. Then, the memoryless behavior of the users
and the memoryless cost of retrieval implies that the optimal number of result
pages ropt that should be prefetched for a query is independent of the number
of result pages requested so far: any time a query cannot be served from the
cache, the QI should prepare the next ropt result pages.

2.2 The Index Architecture and the Complexity of Processing Queries

The model to which we refer in most of this paper is that of a local index par-
titioning scheme in a shared-nothing network. The index is partitioned among
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m segments. We assume that documents (URLs) are partitioned into segments
by a random process that assigns each document to a segment according to
the uniform distribution, and independently of all other documents. Such a
partitioning can be achieved by hashing every URL into a fixed-size document
ID, and mapping these IDs into segments. Such a scheme was mentioned in
Arasu et al. [2001] in the context of building URL repositories, and the same
technique can be applied when assigning pages to the segments of an inverted
index. Since the number of documents considered is in the hundreds of millions
while m is considerably smaller (much less than the square root of the number
of documents), the segments will contain roughly the same number of docu-
ments (with high probability). The query processing model is as described in
Section 1.3. Throughout the discussion we consider the processing of a “broad
topic” query that matches C documents in each segment, where C is much
larger than the number of the results a user will actually browse.

Let A denote the number of results that the engine presents in each result
page (a typical value is A = 10). Since results should be prefetched in page
units, the number of prefetched results per query should be a multiple of A.
In what follows we examine the cost of prefetching n = r A results per query,
so that in subsequent sections we will be able to optimize the value of r—the
number of prefetched result pages. We will denote a user’s query by a pair (t, k),
where t is the search topic (identified by the search phrase sent by the user)
and k ≥ 1 is the (ordinal) number of the result page requested. A query can
either start a new search session (and then k = 1), or ask for additional results
in an existing session (k > 1). The following discussion addresses both query
types.

Preliminaries. Upon receiving a query (t, k) that cannot be answered from
the cache, the QI needs to fetch n results for t. The first task is to set the value
of l , the number of results to retrieve from each of the m segments.

Let B(n) denote the set of n documents that the engine should ideally retrieve
for the query: the n documents that attain the best scores for t (according to the
engine’s ranking function), out of all documents that have not been retrieved
for queries (t, k′), k′ < k. Let R(l , m) denote the set of documents that will
actually be retrieved for the query (t, k) when each of the m segments returns
its l most relevant (and previously unretrieved) matches for t. Ideally, R(l , m)
would contain B(n), but ensuring that means setting l to equal n.5 Instead,
we assume that the engine employs the following quality policy, based on a
probability q: The QI sets the value of l with respect to n such that

Pr[B(n) ⊆ R(l , m)] ≥ q.

In other words, the QI should collect enough (previously unretrieved) quality
results from each segment so that with probability q, the top-n retrieved results
will indeed be the best n (previously unretrieved) results for t in the entire index.
The relationship between n and l will be studied in Section 5. For the time
being, it suffices to note that by the assumption that documents are uniformly

5This special case is discussed in Section 3.
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distributed among the segments, the above probability depends only on the
values of n, m and l , and is independent of the topic t.

Let l̃q(n, m) denote the minimal number of documents that should be re-
trieved by each of the m segments so that the quality criterion is satisfied:

l̃q(n, m) �= min {l | Pr[B(n) ⊆ R(l , m)] ≥ q}.
Collecting results. The QI sends each segment the query (t, k) and a request

for its l̃q(n, m) top results for the query. Whenever k > 1 (this is not the first
batch of results to be retrieved for t), segment i also receives the score and
id of the lowest ranking document that it had contributed to the results of
(t, 1), . . . , (t, k − 1).6 We now estimate the cost of serving such requests. By
our assumption, the query matches C documents in each segment, where C is
much larger than the number of results users will actually browse through, and
consequently is much larger than l̃q(n, m) (since l̃q(n, m) is bounded by n, and
n is bounded by the number of results that users browse through). Let ω be the
work required from each segment for identifying the C-sized set of candidate
documents (in the inverted index structure, when the query is the disjunction of
several terms, ω is linear in C). Recall that each segment receives the score and
id of the lowest ranking document that it had contributed so far for the query,
and can thus discard previously retrieved results from the set of candidates.7

The top-scoring l̃q(n, m) documents of the remaining candidates are then found.
Each segment will thus spend �(ω+ l̃q(n, m) log C) processing steps (per query)
in order to return l̃q(n, m) sorted results to the QI.

Merging results. The QI receives m sorted result lists of length l̃q(n, m).
Reading and buffering these lists takes �(ml̃q(n, m)) operations. It then par-
tially merges the results until it identifies the top n = r A retrieved results that
will populate the r result pages. By using Tree Selection Sorting [Knuth 1998]
with the m sorted result lists hanging from the leaves of the tree, the merge can
be accomplished in time �(2m + n log m). The overall complexity of this step is
thus �(ml̃q(n, m) + 2m + n log m).

Caching results. The r result pages are cached, and the first of those pages
is returned to the user. The m scores s1(t, k), . . . , sm(t, k) are also noted. The
overall space complexity is thus �(r A + m).

The complexity of the query processing model. Our model requires two mes-
sages to be passed between the QI and each of the segments: the QI sends the
query to each segment, and each segment returns l̃q(n, m) results to the QI.
The total number of results received by the QI is ml̃q(n, m), and this amount
of data impacts its time complexity. Had we allowed more rounds of commu-
nication, we could have managed by sending the QI only m + (n − 1) results,
lowering the complexity of the merge step above to �(m+n+n log m). We chose
not do so since minimizing communication rounds between machines (even at

6We assume that the results of the query (t, k − 1) are still cached when the query (t, k) arrives.
7For the sake of simplicity, we assume that if two documents obtain the same score for a query, the
tie is broken by comparing their ids.
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the expense of sending larger messages) is likely to improve performance in
distributed computations [Hawking 1997; Arasu et al. 2001].

Note that the complexity of the retrieval model described above is indeed
“memoryless” (see discussion in Section 2.1). The model implies the following
computational loads on the various resources of the engine, when following a
policy of prefetching r result pages per query:
� The QI performs �(ml̃q(r A, m) + 2m + r A log m) computation steps.
� Each index segment performs �(ω + l̃q(r A, m) log C) computations.
� The cache space required is �(r A + m).

