Theoretical Computer Science 19 (1982) 17-28 17
North-Holland Publishing Company

ON THE COMPLEXITY OF SIMPLE ARITHMETIC
EXPRESSIONS*

Oscar H. IBARRA, Brian S. LEININGER and Shlomo MORAN

Computer Science Department, Institute of Technology, University of Minnesota, Minneapolis, MN
55455, US.A.

Communicated by R. Karp
Received July 1980
Revised November 1980

Abstract. Let E be the set of all simple arithmetic expressions of the form E(x)=xT,... T,
where x is a nonnegative integer variable and each T; is a multiplication or integer division by
a positive integer constant. We investigate the cimplexity of the inequivalence and the bounded
inequivalence problems for expressions in E. (The bouncded inequivalence problem is the protlem
of deciding for arbitrary expressions E;(x) and E,(x) and a positive integer | whether or noi
Zy(x)# E,(x) for some nonnegative integer x </, If /=0, i.e., there is no upper bound on x,
the problem becomes the inequivalence problem.) We show that the inequivalence problem (or
equivalently, the equivalence problem) for a large subclass of [is decidable in polynomial time.
Whether or not the problem is decidable in polynomial time for the full class E remains epen.
We also show that the bounded inequivalence problem is NP-complete even if the divisors are
restricted to be equal to 2. This last result can be used to sharpen some known NP-completeness
results in the literature. Note that if division is rational division, all problems are trivially decidable
in polynomial time.

1. Intreduction

Let E be the set of all simple arithmetic expressions of the form Z(x)=xT, ... T,
where x is a nonnegative integer variable, k =1, and each T; is of the form * ¢ or
of the form /d (i.e. multiplication by a positive integer constant ¢ or integer division
by a positive integer constant d). The expression is evaluated from left to right.
(For example, if E(x)=x/3*5%3/4%7/2, then E(0)=E(1)=E(2)=0, E(3)=
E(4)=E(5)=10, E(6) = 24, etc.) It can be shown (see [6]) that ihe inequivalence
problem for expressions in E (i.e. deciding for arbitrary expressions E;(x) and
E>(x) whether or not E,(x) # E»(x) for some nonnegative integer x) is decidable
in nondeterministic polynomial time. Is there a (deterministic) polynomial time
algorithm to solve the problem? (Is it NP-hard? See [4] for the definitions of
NP-hard, NP-complete, etc.) This seemingly simple problem is nontrivial, and so
far we have no answer. However, for a large subclass of E, we can provide a
polynominal time algorithm.

Call ar. expression an I-expression (I for ‘irreducible’) if the multiplication and
division operations alternate. Clearly, every expression can easily te transformed

* This research was supported in part by NSF Grant MCS78-01736.

0304-3975/82/0000-0000/$02.75 © 1982 North-Holland

18 O.H. Ibarra, B.S. Leininger, S. Moran

(in polynomial time) to an equivalent I-expression. Thus, finding a polynomial time
algorithm for expressions in E is equivalent to finding a polynomial time algorithm
for I-expressions. Now call an I-expression E(x) a C-expression (C for ‘canonical’)
if it satisfies the following condition: If ¢ is a multiplier in E(x) and * ¢ is not the
last operation, then ged(c, d) = 1 for all divisors d in E(x). (For example, x/2 «2/3
is an I-expression which is not a C-expression. x/2*2, x *7/10+3/8 x4 and
x/3 % 5/4 3 are C-expressions.)

We prove in this paper that the equivalence problem for C-expressions is
decidabie in polynomial time. As a corollary, we show that there is a polynomial
time algorithm to decide equivalence of expressions in E whose divisor: are powers
of 2. The algorithm does not generalize to the full class E. Could it be that the
inequivalence problem for the full class E is NP-hard? We do not know, but we
believe it unlikely. However, for the bounded inequivalence problem, we can
provide an answer. We show that the problem of deciding for two expressions
Ey(xy and E,(x) and a positive integer / whether or not E;(x) # E,(x) for some
nonnegative integer x </ is NP-complete. The result holds even if we restrict the
divisors to be equal to 2. This result can be used to sharpen known NP-completeness
results. For example, it follows that it is NP-complete to decide inequivalence of
expressions of the form rem(x/c)T;...T:, where rem(x/c)=remainder(x/c)
appears only at the beginning, and each T; is of the form * ¢ or of the form /2.
This shows that inequivalence of ‘simple functions’ as defined in [9] (see also [5])
is NP-compiete, even when they are highly rastricted. The NP-completeness of the
bounded inequivalence pro .iem can also be used to show that the inequivalence
of L,-programs (see [5, 9]) with one input variable and three intermediate variables
is NP-complete, an improvement over a result in [5].

