
Theoretical Computer Science 19 (1982) 17-28
North-Holland Publishing Company

17

ON THE COMPLEXITY OF SIMPLK ARITHMETIC
EXPRESSIONS*

Oscar H. IBARRA, Brian S. LEININGEW and Shlomo MORAN
Computer Science Department, Institute of Technology, Lhivctsi’ty of Minrtesot;J, Minneapolis, MN
5.5455, U.S.A.

Communicated by IX. Karp

Received July 1980
Revised November 1980

Abstract. Let IE be the set of all simple arithmetic expressions of the form E(x) = XT, . . . Tkr
where x is a nonnegative integer variable and each Ti is a multiplication or integer division by
a positive integer constant. We investigate that ca!mplexity of the inequivalence and the bounded
inequivalence problems for expressions in iE. (The bounded inequivalence problem is the problem
of deciding for arbitrary expressions &(x) and Ez(x) and a positive integer 1 whether or not
Z1(x) f&(x) for some nonnegative integer x < 1. If I := a, i.e., there is no upper bound on xc
the problem becomes the inequivalence problem.) VJe show that the inequi\Aence problem (or
equivalently, the equivalence problem) for a large subclass of E is decidable in polynomial time.
Whether or not the problem is decidable in polynomial time for the full class E remains open.
We also show that the bounded inequivalence problem is NP-complete even if the divisors art,
restricted to be equal to 2. This last result can be used to sharpen some known NP-completencsi;
results in the literature. Note that if division is rational division, all problems are trivially decidable
in polynomial time.

1. Introduction

Let E be the set of all simple arithmetic expressions of the form E(x) = XT, . . . Tk,
where x is a nonnegative integer variable, k 2 1, and each Ti is (If the form * c or
of the form /d (i.e. multiplication by a positive integer constant c or integer division
by a posi\:ive integer constant d). The expression is evaluated from left to right.
(For example, if E(x) = x/3 * 5 * 3/4 * 7/2, then E(O) = E(l) = E(2) = 0, E(3) =
E(4) = E(5) = 10, E(6) = 24, etc.) It can be shown (see [6]) that rhe inequivalence
problem for expressions in E (i.e. deciding for arbitrary expressions El(x) and
E&) whether or not El(x) # &(x) for some nonnegative integer x) is decidable
in nondeterministic polynomial time. Is there a (deterministic) polynomial time
algorithm to solve the problem? (Is it NP-hard? See [4] fo!: the definitions of
NP-hard, NP-complete, etc.) This seemingly simple problem is nontrivial, and SO
far we have no answer. However, for a large subclass of E,, we can provide a
polynomi nal time algorithm.

Call aci expression an l-expression (I for ‘irreducible’) if the mulliplication and
division operations alternate. Clearly, every expression can easily be transformed

* This research was supported in part by NSF Grant MCS78.s01736.

0304-3975/82/0000-0000/$02.75 @ 1982 North-Holland

18 O.H. Ibarra, B.S. Leininger, S. Moran

(in polynomial time) to an equivalent I-expression. Thus, finding a polynomial time
algorithm for expressions in lE is equivalent to finding a polynomial time algorithm
for I-expressions. Now call an I-expression E(x) a C-expression (C for “canonical’)
if it satisfies the following condition: If c is a multiplier in E(x) and * 1: is not the
last operation, then gcd(c, d) = 1 for all divisors d in E(x). (For example:, x/2 * 2/3

an I-expression which is not a C-expression. x/2 * 2, x * 7f 10 * 318 * 4 and
x/3 4: S/4 * 3 are C-expressions.)