Additionally, we introduce two non-negative coefficients α and β that will allow
us to assign different weights to the three resources that are consumed during
query processing. Specifically, α will multiply the computations of the QI and
β will multiply the cache space required.8 Tuning the values of α and β can
emphasize memory (cache) limitations, computational bottlenecks (the QI vs.
the segments) and response time per query. More on this in Section 7.2.

We are now ready to formulate W̃ (r), the expected cost (or work) of serving a
search session, for geometric users with parameter p, by a policy that prefetches
r pages per query execution from a locally segmented index. Note that a session
may require multiple query executions, where every execution prepares a batch
of r result pages. Accordingly, result pages ir+1, ir+2, . . . , (i+1)r will be termed
as the i’th batch of pages. For ease of notation, we introduce lq(r, m) �= l̃q(rA, m).

W̃ (r) = Caching overhead +
∞∑

i=1

[Pr(preparing batch i) ·

(batch preparation complexity)]
= β(Ar + m) +

∞∑
i=0

pir [ω + lq(r, m) log C +

α(rA log m + mlq(r, m) + 2m)]

= β(Ar + m) + ω + lq(r, m) log C
1 − pr +

α(r A log m + mlq(r, m) + 2m)
1 − pr .

It is evident that the constant additive term βm does not depend on r and will
not affect the optimization of W̃ (r). Thus, rearranging the terms, optimizing
W̃ (r) is equivalent to optimizing

W (r) = β Ar + (ω + 2αm) + (log C + αm)lq(r, m) + (αA log m)r
1 − pr .

8The computational loads were expressed using the �(·) notation. For concreteness and simplicity,
we will consider the given expressions as the exact complexities. This allows us to avoid tedious
notations, and does not affect the ensuing analysis (and results) of the paper.
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To ease the notation, we define the following constants: a = β A, b = (ω +
2αm), c = (log C + αm) and d = αA log m. With this notation,

W (r) = ar + b + clq(r, m) + dr
1 − pr .

C, the number of documents per segment that match a query, and consequently
ω, the amount of work needed to identify these documents, is typically a large
number, while A and m are typically much smaller. Thus, when the proportion-
ality constants α and β are both about 1, typical values of b are large (tens of
thousands and beyond), while a, c, d are relatively small (typically less than
100).

For convenience, Table I summarizes the notations we use.

Our mission: Given an m-way locally segmented index, geometric-p users
and some quality criterion q, determine ropt, an integral value of r, which min-
imizes W (r). In doing so, determine lq(ropt, m). The QI will then prepare ropt
result pages whenever a query cannot be answered from the cache, asking each
of the m segments to retrieve its top lq(ropt, m) results (that score below a cer-
tain threshold) for the query being processed. We will strive to obtain exact or
almost exact values of ropt and lq(ropt, m).

3. SIMPLE SPECIAL CASES

In this section we show that the problem for a single segment (m = 1) and the
problem for multiple segments with q = 1 behave similarly, and in both cases
ropt can be found in �(log ropt) steps.

� When the index is stored in a single segment, we can ignore the terms in the
complexity function W (r) that deal with the merging of results from different
segments (namely the terms involving α). In addition, lq(r, 1) = r A regardless
of q’s value. Thus, W (r) becomes:

W (r) = ar + ω + (A log C)r
1 − pr .

Note that when an index is partitioned globally (each segment holds posting
lists for a distinct set of terms), single-term queries are effectively queries to
a single segment as described above. Studies [Silverstein et al. 1998; Jansen
et al. 2000] indicate that the percentage of single-term queries on the Web is
quite large (25%–30%).

� For the case where q = 1 we again have l1(r, m) = r A, and the complexity
function W (r) takes the following form:

W (r) = ar + b + (cA + d )r
1 − pr .

Both cases imply a complexity function of the form

W (r) = ar + b′ + d ′r
1 − pr , b′, d ′ > 0.
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Taking the derivative, we have

W ′(r) = a + d ′(1 − pr ) + [(b′ + d ′r) ln p]pr

(1 − pr )2

= a(1 − pr )2 + d ′(1 − pr ) + [(b′ + d ′r) ln p]pr

(1 − pr )2

= (1 − pr )(d ′ + a − apr ) + [(b′ + d ′r) ln p]pr

(1 − pr )2 .

Thus, for r > 0, the sign of W ′(r) is determined by the sign of

(1 − pr )(d ′ + a − apr ) + (b′ + d ′r)(ln p)pr

or, equivalently, by the sign of

f (r) = ap2r − (2a + d ′ − b′ ln p − (d ′ ln p)r)pr + (d ′ + a).

Note that f is continuous at 0, and that

f (0) = a − 2a − d ′ + b′ ln p + d ′ + a = b′ ln p < 0.

Thus, W ′(r) is negative for small positive values of r, so W (r) decreases at first.
We now examine the derivative of f (r):

f ′(r) = (2a ln p)p2r + (d ′ ln p)pr − [2a + d ′ − b′ ln p − (d ′ ln p)r](ln p)pr

= [2apr + d ′ − 2a − d ′ + b′ ln p + (d ′ ln p)r](ln p)pr

= [2a(pr − 1) + ln p(b′ + d ′r)](ln p)pr > 0.

Thus, f (r) is negative at zero but monotonically increases. This implies that
W (r) (for positive values of r) decreases at first until it reaches its (unique)
minimal value, and then increases. Relying on this behavior, an optimal integral
value of r (ropt) can be found by applying the following Bracket and Bisection
scheme [Press et al. 1988]:

1. Find the minimal natural number n such that W (2n) ≤ W (2n+1). This step
brackets ropt in the interval [2n−1, 2n+1].

2. Find an optimal value of r, using binary search, in the interval [2n−1, 2n+1].

Since n will not exceed �log ropt�, the complexity of finding ropt is �(log ropt).

4. SOLUTION FOR AN m-WAY SEGMENTED LOCAL INDEX

In this section we study the problem of setting the optimal value of r given the
quality criterion q (q < 1), the engine’s architecture parameters A, C and m, and
the complexity parameters α and β. Subsection 4.1 presents an algorithm for
determining the optimal value of r, which minimizes the retrieval complexity
function W (r). Subsection 4.2 presents an approximation algorithm, which finds
a value of r for which W (r) is approximately optimal.
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4.1 Optimizing r in Indices With m Segments

First, recall the form of the complexity function from Section 2.2:

W (r) = ar + b + clq(r, m) + dr
1 − pr .