2. Simple one-variable straight-line programs

There is a one-to-one correspondence between expressions in E and straight-line
programs over one variable x using only constructs x « ¢ * x and x « x/d. (In the
sequel, x «c * x will be abbreviated x «cx.) It is trivial to translate expressions
into equivalent straight-line programs and vice-versa. For example, the expression
x/5 # 2% 3 /2 translates to the program x « x/5; x « 2x; x « 3x; x « x/2. For nota-
tional convenience, the results and proofs in Sections 3 and 4 are stated in terms
of straight-line programs. They are easily translated to similar results concerning
expressions.

Notstion. In the sequel, { } encloses the permitted operations for straight-line
programs. For example, {x «cx, x «x/2"}-programs can only use instructions

of the form x«cx and x<«x/2* where ¢ and k are any positive integer
cornstants.

Complexity of simple arithmetic expressions 19
3. The uniqueness of C-programs

In this section, we show that two C-programs are equivalent if and only if they
are identical. (This result is not true for I-programs in general). It follows that the
equivalence problem for C-programs is (trivially) decidable in polynomial time. As
a corollary, we show that the equivalence problem for {x « cx, x « x/ 2"‘}-programs
is decidable in polynomial time.

Let F be a program over {x « cx, x « x/d}, where ¢ and d are integers =2. The
number of instructions in F is denoted by length (F). For convenience, we define
a program of length 0, Fj, to be a program with one ‘multiplication’ x « 1x. (This
is the only program where such an instruction is allowed.) Let N denote the set of
nonnegative integers. For a given n in N, F(n) denotes the output of F on input
n. Ng denotes the set {F(n): n eN}.

For given programs F and G, we say that F is equivalent to G (F=G) if
F(n)=G(n) for all n in N. We say that F is equal to G (F=G) if F and G are
identical programs.

For a program F, F' denotes the program obtained by deleting the last instruction
from F. (If length (F) <1, then F' = F,.)

Definition 3.1. Let F be a program over {x « cx, x « x/d}. Let the multiplications
and divisions in F be, respectively, x «cix,...,x<cx and x « x/d,, ..., x «x/d;
Then: '

(a) MF =C1C2* " " € (lf i= O, then MF = 1),

(b) Dp =d1d2 e di (lf]=0, then DF = 1),

(¢) Rr={(Mg/Dg). ((a/t) denotes the rational number a divided by b.)
In particular, for the program of length 0, Fj (i.e. the program x « 1x), Mg, = Dy, =
RFO =1.

Lemma 3.1. Let n be a positive integer divisible by Dg. Then for each m, F(n +m)=
F(n)+F(m)=Rrn+F(m).

Proof. This follows from the observation that if b |n (i.e., n is divisible by b), then
(n+m)/b={n/b)+m/b for all m.

Lemma 3.2. If F =G, then Rr = Rq.

Proof. Substituting m =0 in Lemma 3.1, we get that for each n divisible by DsDg,
F(n)=Rgn and G(n)= Rgn. Since F(n)=G(n), Rr = Rg.

Lemma 3.3. Foreach program F and each positive integer n, F(n) < Ren. F(n) = Ren
if and only if when executing the program on input n, each time a division instruction
x « x/d is encountered, the value of x is divisible by d.

20 O.H. ibarra, B.S. Leininger, S. Moran

Proof. This follows easily from the fact that for positive integers a and b, a/b <
(a/b), with equality if and only if 5 |a.