We prove in this paper that the equivalence problem for C-expressions is
decidable in polynomial time. As a corollary, we show that there is a polynomial
time algorithm to decide equivalence of expressions in IE whose divisor:; are powers
of 2. The algorithm does not generalize to the full class E. Cou!ld it be that the
inequivalence problem for the full class IE is NP-hard? We do not know, but we
believe it unlikely, However, for the bounded inequivalence problem, we can

vide an answer. We show that the problem of deciding for two expressions
and Et(x) and a positive integer I whether or not El(x) #E*(x) for some

nonnegative integer x c I is NP-complete. The result holds even if we restrict the
divisors to be equal to 2. This result can be used to sharpen known NP-completeness
results. For example, it follows that it is NP-complete to decide inequivalence of
expressions of the form rem(x/c)T, . . . Tk, where rem(x/c) = remainder(x/c j
appears only at the beginning, and each Ti is of the form * c or of the form /2.
This shows that inequivalence of ‘simple functions’ as defined in [9] (see also [S])
is NP-complete, even when they are highly restricted. The NP-completeness of the
bounded inequivalence pro /rem can also be used to show that the inequivalence
of &-programs (see [5,9]) with one input variable and three intermediate variables
is NP-complete, an improvement over a result in [5].

2. Mmple one-variable straight-line programs

There is a one-to-one correspondence between expressions in E and straight-line
programs over one variable x using only constructs x + c * x and x +x/d. (In the
sequel, x + c * x will be abbreviated x + cx. j It is trivial to translate expressions
into equivalent straight-line programs and vice-versa. For example, the expression
x/5 :k 2* 3/2 translates to the program x * x/5; x + 2x ; x + 3x ; x + x,/2. For nota-
iioiml convenience, the results an,d proofs in Sections 3 and 4 are stated in terms
of straight-line programs. They are easily translated to similar results concerning
expressions.

Flotition. In the sequel, { } encloses the permitted operations for straight-line
programs. For example, {x + cx, x + x/2’}-programs can only use instructions
of the form x +- cx and x *..~/2~, where c and k are any positive integer
constants,

Complexity of simple arithmetic expressions 19

3. The uniqueness of C-programs

In this section, we show that two C-programs are equivalent if and only if they
are identical. (This result is not true for I-programs in general). It follows that the
equivalence problem for C-programs is (trivially) decidable in polynomial time. As
a corollary, we show that the equivalence problem for {x d- cx, x + x/2k}-programs
is decidable in polynomial time.

Let F be a program over {x * cx, x +x/d}, where c and d are integers a2. The
number of instructions in F i5 denoted by length (iF). For convenience, we define
a program of length 0, Fo, to be a program with one ‘multiplication’ x + lx. (This
is the only program where such an instruction is allowed.) Let NJ denote the set of
nonnegative integers. For a given n in N, F(n) denotes the output of F on input
n. NF denotes the set {F(n): n EN}.

For given programs F and G, we say that F is equivalent to G (F= G) if
F(n) = G(n) for all n in N. We say that F is equal to G (F = G) if F and G are
identical programs.

For a program F, F’ denotes the program obtained by delleting the last instruction
from F. (If length (F) s 1, then F’ = Fo.)

Definition 3.1. Let F be a program over {x + cx, x +x/d}. Let the multiplications
and divisions in F be, respectively, x + clx, . . . , x c- cix and x + x/d,, , . . , x + x/di.

Then:
(a) MF = clc2 l * * Ci (if i = 0, then A& = l),
(b) DF = dld2 l . l dt (if j = 0, then DF = l),
(c) RF = (i&/D&. ((a/b> denotes the rational number ar divided by b.)

In particular, for the program of length 0, F0 (i.e. the program x c- lx), MF,, = Dh, =

RFo= 1.

Lemma 3.1. Let n be a positive integer divisible by DF. Then for each m, F(n + ,W) =

F(n)+F(m) = RFn +F(m).

Proof. This follows from the observation that if b 1 n (i.e., IZ is divisible by b), then
(n + m)lb = (n/b)+ m/b for all nr.

Lemma 3.2. If F = G, then RF = RG.

Proof. Substituting m = 0 in Lemma 3.1, we get that for eafch n divisible by DFD,,

F(n) = RFn and G(n) = RGn. Since F(n) = G(n), RF = RG.