Clearly, the behavior of W (r) depends on the behavior of lq(r, m). While we will
show how to precisely calculate lq(r, m) in Section 5, for the purpose of this
subsection it suffices to note that if r ′ ≥ r then lq(r ′, m) ≥ lq(r, m).

In order to facilitate the search for ropt, we now seek to find, for every value
of r, an upper bound on the set {r̄ | W (r̄) ≤ W (r)}.9

Definition 1. A function g (r) will be called W -restrictive if for all r ′ ≥ g (r),
W (r ′) > W (r).

For example, g1(r) �= W (r)
a is W -restrictive, since for all r ′ ≥ g1(r), we have

W (r ′) > ar ′ ≥ ag1(r) = W (r). Consequently, ropt is not larger than g1(1).
We will use W -restrictive functions to bound our search space for ropt. For

this we now present a W -restrictive function that is better than g1, providing
tighter bounds on the size of the search space.

PROPOSITION 1. The function

g (r) = r + pr (b + clq(r, m) + dr)
(1 − pr )(a + d )

is W-restrictive.

PROOF. By rearranging terms in the definition of g (r) we get:

(a + d )(g (r) − r) − pr

1 − pr (b + clq(r, m) + dr) = 0 (1)

We shall also use the following equality, which holds for all constants X , Y
(Y �= 1):

X
1 − Y

= X + XY
1 − Y

(2)

Let r ′ ≥ g (r), and let us evaluate W (r ′) − W (r):

W (r ′) − W (r) = a[r ′ − r] + b + clq(r ′, m) + dr′

1 − pr ′ − b + clq(r, m) + dr
1 − pr

> a[r ′ − r] + [b + clq(r ′, m) + dr′] − b + clq(r, m) + dr
1 − pr

= a[r ′ − r] + [b + clq(r ′, m) + dr′] − (b + clq(r, m) + dr) −
pr

1 − pr (b + clq(r, m) + dr) (by equation 2 above)

≥ a[g (r) − r] + [b + clq(r ′, m) + dg(r)] − (b + clq(r, m) + dr) −
pr

1 − pr (b + clq(r, m) + dr) (since r ′ ≥ g (r))

9Since limr→∞ W (r) = ∞, the set {r̄ | W (r̄) ≤ W (r)} is finite for all r.
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Fig. 1. Algorithm OP for optimizing the prefetch policy.

= (a + d )(g (r) − r) + [clq(r ′, m) − clq(r, m)] −
pr

1 − pr (b + clq(r, m) + dr)

≥ (a + d )(g (r) − r) − pr

1 − pr (b + clq(r, m) + dr)

= 0 (by equation 1).

Thus, for all r ′ ≥ g (r), W (r ′) > W (r) =⇒ g (r) is W -restrictive.

Note that g (r) reflects all the architectural parameters of the search engine’s
index, and also the user’s behavior (represented by p) and the desired quality
criterion q.

Figure 1 displays Algorithm OP for setting the optimal value of r. The algo-
rithm conducts a linear search for ropt. Starting with r = 1, r is incremented
as long as it does not exceed the upper bound on ropt, set by the W -restrictive
function g (r). That bound is updated (lowered) during the computations. All of
the steps except the calculation of lq(r, m) in 2(a) are trivial; that calculation
is the topic of Section 5. The correctness of the algorithm follows from the W -
restrictiveness of g(r) (Proposition 1), since we do not need to iterate through
values of r for which W (r) is known to be higher than values we have already
seen.

The complexity of the algorithm. Algorithm OP needs to be executed only
in preprocessing phases, when configuring the prefetching policy of the search
engine (see discussion in Section 7.2). Therefore, its own complexity does not
impact the performance of the engine. Nevertheless, we now prove that its
running time is polynomial. We do so by bounding rmax, the maximal number
of iterations that OP may require throughout its course. For this, let

τ = a + d
b + cA + d

.

Note that by our assumptions on the relative values of a, b, c and d (see Sec-
tion 2.2), τ is a small (positive) constant. Since lq(1, m) ≤ A, we have that
g (1) ≤ 1 + p

(1−p)τ is a bound on the number of iterations. Thus, rmax is bounded
by 1 + 2p

1−p whenever τ ≥ 0.5, and by 1 + 1
1−p whenever p ≤ τ . Next, we bound

rmax when p > τ and τ < 0.5.
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Table II. ropt(ract
max) Values as a

Function of m and p

m\p 0.3 0.5 0.7
5 4(5) 7(9) 11(15)

25 4(5) 6(8) 12(14)
50 4(5) 6(8) 10(13)

Fig. 2. W (r) as a function of r, for m = 5, 25 and 50 (p = 0.5).

LEMMA 1. If p > τ and τ < 0.5, then rmax < 3� log τ

log p�.

PROOF. Let r = � log τ

log p�. Then, since 1 > p > τ , r > 1 and pr = 2r log p ≤
2log τ = τ . Thus,

g (r) = r + pr

(1 − pr )
b + clq(r, m) + dr

a + d

≤ r + τ

(1 − τ )
b + clq(r, m) + dr

a + d

≤ r + τ

(1 − τ )
b + cr A + dr

a + d
(since obviously lq(r, m) ≤ r A)

< r + τ

(1 − τ )
r
τ

= 2 − τ

1 − τ
r < 3r = 3

⌈
log τ

log p

⌉
.

To complete the analysis of the complexity of algorithm OP for finding ropt, we
show in Section 5 that calculating the values of lq(r, m) for all r ∈ {1, . . . , rmax}
requires O(m2 A2r2

max) steps (regardless of the value of q). Since we have already
bounded rmax by simple functions of m, p and τ , bounds on the complexity of
the algorithm follow.

Table II gives sample results of the algorithm. For every combination of
m and p, ropt and ract

max (the highest value of r for which W (r) was actually
calculated during execution) are shown. Figure 2 is a plot of W (r) as a function
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of r, as calculated during the algorithm for three values of m with p = 0.5. For
all displayed results, we used q = 0.99, α = β = 1, A = 10 and C = 213.

4.2 Approximating the Optimal Solution

In the previous subsection we have shown how to determine ropt, the number of
pages that minimizes the complexity function W (r). However, if we are willing to
settle for nearly optimal solutions, namely finding values of r for which

W (ropt)
W (r) ≥

1 − ε for small values of ε, we can use the following algorithm:

1. Let rmax
�= � log ε

log p�.