An ‘elemeniary transformation’ on a program F is one of the following 3
operations:
(1) Replacing 2 consecutive multiplications x « c1x; x «c2x by cicox.
(2) Replacing 2 consecutive divisions x « x/d,; x « x/d, by x « x/d1d>.
(3) Replacing 2 consecutive instructions x < kcx; x « x/kd by x «cx; x « x/d.
(If c =1 (d = 1), then the first (second) instruction is deleted.)
A program is irreducible (in short, an I-program) if no elementary transformation
is applicable to0 it. It is easy to show that:
(i) Elementary transformations map programs {c ¢quivalent programs.
(ii) Any program over {x « cx, x « x/d} can be retluced by elementary transfor-
mations to an !-program in polynomial time.
(iii) The multiplication and division instructions in an I-program occur in alternat-
ing order, and if x « cx; x « x/d are consecutive instructions, then ged(c, d) = 1.

Lemma 3.4. Let F be an I-program. Then F =F, if and only if F = F,.

Proof. Clearly, if F = F,, then F=F,. Assume ::iat F =F,. Then, by Lemma 3.2,
Rr = Rg,= 1. If the firstinstructionin F is x < x/d (whered > 1),then F(1)=0# 1=
F(1), a contradiction. If the first instruction is x « cx (where ¢ > 1), then length
(F)>1 (otherwise Rr = ¢ > 1), and the second instruction is, by (iii) above, x « x/d,
where d>1 and ged(c, d)=1. Hence, on input n =1, this second instruction is
encountered when the value of x is c,and d / ¢ (i.e. c is not divisible by d). Therefore,
by Lemma 3.3, F(1)<Rg1=1=Fy(1), a contradiction. It follows that the first
instruction in F must be x « x, which means that F = F,,.

An I-program F is in ‘canonical form’ (a ‘C-program’) if it satisfies also the
following:

(iv) If x «cx is an instruction in F which is not the last instruction, then for
each d such that x « x/d is an instruction in F, gcd(c, d) = 1. (This is equivalent to
requiring that ged(c, Dr)=1.)

There are I-programs which are not C-programs (example: x «x/2; x «2x;
x « x/3). But it is not hard to see, by {iii) above, that every program over {x « cx, x «
x/2¥} (¢ =2, k = 1) can be reduced by elementary transformations to a C-program
in polynomial time. Hence, the problem of deciding equivalence between programs
over {x « cx, x « x/2*} can be reduced in polynomial time to the probiem of deciding
equivalence between C-problems.

Lemma 3.5. Let M and d be positive integers such that d ¥ M. Let A be the set
defined by A ={kM/d: k eN}. Then gcd(A)=1.

Complexity of simple arithmetic expressions 21

Procf. Let a = gcd(A) and assume that a > 1. By definition, M/d = ax for some
x=0, i.e. M =uxd+r for some r<d. Since d ¥ M, r>0. Hence, for some k,
d < kr<2d. Theinteger kM/d isin A, and kM = kaxd + kr. Hence kM/d = kax + 1.
Since a >1, a ¥ kM/d, a contradiction.

In the remainder of this section, unless otherwise specified, all prcgrams are
assumed to be C-programs.

Lemma 3.6. (a) If x « x/d is the las: ‘nstruction in F, then gcd(Ng) = 1.
(b) If x « cx is the last instruction in F, then gcd(Ng) = c.

Proof. (a) By Lemma 3.1, for each k eN, F'(kDg)= kMg, and hence F(kDy) =
kMpg/d. Itfollows that the set Ar ={kMg/d: k € N}isincluded in Nr. By the definition
of a C-program, d ¥ Mr. Hence,by Lemma 3.5, with A = Ar and M = Mg, gcd(Ag) =
1, and hence ged(Ng) = 1.

(b) If F = F,, then Ng =N and ¢ = 1, so the result holds trivially. If F # F, then
Nr ={cn: n eNg}, where ecither F'= F; or the last instruction in F' is x «x/d for
some d > 1. In both cases gcd(Ng) = 1 and hence ged(Ng) =c.

Lemma 3.7. If F=G and the lasi instruction in F is x «cx, then so is the last
instruction in G.

Proof. The lemma is obvious if length(F)=0 by Lemma 3.4. So assume that
length(F)>0. If F=G, then clearly Nr =Ng, and hence gcd(Ng) = gcd(Ng). The
result now follows easily from Lemma 3.6(b).