Lemma 3.3. For each program F and each positive integer n, F(n) s RFn. F(n) = RFn

if and only if when executing the program on input n, each time a division instruction

x +x/d is encountered, the value of x is divisible by d.

l Od = g)eq) sueaw qD!qM Lx -+ x aq Jsntu g u! uo!)anlsSu!
ls.xy aql JeqJ ~MOIIOJ 11 •uo~~~~pe~~uo~ e ‘(r)Og = 1 = I=JH > (1)~ 6c.s miwq Aq

‘alo3aJaqL l (p dq aIq!sTATp Lou s! 3 .a*!) 3 $ p pue ‘3 sl x 30 anp?A aq3 uaqm paJalurwua
s! uogwlsu! puo9as s!q, 6~ =- u lndu! uo ‘a3uaH l I = (p 6+pS3 pue I< p a.taqm
‘p/x + x ‘alloqie (uu) 6q ‘s! uol)anr)su! puoaas aql pue ‘(I< 3 = =Qf as!iwaqlo) 1 c(d)
qJ%ural uaql ‘(1 c 3 aray*) x3 + x s! uo!ianJ:lsuy: isly aqi 31 l oy!paJiuoD e ‘(1):Jd
= 1 # 0 = (I& uaq) ‘(1 < p aJaqM) p/x 3 x s! g y uo!,anJlsuf 1s~~ aq, 31 l 1 = ‘=+‘y = “a

‘r*c ewuaq 1cq ‘uaq,L l Og 5 d)er;: aurnssv ‘0~ E d uaqg ‘Od = d. 3! %paal3 l goord

‘1 = (p ‘D)pail uaql %uo~~~nJ3su~ aA!)nDasuoa a.ke p/x 3 x : x3 3 x 31 pue ‘lapJo %u!
-wwa)~e u! Jna3o wel%ord-1 us u! suoi$anJlsu! uo!y~!p pua uo!yza!~dplnw au (UU~

l auu) IeTuuouQod u! uw%oJd-; ua 03 suo~~wu
-Jo3suel) heluawala 1cq paanl$zt aq UE~ {p/x + x ‘x3 + x} JaAo waJ%oJd Auv (u)

l swe.BozI ,uaywlnba ng swa.G?oJd dlzur suoym13o3sua~~ i~a$uatua~a (!)
:leq]l Moqs 01 hea s! $1 l J! of aIqaydda s!

uo;lewo3sue~~ 6JeJuatuaIa ou 3~ (um&o~d-I ue ‘)Joqs ui) alqyzpa+ s! umJ%oJd pr
(*palaIap s! uoi)anr)su! (puo~as) 1sJy aql uaql ‘(1 = p) 1 = 3 II)

gplx+x 5X3+X 6q pyfx + x 4 xq + x suoganJ$sui aAynaasuo3 z %uiaeIdaa (g)
l ~p~pfx+xrCq~p~x+x f ‘p/x + x suoy~lp agmasuo:, z %uyIdaa (2)

*XQ 13 dq XQ + x f xl 3 + x suopwId!Jpw aApnaasuo3 2 %upelda~ (1)
:suoywado

c %U~MOIIO~ aq, 30 auo so d uxejrzold E’ uo ,uo~~eu~1o3sue1~ Lwiatuala, uv

l v 1 q 31 Lluo pue ,J! Aaganba qb!m ‘(q/v)

3 q/v ‘(I pue v sJa%a$mi aAp!sod ~03)eqJ)XJ aqt 1x10~3 @SW sMo[~o3 S!qJ, ‘J-J&j

Complexity of simple arithmetic expressions 21

Proof. Let a = gcd(A) and assume that a > 1. By definition, M/d = ax for some
x 2 0, i.e. M = uxd + r for some r < d. Since d kM, r > 0. Hence, for some k,
d s kr c 2d. The integer kM/d is in A, and kM = kaxd + kr. Hetlce kM/d = kax + 1.
Since a > 1, a # kM/d, a contradiction.