2. Find the value of r in the range {1, . . . , rmax} that minimizes W (r).

Note that rmax depends on the user’s behavior (as modeled by p) but is inde-
pendent of the engine’s architecture and quality policy (which are modeled by
a, b, c, d and q). Furthermore, the above algorithm is applicable to any work
function W̃ (r) such that (1 − pr )W̃ (r) is an increasing function of r. Note that
W (r) satisfies this condition, since

(1 − pr )W (r) = (1 − pr )ar + b + clq(r, m) + dr

where a, b, c, d are positive constants, and the functions (1 − pr ), lq(r, m) are
nondecreasing functions of r.

The correctness of the approximation algorithm relies on the following Propo-
sition.

PROPOSITION 2. Let W (r) be any positive function such that (1 − pr )W (r) is
an increasing function of r. Let r, t ∈ IN such that W (t)

W (r) ≥ 1
1−pt . Then, for all

r ′ ≥ t, W (r ′) > W (r).

PROOF. Since (1 − pt)W (t) ≥ W (r), we have for r ′ ≥ t

W (r ′) > (1 − pr ′
)W (r ′) ≥ (1 − pt)W (t) ≥ W (r).

COROLLARY 1. Let 0 < s < t. Then W (s) < W (t)
(1−ps) .

PROOF. Since (1 − pr )W (r) increases with r, we get

W (s) <
W (s)

(1 − pt)
<

W (t)
(1 − ps)

.

COROLLARY 2. For all s,

min{W (1), . . . , W (s)} <
W (ropt)
1 − ps .

PROOF. If 1 ≤ ropt ≤ s, the claim holds. Otherwise, the result is implied by
Corollary 1, with t = ropt.
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Table III. rmax as a Function of p and ε

ε\p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 1 2 2 3 4 5 7 11 22
0.01 2 3 4 6 7 10 13 21 44
0.001 3 5 6 8 10 14 20 31 66

Substituting s = rmax = � log ε

log p� in the last corollary yields the approximation
algorithm:

min{W (1), . . . , W (s)} <
W (ropt)

1 − p� log ε

log p �

= W (ropt)

1 − 2log p� log ε

log p � <
W (ropt)
1 − ε

.

Table III shows the values of rmax for p = 0.1, 0.2, . . . , 0.9 and ε = 0.1, 0.01
and 0.001. As mentioned earlier, calculating the values of lq(r, m) for all
r ∈ {1, . . . , rmax} requires O(m2 A2r2

max) computational steps, and thus the time
complexity of the approximation algorithm is O(m2 A2� log ε

log p�2).
Finally, we note that the results of this subsection may be used in practice

to improve the running time of Algorithm OP (Figure 1), by checking (between
steps 2(b) and 2(c)) whether W

Wmin
≥ 1

1−pr , and setting limit ← r if so (thus
terminating the algorithm). Proposition 2 asserts that all future iterations with
larger values of r will result in greater values of W (r), and so OP can safely
terminate and output the current value of ropt.

5. CALCULATING lq(r, m)

This section brings recursive formulae with which lq(r, m) can be calculated in
a time that is polynomial in m, r and A.

We model the distribution of the top results in the segments by the following
random process: n

�= r A different balls (the top results for a query) are thrown
randomly and independently into m different bins (the segments), where ni
balls are inserted to bin i (i.e.,

∑m
i=1 ni = n). We model the querying process by

taking min{l , ni} balls from bin i for i = 1, . . . , m. Denote by en,m,l the number
of excess balls that remain in the bins after the querying process is completed.
In the next two subsections we will calculate the distribution of en,m,l .

In subsection 5.1 we will calculate the probability that en,m,l = 0. This corre-
sponds to the case where no bin contains more than l balls, so that the QI has
indeed managed to collect the top n results from the segments. In subsection 5.2
we will calculate the probability that en,m,l = k. This corresponds to the case
where the QI managed to collect just n − k of the top n results. We bring this
analysis as well since the QI may choose to employ a relaxed quality policy,
requiring that with high probability, most (but not necessarily all) of the top
results are returned to the user. In subsection 5.3 we briefly review previous
work on related issues.

We first present a rough bound on lq(r, m) that may suffice when precise
calculations are not essential. Clearly, n

m is a lower bound on lq(r, m) for all
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Table IV. lq(r, m) for q = 0.99, A = 10 and Various Values of r and m

m\r 1 2 3 4 5 6 7 8 9 10 11 12
5 6 10 13 16 19 22 24 27 30 32 35 37

25 4 5 6 7 8 9 10 10 11 12 13 13
50 3 4 5 5 6 6 7 8 8 8 9 9

q > 0. We show that lq(r, m) need not be larger than

max
{

�λ + log m�,
⌈

2en
m

⌉}
(3)

where λ
�= − log2(1 − q) (i.e., q = 1 − 1

2λ ): 10

The probability that exactly i of the n results are inserted to a given segment
is ( n

i )( 1
m )i(1 − 1

m )m−i. Since ( n
i ) ≤ ( ne

i )i [Motwani and Raghavan 1995],(
n
i

) (
1
m

)i (
1 − 1

m

)n−i

<

(
n
i

) (
1
m

)i

≤
(ne

i

)i
(

1
m

)i

=
( ne

mi

)i
.

Hence, the probability that more than � results are inserted into a given seg-
ment is bounded by

n∑
i=�+1

( ne
mi

)i
<

∞∑
i=�+1

( ne
m�

)i
=

( ne
m�

)� ne
m�

1 − ne
m�

.

Whenever � ≥ max{(λ + log m, 2en
m }, this last expression is bounded from above

by ( 1
2 )λ+log m = 1

m2λ . Thus, by the union bound, the probability that at least one
of the m segments contains more than � results is smaller than 1

2λ . The results
follow.

5.1 Retrieving All of the Top Results

We now turn to the precise calculation of lq(r, m). For this we will calculate the
probability

P (n, m, l ) = Pr[en,m,l = 0],

the probability of throwing n different balls into m different bins so that no bin
contains more than l balls (see some sample values in Table IV).

The size of the problem space is mn. We will actually be counting N (n, m, l ),
the number of ways to throw n different balls into m different bins so that no
bin contains more than l balls, and then

P (n, m, l ) = N (n, m, l )/mn.