Lemma 3.8. Let F = G and let the last instruction in F be x « x/d. Then

(a) the last instruction in G is x « x/e for some e and

(b) IMF = M(;, DF = DG.
Proof. Part (a) follows from Lemma 3.7. Now by Lemma 3.2, (My/Dg) = (Mg/Dg).
Also, from part (a) and the definition of C-programs (see (iv)), ged(Mg, Dg) =
ged(M;, D) = 1. It follows that Mg = M and Dg = Deg.
Lemma 3.9. Let k, M, a, e be integers such that kM = ae + 1. Then gcd(M, a)=1.

Proof. Suppose d divides M and a. Then d divides kM —ae; hence, d divides 1.
It follows that gzd(M, a) = 1.

Theorem 3.1. F=G ifandonlyif F=G.

Troof. Clearly, we need only prove the ‘if’ part. The proof is an inductior on
length(F) + length(G). The result is trivial if length(F) + length(G) = 0. Assume that

22 O.H. Ibarra, B.S. Leininger, S. Moran

the result is true for all F and G such that length(F) +length(G) <h where h=1.
Now consider two programs F and G such that length(F) +length(G) = h. Suppose
that F =G bu: I' # G. We shall derive a contradiction. Since F =G and h =1, by
Lemma 3.4, length(F)=1 and length(G) = 1.

Case 1. The last instruction in F is x « cx. By Lemma 3.7, the last instruction
in G is also x «cx. Since F # G, F' # G'. Hence, for some n, F'(n) # G'(n). Then,
F(n)=cF'(n)# ¢G'(n) = G(n), a coatradiction of F=G.

Case 2. The last instruction in F is x « x/d. Then, by Lemmaz 3.8(a), the last
instruction in G is x « x/¢ for some ¢. Also by Lemma 3.8(b), Mg = Mg, Dr = Dg.
We consider 2 subcases.

Subcase 2¢. d =e. In this case F'# G', and by induction hypothesis, F’'(no) #
G'(ne) for scme no. Without loss of generality assume that F'(ng) < G'(no). By the
fact that if ged(a, b) = 1, then the function n(mod b)- an(mod b) is a 1-1 mapping
of the integers (mod b) on themselves [3, Section 1.3], there is some &, (k <d),
such that kMg =~G'(no)(moc d). Let ny=no+kDp. By Lemma 3.1, G'(n;) =
G'(no+ kDry=G'(no)+ kMg = 0(mod d). i.et G'(ny) = ad. F'(n1) = F'(no+ kDg) =
F'(no)+ kMg < G'(no) + kMg = ad. 1: follows that G(n,) = a and F(n,) < a, a contra-
diction.

Subcase 2b. d # e. Without loss of generality assume that d <e. Let the last 2
instructions in F be x « cx; x « x/d. {Each of F and G is of lcngth>2, otherwise
Dy # Dg, which, by Lemma 3.8(b), contradicts the assumption that F = G.)

3y the same consideration as in Subcase 2a, there exists a k, (k <e}, such that
kMg = kMg = ae +1 for some a. By Lemma 3.2, Rr = R, and hence kDg Rr =
a +1/e. This implies that kDs'Rr=ad +d/e <ad +1. By Lemma 3.3, F'(kDg) <
kD¢ Ry, hence F'(kDg')<ad. By Lemma 3.9, and by the equality kMg =ae +1
above, ged(Mg, a) = 1. Since ¢ | Mg, this implies that ged(c, a) = 1. By the definition
of a C-program, ged(c, d) = 1. This implies that gcd(c, ad) =1, and in particular
that ¢ £ ad. But, by Lemma 3.6(b), c| F'(kDg). This implies that F'(kDg) # ad, and
hence F'(kDg)<ad. It follows that F(kDg)<a. Since G(kDg)=kMg/e =
(ae +1}/e = a, we get a contradiction.

From Theorem 3.1 and the fact that any {x < cx, x « x/2*}-program can be
transformed into a C-program in polynomial time, we have

Theorem 3.2. The equivalence problem for {x « cx, x « x/2*}-programs is decidable
in polynomial time.

Theorem 3.1 cannot be generalized to programs which are not C-programs. In
fact, we have

Proposition 3.1. There is an infinite set of distinct four-instruction I-programs which
are all equivalent to the C-program x « x/2; x «2x.

Complexity of simple arithmetic expressions 23

Proof. Let m be any odd positive integer. Then the program x « mix; x « x/2;
x «2x; x < x/m is an I-program (but not a C-program) which is equivalent to the
C-program x « x/2; x « 2x.