In the remainder of this section, unless otherwise specified, all programs are
assumed to be C-programs.

Lemma 3.6. (a) If x t- x/d is the Las: .*nstruction in F, then gcd(NF) = 1.
(b) If x + cx is the last instruction in F, then gcd(NF) = c.

Proof. (a) By Lemma 3.1, for each k EN, F’(kDF) = kMF9 and hence F(kD& =
kMJd. It follows that the set AF = {kMp/d: k E N} is included in N_r. By the definition
of a C-program, d # MF. Hence, by Lemma 3.5, with A = AF and M = MF, gcd(AF) =
1, and hence gcd(NF) = 1.

(b) If F = F,-,, then N~F = N and c == 1, so the result holds trivially. If F Z FO, then
N(F= {cn : n E NFp}, where either F’ == Fb or the last instruction in F’ is x + x/d for
some d > 1. In both cases gcd(NF) = 1 and hence gcd(N& = c.

Lemma 3.7. If F = G and the lasi instruction in F is x c- cx, then so is the last
instruction in G.

Proof. The lemma is obvious if length(F) = 0 by Lemma 3.4. So assume that
length(F) > 0. If F = G, then clearly N)F = NG, and hence gcd(NF) = gcd(N&. ‘The
result now follows easily from Lemma 3.6(b).

Lemma 3.8. Let F = G and let the last instruction in F be x + x/d. Then
(a) the last instruction in G is x +x/e for some e and
(b) 1&z = Mo, DF = DG.

Proof. Part (a) follows from Lemma 3.7. Now by Lemma 3.2, (M,lD& = (MG/DG).
Also, from part (a) and the definition of C-programs (see (iv)), gcd(MF, DF) =
gcd(Mtz, Do) = 1. It follows that MF = MG: and DF = DG.

Lemma 3.9. Let k, M, a, e be integers such that kM = ae -t 1. Then gcd(M, a) = 1 l

Proof. Suppose d divides M and a. Then d divides kM - ae ; hence, d divides 1.
It follows that gcd(M, a) = 1.

Theorem 3.1. F = G if ahd only if F = G.

Soof. Clearly, we need only prove the ‘if’ part. The proof is an induction on
length(F) + length(G). The result is trivial if length(F) + length(G) = 0. Assume that

uI wuM3o~d-~ IOU a.w

Complexity of sinaple arithmetic expressions 23

Proof. Let m be any odd posiltive integer. Then the program x + ntx; x+x/2;
x t 2x ; A: + x/m is an I-program (but not a C-program) which Es equivalent to the
C-progralm x +x/2; x + 2x.

Open Problem. Is the equivalence problem for I-programs decidable in polynomial
time? It can be shown (see [6]) that the inequivalence problem can be decided in
nondeterministic polynomial time.

4. The bounded inequivalence problem for {x + cx, x + x/2)-programs

In this section, we show that the problem of deciding for two {x + CX; x +

x/2}-programs P and P’ and a positive integer I whether or not P and P’ disagree
on some nonnegative integer input x < I is NP-complete. (We saw in Section 3 that
when there is no upper bound on x, i.e. I = 00, the problem is decidable in polynomial
time.) This result is similar in spirit to the following theorem in 181: The problem
of deciding for positive integers m, n, and 1 whether or not there is a positive
integer x < 1 such that x2 = - m (mod n) is NP-complete. (Again, if there is no upper
bound on x, the problem is decidable in polynomial time.) The proof lof our
NP-completeness result involves an intricate coding of the satisf’iability problem
for Boolean formulas. That the reduction can be carried out with only one program
variable using only the operations of multiplication by positive integer constants
and integer division by 2 is rather surprising. We believe that this coding technique
is quite interesting and c an be used to prove other new NP-completeness results.
(The proof of the x2= m (mod n 1 result mentioned above uses an entirely different
construction.)