The following recursive formulae may be used to calculate the N (n, m, l ) values:

N (n + 1, m, l ) = m ·
l−1∑
j=0

(
n
j

)
N (n − j , m − 1, l )

N (n, m + 1, l ) =
l∑

j=0

(
n
j

)
N (n − j , m, l ).

10Sharper asymptotic bounds on lq(r, m) are discussed in Section 5.3.
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The first formula represents choosing one of m bins for ball number n + 1, and
then putting some number j , 0 ≤ j ≤ l − 1 of additional balls into the same
bin. The rest of the n − j balls then need to be put into m − 1 bins, respecting
the limit of l balls per bin. The second formula represents choosing j , 0 ≤ j ≤ l
balls to populate bin m + 1, and distributing the remaining n − j balls into m
bins, respecting the limit of l balls per bin.

However, the recursion that most naturally fits in Algorithm OP from
Section 4.1 is

N (n, m, l ) =
� n

l �∑
j=0

(
m
j

)(
n

l , . . . , l , n − j l

)
N (n − j l , m − j , l − 1).

First, we choose some j bins to have exactly l balls. We then choose the balls to
populate those bins (the multinomial coefficient has j l -terms). The remaining
n − j l balls are distributed to the remaining m − j bins, with each such bin
collecting no more than l − 1 balls.

As r grows in subsequent iterations OP, so will the value of lq(r, m). This
recursion naturally uses results of N (n, m, l ) from previous iterations in later
iterations. As for the initial values:

1. For all m, l , N (0, m, l ) = 1.
Whenever n > 0, N (n, 0, l ) = N (n, m, 0) = 0.

2. For all n > 0, m > 0:
� Whenever l < � n

m�, N (n, m, l ) = 0. This implies that the sum over j in
the above formula contains no more than 1 + m terms.

� N (n, m, � n
m�) = ( m

k ) n!
� n

m �k� n
m �m−k , where k

�= n mod m.

Denoting by nmax
�= rmax A the value of n in the last iteration of OP (and by lmax

the value of l found in that iteration), the total time spent calculating values
of lq(r, m) can be shown to be O(nmaxmlmax(m + 1)) = O(n2

maxm2). Furthermore,
when q is constant and nmax grows, Equation 3 asserts that lmaxm ≤ 6nmax and
so O(nmaxmlmax(m + 1)) = O(n2

maxm). Table IV shows sample values of lq(r, m).

5.2 Retrieving Most of the Top Results

Consider next the QI’s willingness to produce less than optimal results, allowing
at most k of the top n = r A results to not appear in the r result pages. In terms
of the balls-into-bins terminology, we are allowing some bins to receive more
than l balls each (thus losing the excess results), as long as the total excess lost
does not exceed k. Our goal in this subsection is to calculate Pr[en,m,l ≤ k].

Denote the number of balls that were thrown into bin i by ni, and let f denote
the number of overflowing bins (the number of bins into which more than l balls
were thrown):

f
�= |{ni, 1 ≤ i ≤ n : ni > l }|.

How many balls were actually thrown into these f bins? Certainly we must
allow at least f (l +1) balls to be assigned to these f bins, in order to cause their
overflow. However, we cannot assign more than f l + k balls to the overflowing
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bins, otherwise the excess will surely exceed k. Therefore, the number of balls
in the overflowing bins, t, must respect the following bounds:

f (l + 1) ≤ t ≤ f l + k.

Once we set the values of f and t, we need to factor in the following:

1. The identities of the f (out of the possible m) bins that will overflow.
2. The identities of the t (out of the possible n) balls that will occupy the over-

flowing bins.
3. The number of ways to throw t balls into f bins so that all bins will receive

more than l balls.
4. The number of ways to throw n − t balls into m − f bins so that no bin

receives more than l balls.

Denoting the third quantity by N̄ (t, f , l ), we have:

Pr[en,m,l ≤ k] = 1
mn

k∑
f =0

(
m
f

) f l+k∑
t= f (l+1)

(
n
t

)
N̄ (t, f , l )N (n − t, m − f , l ).

So we are left with the task of calculating N̄ (t, f , l ), the number of ways to
throw t balls into f bins so that all bins receive more than l balls. By the
inclusion-exclusion principle,

N̄ (t, f , l ) =
f∑

i=0

(−1)i
(

f
i

) il∑
j=0

(
t
j

)
N ( j , i, l )( f − i)t− j .

In the sign-alternating sum, we first pick i bins that will not overflow. Then,
we decide how many balls these bins will hold (0 to il ). We choose the balls,
arrange them legally in N ( j , i, l ) ways, and distribute the remaining t − j balls
into the other f − i bins arbitrarily.

Complexity Issues. Let l k
q (n, m) denote the smallest integer l such that

Pr[en,m,l ≤ k] ≥ q. We now analyze the complexity of calculating the values
of l k

q (n, m) for a fixed value of m and for all values of n in the range 1, . . . , nmax.
Let lmax denote l k

q (nmax, m).
As discussed in the previous subsection, calculating N (n, m, l ) for all values

of n in the range 1, . . . , nmax requires �(nmaxm2lmax) operations. Turning our
attention to the calculation of N̄ (t, f , l ), we note that f is confined to the range
0, . . . , k and t is confined to the range 0, . . . , klmax. Thus, given the values of
N (n, m, l ) for all n ≤ nmax, l ≤ lmax, the required values of N̄ can be calculated
in �(k4l2

max).
After accounting for all values of N and N̄ , we note that calculating the

probability Pr[en,m,l ≤ k] requires k2 operations for specific values of n and
l . Thus, we require O(nmaxlmax · k2) operations in order to find l k

q (n, m) for all
values of n ≤ nmax, given the values of N and N̄ .

Overall, the complexity of calculating l k
q (n, m) for all values of n ≤ nmax is

O
(
nmaxlmaxk2 + nmaxm2lmax + k4l2

max

) = O
(
n2

max

(
m2 + k4)).
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By substituting the known bounds on nmax = rmax A from Section 4.1, we can
bound the complexity of algorithm OP when the engine tolerates (with proba-
bility q) up to k non-optimal results in the ropt A pages which it presents to the
user.