Open Problem. Is the equivalence problem for I-programs decidable in polynomial
time? It can be shown (see [6]) that the inequivalence problem can be decided in
nondeterministic polynomial time.

4. The bounded inequivalence problem for {x « cx, x « x/2}-programs

In this section, we show that the problem of deciding for two {x «cx; x «
x/2}-programs P and P’ and a positive integer / whether or not P and P’ disagree
on some nonnegative integer input x </ is NP-complete. (We saw in Section 3 that
when there is no upper bound on x, i.e. [= 00, the probiem is decidable in polyromial
time.) This result is similar in spirit to the following theorem in [8]: The problem
of deciding for positive integers m, n, and ! whether or not there is a positive
integer x <! such that x>=m (mod n) is NP-complete. (Again, if there is no upper
bound on x, the problem is decidable in polynomial time.) The proof of our
NP-completeness result involves an intricate coding of the satisfiability problem
for Boolean formulas. That the reduction can be carried out with only one program
variable using only the operations of multiplication by positive integer constants
and integer division by 2 is rather surprising. We believe that this coding technique
is quite interesting and can be used to prove other new NP-completeress results.
(The proof of the x*=m (med n) result mentioned above uses an entirely different
construction.) A

To simplify the discussion, we first prove the following intermediate result which
is of independent interest: The satisfiability problem for Boolean formulas in
conjunctive normal form (CNF) where each clause contains exactly 3 negated
variables or 3 unnegated variables is NP-hard. The theorem without the ‘exactly
three literals per clause’ requirement follows directly from results of Cook {1] and
Gold [2]. We state it as a lemma.

Lemma 4.1. The satisfiability problem for Boclean formulas in CNF with at most
three literals per clause where each clause contains either all negated variables or all
unnegated variabies is NP-hard.

Proof. In [1] it is shown that the satisfiability problem for Boolean formulas in
CNF with at most three literals per clause is NP-hard. So let F = C,C, ... Cy be a
formula where each clause C; has at most three literals. Modify F to a formula F’
by replacing each C;, 1 <i <k, as follows:

(1) If C; has only negated variables or only unnegated variables, C; remains the
same.

24 O.H. Ibarra, B.S. Leininger, S. Morar

(2) If C,= N, + U, where N; and U, are the sum of the negated and unnegated
variables, respectively, replace C; by the formula (N; + y;)(U; +y;), where y; is a
new variable. Clearly C; is satisfiable if and only if (N;+ 3,)(U; +y;) is satisfiable.
The formula F’' is in CNF with at most three literals per clause and each clause
contains either all negated variables or all unnegated variables. Moreover, F' is
satisfiable if and only if F is. The result follows.

Lemma 4.2. Let z,,...,2s be distinct variables. Let Fy = FoFF,, where
Fo = product (i.e. conjunction) of all clauses of the form
(zs+2z;t2z0), 1=i<j<ksS],
F, = product of all clauses of the form
(Z:+2,+2,), 2=<j<ks=S5§,
F> = product of all clauses of the form
(Z2+ ;4 7,), 1sj<k<S5,j#2,k#2.

Then F is satisfied if and only if z1=z;=0 and z3=z4=2z5= 1.

Proof. Clearly, F; is satisfied for given values of z,,..., z5 if and only if at least
three variables are 1. Hence, if z; =2,=0 and z3=z4= 25 =1, then F; is satisfied.
Now suppose F; = FoF,/7, is satisfied for given values of z;,..., zs. Then at least
three of these variables are 1. If z; is one of these variables and z, and z, are at
least two others that arz 1, then (Z,+Z, + Z;) will make F, have value 0. Hence
zy cannot be 1. Similariy, z, cannot be 1. It follows that if F; is satisfied, then
Z|=22=0 and Z3= Z4 =25 = 1.

Combining Lemraas 4.1 and 4.2, we have

Theorem 4.1. The satisfiability problem for Boolean formulas in CNF with exactly
three literals per clause where each clause contains either all negated variables or all
unnegated variables is NP-hard.

voof. Let F; = F3F,, where F; is the formula of Lemma 4.2 and F,4 is the formula
obtained from F' 5f Lemma 4.1 by adding the literals z,, z, to clauses with less
than 3 unnegated variables and the literals 75, 7, to clauses with less than 3
negated variables. (We assume, of course, that z,, . . ., zs are variables distinct from
those in F'.) It is clear that we can construct Fs to have exactly three variables per
clause with each clause containing only all negated variables or all unnegated
variables. Moreover, Fs is satisfiable if and only £ is.