To simplify the discussion, we first prove the following intermediate result which
is of independent interest: The satisfiability problem for Boolean formulas in
conjunctive normal form (CNF) where each clause contains exactly 3 negated
variables or 3 unnegated variables is NP-hard. The theorem without the ‘exactly
three literals per clause’ requirement follows directly from results of Cook [l] and
Gold [2]. We state it as a lemma.

Lemma 4.1. The satisfiability problem for Boolean formulas in CNF with at most
three literals per clause where each clause contains either all negated variables or all
unnegated variables is NP-hard.

Proof. In [l] it is shown that the satisfiability problem for Boolean formulas in
CNF with at most three literals per clause is NP-hard. So let F = C& . . . Ck be a
formula where each clause Ci has at most three literals. Modify 17 to a formula F’
by replacing each Ci, 1 c i G k, as follows:

(1) If Ci has only negated variables or only unnegated variables, Ci remains the
same.

24 O.H. Ibana, B.S. Leininger, S. Moran

(2) If Ct = Ni + Ui, w h ere Ni and Ui are the sum of ,the negated and unnegated
variables, respectively, replace Ci by the formula (Ni + pi)(Ui + yi), where yi is a
new variable. Clearly Ci is satisfiable if and only if (IV, -t- j&)(Uj + yi) is satisfiable.
The formula F’ is in CNF with at most three literals per clause and each clause
contiins either all negated variables or all unnegated, variables. Moreover, F’ is
satisfiable if and only if F is. The result follows.

LemrPlrr 4.2. Let z 1, . . . , x5 be distinct variables. Let F3 = FoFlFz, where

Fo = product (i.e. conjunction) of all clauses of the form

F1 = product of all clauses of the form

(51 f ij + Tk), ‘Laj<k<S,

Fz = product of all clauses of the form

Then FS is satisfied if and only if zl= 22 = 0 and 23 = z4 = zg = 1.

Proof. Clearly, I;‘0 is satisfied for given values of 21, . . . , zg if and only if at least
three variables are 1. Hence, if zl= z2 = 0 and z3 = z4 = zs = 1, then F3 is satisfied.
Now suppose F3 = F&& is satisfied for given values of z 1, . . . , z5 . Then at least
three of these variables are 1. If z1 is one of these variables and t, and zs are at
least two (others that ar*s 1, then (Zl + r’, + &j will make FI have value 0. Hence
z1 cannot be 1. Similarly, 2.2 cannot be 1. It follows that if F3 is satisfied, then
z1 =z2=Oandz35=z4=z5= 1.

Combining Lemmas IS. 1 and 4.2, we have

Theorem 4.1. The satisfiabilitl,r problem for Boolean formulas in CNF with exactly
three literals per c!ause where each clause contains either all negated variables or all
unnegated variables is N&hard.

Proof. Let F5 = F3F4, where F3 is the formula of Lemma 4.2 and F4 is the formula
obtained from F’ +sf Lemma 4.1 by adding the literals 21, z2 to clauses with less
than 3 unnegateid variables and the literals Z 3, & to clauses with less than 3
negated vaiiables. (We assume, of course, that zl, . . . , z5 are variables distinct from
those in F’.) It is clear that we can construct Fs to have exactly three variables per
clause with each clause containing only all negated variables or all unnegated
variables. Moreover, Fs is satisfiable if and only F’ is.

The next theorem is the main result of this section. It shows that the inequivalerice
problem for (x + CX, x c- x/2)-programs over bounded inputs is NP-hard.

Complexity of simple arithmetic expressions 25

Theorem 4.2. It is NP-hard to determine for i’wo {x + cx, x * x/2)-programs P and
P’ and a positive integer I whether or not P and P’ disagree on sowar nonnegative
integer input x C 1.