5.3 Previous Work

The stochastic properties of the process that randomly throws n balls into m bins
have been studied extensively. Two good references are Kolchin et al. [1978] and
Johnson and Kotz [1977]. Among the properties studied was the distribution
of the maximum number of balls in a bin, which we will denote by L(n, m). For
example, for n ≥ m (more balls than bins), L(n, m) = �( ln m

ln �1+ m
n ln m� + n

m ) with
probability 1−o(1) [Czumaj and Stemann 1997]. When n = m, L(n, m) behaves
asymptotically as (1 + o(1)) ln n

ln ln n with probability 1 − o(1) [Azar et al. 1999]. In
Kolchin et al. [1978], the distribution of L(n, m) is examined with regard to the
behavior of the ratio n

m ln m as n, m → ∞. Separate results are obtained for the
three cases n

m ln m → 0, n
m ln m → λ > 0, and n

m ln m → ∞. In Johnson and Young
[1960] it was shown that the distribution of L(n, m) may be approximated by
the the distribution of

n · max
sj∑m
j=1 sj

,

where each sj is an independent χ2 variable with 2(n−1)
m degrees of freedom.

6. NON-OPTIMAL MERGE RESULTS

In Section 5 we computed the minimal number of results l that the QI should
fetch from each segment per query in order to ensure, with probability no
less than q(q < 1), that the n merged results meet some quality criterion.
In Section 5.1, the quality criterion was that the n merged results be the top-
n results for the query. Section 5.2 relaxed that demand to allow some of the
top-n results to be lost; l was set so that with probability q, most of the top-n re-
sults would be returned. Essentially, the a-priori probabilities of losing quality
results during the merge process were studied.

Whether the QI’s policy allows some results to be lost or not, l is set so that
with probability of about 1−q, the merge process will fail to meet the QI’s stan-
dard of quality, losing more of the top-n results than is acceptable. This section
deals with such cases. Section 6.1 presents how the QI, as it is merging the l ·m
results returned by the segments, can estimate online how many of the top-n
results it may be losing. Section 6.2 discusses an additional measure of non-
optimal merge results called skipped results, and proves a strong correlation
between skipped results and lost results.

6.1 Online Estimation of the Number of Lost Results

We now show that during the merge process, the QI can assess the quality
of the merged results. In particular, we show that the QI can determine the
probability qk that at most k of the top-n results have been lost, replaced by
nonoptimal results in the merged process.
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Let us recall the merge process that takes place in the QI. Results from m
sorted lists of size l are merged so as to find the top n

�= r A results. As long as
the merge process does not exhaust a list, that is as long as each list contributes
to the best results at most l − 1 results, the optimality of the merge process is
certain. Assume, however, that for some T , the n − T best result in the merged
list is the l (i.e., the last) result of some segment, and thus that segment’s list is
exhausted. The optimality of merged results n − T + 1, n − T + 2, . . . , n is now
in doubt: result l + 1 of the exhausted segment, which was not retrieved by the
QI and does not participate in the merge process, may match the query better
than the results that remain in the merge process. In general, result lists of
several segments may be exhausted during the merge process, and we would
like the QI to be able to assess the optimality of its merged results.

Formal analysis. Let Di, i = 1, . . . , m denote the set of documents that are
indexed on segment i, and let l denote the number of results that each segment
contributes to the merge process.

Let B denote the (ranked) set of the results for the current query in the entire
index, and let B[t] denote the t top-ranking results in B. Similarly, let R denote
the set of lm retrieved results, and let R[t] denote the set of the top-t results in
R, as determined by the merge process.

Let Rt denote the rank of merged result number t with respect to the set B
(the absolute rank of merge result number t). Obviously, R1 = 1 and Rt ≥ t.
The loss at time t, L(t), is defined as follows:

L(t) �= |B[t] \ R[t]| = |B[t] \ R|.
L(t) counts the number of top-t results that do not participate in (are lost by)
the merge process. Clearly, Rt = t ⇐⇒ L(t) = 0. This is generalized in the
following Lemma:

LEMMA 2. For every t = 1, . . . , n: Rt−L(t) ≤ t and Rt−L(t)+1 > t.

PROOF. By definition, exactly t − L(t) results from B[t] are in R. This means
that the top t − L(t) results in R are in B[t], but the (t − L(t) + 1)-st result in
R is not in B[t]. The lemma follows.

We next develop a recursive formula that allows the QI to estimate, during
the merge process, the probability of losing a certain number of results. For this
formula we need the following notations:

Let t = 1, . . . n; then ηt
�= |{ i : Di ∩R[t] = l }| denotes the number of exhaus-

ted segments after merging result t. Similarly, define µt
�= |{ i : Di ∩ B[t] ≥ l }|

as the number of segments that store l or more of the best t documents. Note
that while the values of ηt , t = 1, . . . , n are known to the QI during the merge
process, the corresponding values of µt are not. The following Proposition links
the values of L(t), ηt and µt .

PROPOSITION 3. For every t ∈ {1, . . . , n}, µt = ηt−L(t).

PROOF. We need to show that the document set Di contains l or more results
of B[t] ⇔ segment i is exhausted before merging result t − L(t) + 1.
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⇒: If Di contains at least l results ofB[t], then segment i is exhausted before the
first result which is not in B[t] is merged. By Lemma 2 we have that Rt−L(t)+1 >

t, hence segment i is exhausted before the t − L(t) + 1-st result is merged, as
claimed.
⇐: Similarly, if by the time we merge result t − L(t) (whose rank is Rt−L(t))
segment i is exhausted, then the top l results in Di are all ranked better than
or equal to Rt−L(t), which by Lemma 2 is at most t.

Using the above relationship, the QI can evaluate the probabilities of losing
results during the merge process as follows:

PROPOSITION 4. L(1) = 0, and for t = 1, . . . , n − 1 and k = 0, . . . , t − 1:

Pr[L(t + 1) = k] = ηt−k+1

m
Pr[L(t) = k − 1] + m − ηt−k

m
Pr[L(t) = k].

PROOF. For deductive convenience, assume that the query’s results are dis-
tributed to the segments from best to worst, where at step t the t-th best result
is randomly inserted into one of the segments.

As noted previously, the best result is never lost, hence L(1) = 0. For larger
values of t, observe that either L(t + 1) = L(t) or L(t + 1) = L(t) + 1. Thus:

Pr[L(t + 1) = k] = Pr[L(t) = k − 1] ∗ Pr[L(t + 1) = k | L(t) = k − 1] +
Pr[L(t) = k] ∗ Pr[L(t + 1) = k | L(t) = k].

Let d denote the (t + 1)-st result in B. Assume that d ∈ D j , and let jd denote
the local rank of d in segment j .