The next theorem is the main result of this section. It shows that the inequivalernce
problem for {x « cx, x « x/2}-programs over bounded inputs is NP-hard.

Complexity of simple arithmetic expressions 25

Theorem 4.2. It is NP-hard to determine for iwo {x « cx, x « x/2}-programs P and

P' and a positive integer | whether or not P and P' disagree on somc nonnegative
integer input x <.

Proof. Let F'=C,... C, be a Boolean formula in CNF over variables x,, . .., x,,
where each C; is a disjunction (i.e. sum) of exactly 3 negated variables or 3 unnegated
variables. By Theorem 4.1, the satisfiability problem for such formulas is NP-hard.
Let x; be a new variable, and let F=C,C,...C,, where Ci;=x,. Then F is
satisfiable if and only if F' is satisfiable. Let / =2". We shall construct a program
Pr such that Pr outputs an odd number for some input x </ if and only if F is
satisfiable. Pr will be the program obtained from Pr by adding the following
instructions at the end of Pr: x « x/2; x «2x. Then Pr and Py will disagree on
some input x </ if and only if F is satisfiable. Pr has the following form:

(231

Qs

@,
B1
B:

Bm
xex/2"
At the beginning of a;, x =...000x,x,-; ... x2x1, where x,, X,_1,...,X2, X; are
binary digits. We describe the tasks of ay, ..., @, B1,. ... Bm, Omitting the details.

The actual coding can be found in [7].
Each «; is of the following form:

xXeax
x<x/2.
After @, ... a,, x looks like this:

#0..0A,,0..04,,-,0..04,, > -+ A50..0A4,0..0

where the 0..0 strings of zeroes are sufficiently long. (# represents a string of digits
whose composition is not important.) Also, A; is a linear combination of prefixes
of X.Xn-1...x2x, SO that the third bit from the right of A, is a one iff clause G, is
true in the interpretation specified by x,x,-1 . . . x2x1. For example, for the clause
Ci=x,+ x5+ xe, we want A; to be 3+x3+xs+x6. If either xo=1, xs=1lorxs=1,
the third bit from the right of A, is one. Now, we cannot add constant 3 so we use
x; instead, i.e., we have 3x, +x,+ x5+ x¢. Similarly, if the clause C; = X2+ X+ Xe,
we want A; to be 5x;+ x,+ xs+ x¢. Finally, in order to add x; we add x.x,-1... X,

26 O.H. Ibarra, B.S. Leininger, S. Moran

and subtract x,x,_1 . .. x;+10. Now we cannot subtract. However, since we are only
inserested in the result modulo 8, we can add 7 * x,.x,,—; . . . ;.10 instead of subtrac-
tion (since 7 * X, Xn-1 . . . Xj+10=—X,Xn-1 - . . X;+10 (mod 8)). Hence a suitable non-
negative itnear combination of prefixes of x,x,-; ... x; gives us the desired result.
If x looks like this:

#0..0B,,0..0B,,_10..0 ... 0..0B,0..0x,x,, -1..x;

then a single muitiplication by a suitable a, i.e., x « ax, will add a multiple of the
prefix x,xn-1 . . . xj to B;; a different rauliipie car: be added to each B;. Then x « x/2
shifts so we have x like this:

#0..0B/,0..0B}_10..6. .. 0..0B}0..0%,%s_1 X;41

and the operation can be repeated. (Here B; is B; with some multiple of x,. .. x;
added.)

In a similar way, the B; gather together the third bits of each A;. Let b; be the
third bit from the right of A;. Then after all 3; have executed, x looks like this:

#0.0C where Cisx,+by+2b3+48by+8bs++-+2™2b,,..

Now, the 2™~1 bit of C will be 1 iff x; and all the 5;’s are 1, that is, if C;C;...Cpn
is satisfied. Each 8; is of the form

xex/[2% x «bx; xex/2; Xecx

where the division shifts x right until the third bit of A, is at the right of x. Then
x « bx: x « x/2; x « cx adds the appropriate bit of A; to C. This is done by adding
a prefix of A;; shifting right; and subtracting the new prefix of A;. (The new prefix
lacks the third bit.) We subtract yA; modulo 2™ by adding (2" — y)A; for large enéugh
r. Thatis, x « (2" —y)Aux.