Proof. Let F’ = Cz , . , Cm be a Boolean formula in CNF over variables x2, . . . , xn,

where each Ci is a disjunction (i.e. sum) of exactly 3 negated variables or 3 unnegated
variables. By Theorem 4.1, the satisfiability problem for such formulas is NP-hard.
Let x1 be a new variable, and let F = Cl C2 . . . Cm, where Cl = x1. Then F is
satisfiable if and only if E”’ is satisfiable. Let I = 2”. We shall construct a program
PF such that PF outputs an odd number for some input x < I if and only if F is
satisfiable. Pb will be the program obtained from PF by adding the following
instructions at the end of PF: x * x/2; x $- 2.x. Then PF and Ph will disagree on
some input x c I if and only if F is satisfiable. PF has the following form:

Pm
x*x/2&

At the beginning of al, x = . . . OOOX,X,-~ . . . x2x1, where xn, x,+1, . . . , x2, x 1 are
binary digits. We describe the tasks of LY 1, . . . , an9 &, Pm, omitting the details.
The actual coding can be found in [7].

Each ai is of the following form:

x+ax

x c-42.

After cI . . . an9 x looks like this:

where the O..O strings of zeroes are sufficiently long. (# represents a string of digits
whose composition is not important.) Also, Ai is a linear combination of prefixes
of X,X,-l l . . ~2x1 so that the third bit from the right of Ai is a one if? clause Ci is
true in the interpretation specified by xnxn -1 , . . x2x1. For example, for the clause
Ci=x2txs+xg,wewantRitobe3+x2+xg+xg.Ifeitherx2=1,xs=1orx6=1,
the third bit from the rig!ht of Ai is one. Now, we cannot add constant 3 SO we use

x1 instead, i.e., we have 3;~ +x2+x5+x6. Similarly, if the clause Ci = ,& + x’, + .&,
we want Ai to be 5x1 +x2-t x5 +x6. Finally, in order to add xi we add JLX,-I , l l Xi

26 O.H. Ibarra, B.S. Leininger, S. Moran

an!3 subtract xnxn -1 . . . xi+ rO. Now we cannot subtract. However, since we are only
inzerested in the result module 8, we can add 7 * x~x,,_~Yj+lO instead of subtrac-
tion (since 7 + X,X,-i . . . Xj+*O E -X&-i m . . X~+~O (mod 8)). Hence a suitable non-
negative linear combination of prefixes of X,X,-~ . . . x1 gives us the desired result.
If x looks like this:

O..OB,O..OB,,,_lO..O . . . 0..01310..0x,x,_1..xj,

then a single multiplication by a suitable a, i.e., x + ax, will add a multiple of the
prefix X&J -1 l e c xi to Eli : a different multiple can be added to each Bi. Then x + x/2
hifts so we have x like this:

O..OB~O..OB~-1 O.-O . . . O..OBi O..O~nxn-l l * l xi+.1

and the operation can be repeated. (Here 61; is Bi with some multiple of xn . v . xi

added.)
In a similar way, the pi gather together t!he third bits of each Ai. Let bi be the

third bit from the riglht of Ai. Then after all /Bi have executed, x looks like this:

#O..OC where C isxl+b2f2b3-1-464+8bs+~ l +2”-“b,.

‘Now, the 2”-’ bit of C will be 1 iff x1 and all the hi’s are 1, that is, if Cl C2 . . . Cm
is satisfied. Each fli is of the form

x*x/2”; x+bx; x+x/2; x+cx

where the division shifts x right until the third bit of A, is at the right of x. Then
x+6x; x+x/2; X+V .rr adds the appropriate bit of Ai to C. This is done by adding
a prefix of Ai; shifting right; and subtracting the new prefix of Ai. (The new prefix
lacks the third bit.) We subtract yAi modulo 2” by adding (2” - y)Ai for large enough
r. That is, x + (2’ - y)Aix.

‘I’he final step, x +x/2&, brings the 2”-’ bit of C to the right of x. This bit is 1
if C&z . . . Cm was satisfied by the assignment xnxn-l . . . x1.

Let I$ be PF followed by x + x/2; x + 2x. Then Pb and PF are equivalent on x,
1 s x s 2”, iff E is unsatisfiable.