Now, L(t + 1) = L(t) + 1 if and only if d /∈ R, or equivalently if and only
if jd > l . This means that j , d ’s segment, must be one of the µt segments to
which l or more of the top t results belong. Similarly, L(t +1) = L(t) ⇐⇒ jd ≤ l ,
which means that j must be one of the m − µt segments to which less than l of
the top t results belong. Therefore,

Pr[L(t + 1) = k | L(t) = k − 1] = µt

m
= ηt−k+1

m
and

Pr[L(t + 1) = k | L(t) = k] = m − µt

m
= m − ηt−k

m
,

from which the proposition follows.

In particular, the probability that the merge process produces optimal result
pages equals

Pr[L(n) = 0] =
n−1∏
t=1

(
1 − ηt

m

)
.

The QI may set a policy that result pages should contain at most k nonoptimal
results with probability at least qk . In order to enforce this policy, the QI should
assert that

k∑
l=0

Pr[L(n) = l ] ≥ 1 − qk .
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The QI can calculate these probabilities by updating Pr[L(t) = l ], l = 0, . . . , k
on the fly. Whenever the merged results fail to comply with the policy, the QI
should fetch more data from the segments in order to protect the quality of the
merged result pages.

6.2 Skipped Results as a Measure of Sub-Optimality

The absolute rank of the last merged result is another indicator of the quality of
the merge process. Obviously, after merging t results, Rt ≥ t. When Rt = t, the
top-t merged results are optimal; however, when Rt > t, quality results have
been skipped over by the merge process, allowing lesser results to occupy top-t
positions in the merged results. We thus define the number of skipped results
at time t by S(t) �= Rt − t. This number, which reflects the rank promotion of
merged result t with respect to its absolute rank, also counts the number of
results in the index that (a) were not merged up to time t and that (b) rank
higher than Rt , the rank of the result merged in time t.

We begin by observing the following relationship between our two measures
of non-optimal results: lost and skipped results.

PROPOSITION 5. L(n) ≥ k if and only if S(n − k + 1) ≥ k.

PROOF. Let L(n) ≥ k. It follows that Rn−k+1 > n. Therefore,

S(n− k + 1) = Rn−k+1 − (n− k + 1) > n− n+ k − 1 = k − 1 =⇒ S(n− k + 1) ≥ k.

Conversely, Let S(n − k + 1) ≥ k. It follows that

Rn−k+1 = S(n − k + 1) + (n − k + 1) ≥ n + 1 ,

and therefore L(n) ≥ k.

We cannot use the above relationship to deduce probabilities of the type
Pr[S(n) = k] for arbitrary values of k. We therefore propose the following
online computation for the probabilities S(n) = j for j = 0, . . . , k. As in the
previous subsection, we again consider the query’s results to be uniformly and
independently distributed to the segments from best to worst. Consider a merge
process after t ≥ 1 steps, that has just merged the result whose rank is Rt .
Recall that ηt is the number of exhausted segments at that time. The results
ranking in place 1+ Rt , . . . , j + Rt will be skipped if and only if each is assigned
to one of the ηt exhausted segments. We can think of each result assignment as
a Bernoulli trial, which fails if the result is assigned to an exhausted segment,
and succeeds otherwise. This leads to the observation that the increase in skips
following merge step t + 1, S(t + 1) − S(t), equals the number of failures in a
series of independent Bernoulli trials, each with a success probability of 1 − ηt

m ,
until the first success. In other words, S(t + 1) − S(t) is a geometric random
variable with parameter 1 − ηt

m . Thus, for t > 1 and j = 0, . . . , k,

Pr[S(t + 1) = k | S(t) = k − j ] =
(

ηt

m

) j (
1 − ηt

m

)
,
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hence

Pr[S(t + 1) = k] =
k∑

j=0

(
ηt

m

) j (
1 − ηt

m

)
Pr[S(t) = k − j ].

The above derivation, along with the fact that S(1) = 0 with probability one,
allows probabilities of the form Pr[S(t) = j ] for j = 0, . . . , k to be computed in
O(k2) per merge step.11

An alternative computation of the probability of skips, which may be more
efficient when the merge process is long (n is large), is the following. Let α

�= ηn−1
denote the number of exhausted segments before the last (the n’th) merge step.
Further, define

τi = min {t | ηt = i + 1}, i = 0, . . . , α − 1

that is, merge step τi is the latest that was executed with exactly i exhausted
segment. Accordingly, define τα

�= n.
The first τ0 merge steps took place while no segment was exhausted, so Rτ0 =

τ0 and Sτ0 = 0. The next τ1 − τ0 merge steps took place while one segment was
exhausted. In general, let ti

�= τi − τi−1, i = 1, . . . , α; there were ti merge steps
that took place while exactly i segments were exhausted; we will refer to those
steps as the i’th phase of the merge process. We also define X i

�= S(τi)− S(τi−1),
the increase in the number of skips during phase i; it is easy to see that

S(n) =
α∑

i=1

X (i) =
α∑

i=1

S(τi) − S(τi−1) (4)

Phase i of the merge process constitutes a sequence of Bernoulli trials, ti of
which are successful, and whose failures correspond to skipped results. X i is
therefore a negative binomial random variable12 with parameters (ti, 1 − i

m ),
and

Pr[X i = k] =
(

k + ti − 1
k

) (
1 − i

m

)ti
(

i
m

)k

(5)

By Equation 4 we deduce that S(n) is distributed according to a convolution of a
series of α independent (and differently distributed) negative binomial random
variables:

Pr[S(n) = k] = Pr

[
α∑

i=1

X i = k

]
=

k∑
j=0

Pr[X 1 = j ] · Pr

[
α∑

i=2

X i = k − j

]
.

Since every X j is a negative binomial random variable, Pr[X j = i] can
be evaluated by expression (5) in O(log ti + k) operations. A naive iterative

11The complexity can be lowered to O(k log k) per step by applying FFT, see [Cormen et al. 1990]
for more details.
12A negative binomial random variable with parameters (r, p) counts the number of failures in a
series of i.i.d. Bernoulli trials, each with a success probability of p, until the r-th success. Negative
binomials are often alternatively defined as counting the number of i.i.d. Bernoulli trials, each with
success probability p, until the r-th success [Feller 1970].
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procedure can thus calculate Pr[S(n) = k] in O(αk2) = O(mk2) evaluations of
such expressions, resulting in a total of O(mk3 log n) operations.13

7. FROM THEORY TO PRACTICE

This section attempts to bridge the gap between theory and practice by high-
lighting the possible practical implications of our model and results.