The final step, x « x/2%, brings the 2™ " bit of C to the right of x. This bit is 1
if C,C;... G, was satisfied by the assignment x,x,—; ... x;.

Let Pr be Pr followed by x « x/2; x « 2x. Then Pr and Pr are equivalent on x,
1<x<2" iff F is unsatisfiable.

Corollary 4.i. The problem of deciding for two {x « cx, x « x/2}-programs P and

P’ and a posiiive integer | whether or not P and P' disagree on some nonnegative

integer input x <l is NP-complete.

Proof. The problem is clearly solvable in nondeterministic polynomial time (NP).
When the instruction x « cx is restricted to ¢ = 2, we can prove

Proposition 4.1. The problem of deciding for two {x « 2x, x « x/2}-programs P and

P’ and a positive integer | whether or not P and P' disagree on some nonnegative
integer input x < is solvable ir polynomial time.

Complexity of simple arithmetic expressions

(4]
~

Proof. This follows from the observation that any program P can be reduced (in
polynomial time) to one of the following forms (k, m are nonnegative integers):
(1) x <25,
(2) x«x/2
(3) x «x/2%; x«27x.

Adding the instruction x «rem(x/d), where rem(x/d) = remainder of x divided
by d makes the inequivalence problem NP-complete.

Theorem 4.3. The inequivalence problem for {xecx,xex/2,x«
rem(x/d)}-programs {over nonnegative integer inputs) is NP-complete. The result
holds even if the instruction x «rem(x/d) is used exactly once in the programs, and
d is a power of 2.

Proof. Modify the programs Pr and Pr of Theorem 4.2 by adding the instruction
x «rem(x/2") at the beginning. Then the modified Pr and Pr are inequivalent if
and only if F is satisfiable. Hence, the problem is NP-hard. That the problem is
in NP follows from a result in [6]. However, a simple direct proof that inequivalence
is in NP is the following: If F is a program, let Dr be the product of all divisors in
F and all d in rem(x/d) instructions. Then two programs F and G are inequivalent
if and only if they disagree on some input x, 1 <x < DgDg.

If x «rem(x/d) is used twice, we have

Theorem 4.4. The problem of deciding if a {x < cx, x « x/2, x « rem(x/d)}-program
(over nonnegative integer inputs) outputs a nonzero value for some input is NP-
complete. The result holds even if the insiriiction x « rem(x/d) is used exactly twice
in the programs, and in each instance, d is a power of 2.

Proof. Modify the program Pr by adding the instruction x «rzmix/2") at the
beginning and the instruction x < rem(x/2) at the end. Then the new Pr outputs
a nonzero value for some input if and only if F is satisfiable.

Acknowledgment

We would like to thank the referee for suggestions which improved the presenta-
tion of the proof of Theorem 4.2.

References

[1] S. Cook, The complexity of theorem proving procedures, Conference Record 3rd ACM Symposium
on Theory of Computing (1971) 151-158.

28 O.H. Ibarra, B.S. Leininger, S. Moran

[2] E. Gold, Cmplexity of -sutomaton identification from given data, Information and Contral 37 (1968)
302-320.

[3] 1. Herstein, Topics in algebra (Xerox College Publishing, Lexington, MA, 1964).

[4] 3. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages, and Computation (Addison-
Wesiey, Reading, MA, 1979).

[5] H. Hunt III, R. Constable and S. Sahni, On the computational complexity of program scheme
equivalence, SIAM J. Comput. 9 (1980) 396-416.

[6] O. Ibarra and B. Leininiger, The complexity of the equivalence problem for simple loop-free
programs, SIAM J. Compu:., to appear.

[7] O. Ibarra, B. Leininger and S. Moran, On the complexity of simple arithmetic expressions, Univ.
of Minn. Computer Sci. Tech. Report 80-3.

{8] K. Manders and L. Adleman, NP-complete decision problems for binary quadratics, J. Comput.
System Sci. 16 (1978) 158-184.

(9] D. Tsichritzis, The equivalence problem of simple programs, J. ACM 17 (1970) 729-738.