CorOrkry 4.1. The problem of deciding for two {x + cx, x + x/2)-programs P and
P’ a& a positive integer 1 whether or not
integer input x < 1 is NP-complete.

P and P’ disagree on some nonnegative

Proo%. The problem is clearly solvable in nondeterministic polynomial time (NP).

When the instruction x + cx is restricted to c = 2, we can prove

.I. The problem of deciding for two (x 6 2x, x * x/2)-programs P and
P’ and u po&ive integer 1 whether or not P and P’ disagree on some nonnegative
integer input x < 1 is solvable in polynomial time.

Complexity of simple arithmetic expressions 27

Proof. This follows from the observation that any program P can be reduced (in
polynomial time) to one of the following forms (k, m are nonnegative integers):

(1) x+2kx,
(2) x f X/2k,
(3) x * x /2k ; x * 2”x.

Adding the instruction x * rem(x/d), where rem(x/d) = remainder of x divided
by d makes the inequivalence problem NP-complete.

Theorem 4.3. The inequivalence problem fOP (X+-CX,X~x/2,xt
rem(xld))-programs [over nonnegative integer inputs) is NP-complete. The result
holds even if the instruction x + rem(xld) is used exactly once in the programs, and
d is a power of 2.

Proof. Modify the programs PF and Pb of Theorem 4.2 by adding the instruction
x * rem(x/2”) at the beginning. Then the modified PF and Ph are inequivalent if
and only if F is satisfiable. Hence, the problem is NP-hard. That the problem is
in NP follows from a result in [6]. However, a simple direct proof that inequivalence
is in NP is the following: If F is a program, let DF be the product of all divisors in
F and all d in rem(x/d) instructions. Then two programs F and G are inequivalent
if and only if they disagree on some input x, 1 s x s DFDG.

If x +rem(x/d) is used twice, we have

Theorem 4.4, The problem of deciding if a {x + cx, x + x/2, x + rem(x/d))-program
(over nonnegative integer inpicts) outputs a nonzero value for some input is NP-
complete. The result holds even if .the insiruction x + rem(x/d) is used exactly twice
in the programs, and in each instance, d is a power of 2.

Proof. Modify the program PF by adding the instruction x cr~;il(x/2~ j at the
beginning and the instruction x + rem(x/2) at the end. Thzn the new PF outputs
a nonzero value for some input if and only if F is satisfiable.

Acknowledgment

We would like to th:mk the referee for suggestions which improved the presenta-
tion of the proof of Theorem 4.2.

eferences

[l] S. Cook, The cornplexlty of thc:orem proving procedures, Conference Record 3rd ACM Symposium
on Theory of Computing (1971) 151-158.

28

[21

[31
lb41

[81

163

r73

681

O.H. Ibawa, B.S. Leininger, S. Moran

E. Gold, Cmplexity of wtomaton identification from given data, Information and Contrsf 37 (1968)
302-320.
1. Herstein, Topics in al,gebra (Xerox College Publishing, Lexington, MA, 1964).
f. Hopcroft and J. Ullmam, Introduction to Automata Theory, Languages, and Computation (Addison-
Wesley, Reading, MA, 1979).
H. Hunt III, R. Constable and S. Sahni, On the computational complexity of program scheme
equivaknce, SIAMJO, c’umput. 9 (1980) 396-416.
0. Ibarra and B. Leininger, The complexity of the equivalence problem for simple loop-free
programs, JU&4J. Compur., to appear.
0. Ibarra, Is. Leininger and S. Moran, On the complexity of simple arithmetic expressions, Univ.
of Minn. Gmputer Sci. Tech. Report 80-3.
K Manders and L. Adleman, NP-complete decision problems for binary quadratics, J. Comput.
System Ski. 16 (1978) 168-184.

[9] D. Tsichritzis, The equivalence problem of simple programs, J. ACM 17 (1970) 729-738.