7.1 The Complexity Function W (r)

We first revisit two assumptions we have made while formalizing W (r)
(Section 2). These assumptions pertain to the manner by which users view
result pages and to the memoryless query processing scheme.

1. “Users view search result pages according to a memoryless geometric pro-
cess.” While this assumption is extremely simplistic, the studies cited in
Section 2.1 indicate that it might reasonably approximate the aggregate
behavior of users.

2. “When a request for result page k arrives, result page k − 1 is still cached.”
We used this assumption to send each segment the score of the lowest result
it had contributed to page k − 1. This, in turn, allowed us to formulate
a memoryless query processing scheme. While ignoring cache management
issues in this work, the following consideration justifies the intuition behind
this assumption: the aim of any policy that prefetches r pages (numbered
k, . . . , k + r − 1) when processing a request for result page k of some query,
is to rapidly answer (from the cache) subsequent requests for pages k +
1, . . . , k +r −1 of that query. Thus, the prefetching policy implicitly assumes
that the life expectancy of cached entries will allow page k + r − 1 to be
cached until it is requested. In other words, every policy that prefetches r
pages assumes that pages will be cached long enough for r − 1 subsequent
requests. We require pages to be cached for r subsequent requests.

The above assumptions allowed us to formulate an exact complexity function to
our concrete query processing model. At the end of Section 2.2, the complexity
function was abbreviated to the form

W (r) = ar + b + clq(r, m) + dr
1 − pr .

We claim that this abbreviated form (and our results) can accommodate any
retrieval model that incurs the following costs when prefetching r pages:
� Cache space that is linear in r, the number of prefetched result pages.
� Retrieval complexity that is the sum of (1) a term that depends on the query’s

breadth (number of matching results), (2) a term that is linear in lq(r, m), and
(3) a term that is linear in r.

Thus, our results may apply to index structures and query processing schemes
that differ from our model. Furthermore, the results of Section 4.2 apply to

13Again, this can be lowered to O(mk2 log k log n) by applying FFT.
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any complexity function W̃ (r) where (1 − pr )W̃ (r) is an increasing function of
r. Finally, the combinatorial results of Sections 5 and 6 are applicable to any
search engine that uses a locally segmented index in which documents are
partitioned uniformly and independently.

7.2 Implementing a Prefetching Policy

Implementing a prefetching policy for engines with locally segmented indices in
the framework of this research requires the following two preprocessing steps:

� Setting the parameters: an approximate value of p is derived from analyzing
the engine’s query logs, the parameter q is set according to the quality policy,
and the values of α, β are set according to the engine’s resources. Systems
with small caches should set β to a high value; when the QI is heavily loaded,
α should be set to a high value.

� For a range of query breadths (a range of values for the parameters C, ω), an
algorithm (either optimizing or approximating ropt) is executed. The QI and
each segment are then loaded with tables containing the values of ropt(C, ω)
and lq(ropt(C, ω), m) for values of C, ω in the range.

Upon receiving a query (t, k), each segment estimates the parameters Ct , ωt :
Ct is simply the number of matches for t in the segment, and ωt is a measure
of the work it took to identify the |Ct | matches (for example, the total length
of the posting lists that were scanned). For broad topic queries (when C ! m),
the estimates by the various segments should be fairly equal. Note that for
disjunctive queries (including all single-term queries), ωt is linear in Ct and
the problem reduces to estimating the breadth of the query. Query breadths
may be estimated using global term statistics, which are kept in each segment
by many local index implementations in order to facilitate term-based scoring
[Arasu et al. 2001].

After estimating Ct , ωt , each segment forwards lq(ropt(Ct , ωt)) results to the
QI, which merges the retrieved results to produce ropt(Ct , ωt) result pages.

8. CONCLUSIONS AND FUTURE WORK

This work examined how search engines should prefetch search results for user
queries. We started by presenting a concrete query processing model for search
engines with locally segmented inverted indices. We argued that for a model
that assumes that the number of result pages that users view is distributed
geometrically, the optimal engine policy is to prefetch a constant number of
result pages r. We expressed the computational cost of a policy that prefetches
r pages, and suggested an algorithm for finding the optimal value of r (that
minimizes the expected cost of serving a search session). We also suggested
how to find values of r that imply policies whose cost is approximately optimal.

Several extensions of this work are the following:

� The model presented in this paper ignores overlaps in the information needs
of different users. We did not consider, for example, that popular queries
may be submitted by multiple users during a short time span, increasing
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the probability of at least one user requesting additional results. By taking
query popularity into account, we may find that popular queries warrant more
result prefetching than rare queries do. Note that the impact of prefetching
on the cache hit ratios, under real-life, multi-user workloads, was discussed
in Section 1.2.

� This work did not address cache replacement policies; in particular, we did not
suggest which result pages should be removed from the cache upon prefetch-
ing results for a new query. An experimental evaluation of several cache
replacement and prefetching schemes, based on real-life search engine query
logs, is available in Lempel and Moran [2003]. The analysis in Lempel and
Moran [2003] is concentrated on the cache hit ratios that the evaluated poli-
cies attain. A possible extension of this research would aim to minimize the
aggregate work invested by the various components of the search engine
while executing queries.

� An interesting problem that stems from the sequential nature of multi-page
search sessions is that of maintaining consistency of the cached entities. In
the context of search sessions, consistency has two (sometimes conflicting)
meanings: first, cached objects need to be consistent with reality (fresh). This
can be of great importance in some vertical search applications such as news
search engines. Second, each individual session must be consistent in the
sense that returned results should neither be skipped nor repeated. Consider,
for example, a user that requested the top 10 results for some query, and after
some time requested the next 10 results. If the underlying index has changed,
it might be that the previous top 10 results now rank in places 11–20. Should
the engine return these results (again) to the user? Will such a policy deliver
the best user experience?

Note that the first issue arises in any system that employs caching
(regardless of any prefetching policy that may be used), while the second
issue is present even in the absence of caching. Reconciling these two aspects
of consistency in caches that serve concurrent, unsynchronized sessions may
necessitate caching of separate versions of the same logical resource for dif-
ferent sessions.

� Most of the results in this paper are applicable to locally segmented indices.
Only single-term queries to global indices are considered. Additional research
is required in order to extend our results to multi-term queries to global
indices.
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