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Abstract. Let IE be the set of all simple arithmetic expressions of the form E(x) = XT, . . . Tkr 
where x is a nonnegative integer variable and each Ti is a multiplication or integer division by 
a positive integer constant. We investigate that ca!mplexity of the inequivalence and the bounded 
inequivalence problems for expressions in iE. (The bounded inequivalence problem is the problem 
of deciding for arbitrary expressions &(x) and Ez(x) and a positive integer 1 whether or not 
Z1(x) f&(x) for some nonnegative integer x < 1. If I := a, i.e., there is no upper bound on xc 
the problem becomes the inequivalence problem.) VJe show that the inequi\Aence problem (or 
equivalently, the equivalence problem) for a large subclass of E is decidable in polynomial time. 
Whether or not the problem is decidable in polynomial time for the full class E remains open. 
We also show that the bounded inequivalence problem is NP-complete even if the divisors art, 
restricted to be equal to 2. This last result can be used to sharpen some known NP-completencsi; 
results in the literature. Note that if division is rational division, all problems are trivially decidable 
in polynomial time. 

1. Introduction 

Let E be the set of all simple arithmetic expressions of the form E(x) = XT, . . . Tk, 
where x is a nonnegative integer variable, k 2 1, and each Ti is (If the form * c or 
of the form /d (i.e. multiplication by a positive integer constant c or integer division 
by a posi\:ive integer constant d). The expression is evaluated from left to right. 
(For example, if E(x) = x/3 * 5 * 3/4 * 7/2, then E(O) = E(l) = E(2) = 0, E(3) = 
E(4) = E(5) = 10, E(6) = 24, etc.) It can be shown (see [6]) that rhe inequivalence 
problem for expressions in E (i.e. deciding for arbitrary expressions El(x) and 
E&) whether or not El(x) # &(x) for some nonnegative integer x) is decidable 
in nondeterministic polynomial time. Is there a (deterministic) polynomial time 
algorithm to solve the problem? (Is it NP-hard? See [4] fo!: the definitions of 
NP-hard, NP-complete, etc.) This seemingly simple problem is nontrivial, and SO 
far we have no answer. However, for a large subclass of E,, we can provide a 
polynomi nal time algorithm. 

Call aci expression an l-expression (I for ‘irreducible’) if the mulliplication and 
division operations alternate. Clearly, every expression can easily be transformed 

* This research was supported in part by NSF Grant MCS78.s01736. 

0304-3975/82/0000-0000/$02.75 @ 1982 North-Holland 



18 O.H. Ibarra, B.S. Leininger, S. Moran 

(in polynomial time) to an equivalent I-expression. Thus, finding a polynomial time 
algorithm for expressions in lE is equivalent to finding a polynomial time algorithm 
for I-expressions. Now call an I-expression E(x) a C-expression (C for “canonical’) 
if it satisfies the following condition: If c is a multiplier in E(x) and * 1: is not the 
last operation, then gcd(c, d) = 1 for all divisors d in E(x). (For example:, x/2 * 2/3 

an I-expression which is not a C-expression. x/2 * 2, x * 7f 10 * 318 * 4 and 
x/3 4: S/4 * 3 are C-expressions.) 

We prove in this paper that the equivalence problem for C-expressions is 
decidable in polynomial time. As a corollary, we show that there is a polynomial 
time algorithm to decide equivalence of expressions in IE whose divisor:; are powers 
of 2. The algorithm does not generalize to the full class E. Cou!ld it be that the 
inequivalence problem for the full class IE is NP-hard? We do not know, but we 
believe it unlikely, However, for the bounded inequivalence problem, we can 

vide an answer. We show that the problem of deciding for two expressions 
and Et(x) and a positive integer I whether or not El(x) #E*(x) for some 

nonnegative integer x c I is NP-complete. The result holds even if we restrict the 
divisors to be equal to 2. This result can be used to sharpen known NP-completeness 
results. For example, it follows that it is NP-complete to decide inequivalence of 
expressions of the form rem(x/c)T, . . . Tk, where rem(x/c) = remainder(x/c j 
appears only at the beginning, and each Ti is of the form * c or of the form /2. 
This shows that inequivalence of ‘simple functions’ as defined in [9] (see also [S]) 
is NP-complete, even when they are highly restricted. The NP-completeness of the 
bounded inequivalence pro /rem can also be used to show that the inequivalence 
of &-programs (see [5,9]) with one input variable and three intermediate variables 
is NP-complete, an improvement over a result in [5]. 

2. Mmple one-variable straight-line programs 

There is a one-to-one correspondence between expressions in E and straight-line 
programs over one variable x using only constructs x + c * x and x +x/d. (In the 
sequel, x + c * x will be abbreviated x + cx. j It is trivial to translate expressions 
into equivalent straight-line programs and vice-versa. For example, the expression 
x/5 :k 2* 3/2 translates to the program x * x/5; x + 2x ; x + 3x ; x + x,/2. For nota- 
iioiml convenience, the results an,d proofs in Sections 3 and 4 are stated in terms 
of straight-line programs. They are easily translated to similar results concerning 
expressions. 

Flotition. In the sequel, { } encloses the permitted operations for straight-line 
programs. For example, {x + cx, x + x/2’}-programs can only use instructions 
of the form x +- cx and x *..~/2~, where c and k are any positive integer 
constants, 
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3. The uniqueness of C-programs 

In this section, we show that two C-programs are equivalent if and only if they 
are identical. (This result is not true for I-programs in general). It follows that the 
equivalence problem for C-programs is (trivially) decidable in polynomial time. As 
a corollary, we show that the equivalence problem for {x d- cx, x + x/2k}-programs 
is decidable in polynomial time. 

Let F be a program over {x * cx, x +x/d}, where c and d are integers a2. The 
number of instructions in F i5 denoted by length (iF). For convenience, we define 
a program of length 0, Fo, to be a program with one ‘multiplication’ x + lx. (This 
is the only program where such an instruction is allowed.) Let NJ denote the set of 
nonnegative integers. For a given n in N, F(n) denotes the output of F on input 
n. NF denotes the set {F(n): n EN}. 

For given programs F and G, we say that F is equivalent to G (F= G) if 
F(n) = G(n) for all n in N. We say that F is equal to G (F = G) if F and G are 
identical programs. 

For a program F, F’ denotes the program obtained by delleting the last instruction 
from F. (If length (F) s 1, then F’ = Fo.) 

Definition 3.1. Let F be a program over {x + cx, x +x/d}. Let the multiplications 
and divisions in F be, respectively, x + clx, . . . , x c- cix and x + x/d,, , . . , x + x/di. 

Then: 
(a) MF = clc2 l * * Ci (if i = 0, then A& = l), 
(b) DF = dld2 l . l dt (if j = 0, then DF = l), 
(c) RF = (i&/D&. ((a/b> denotes the rational number ar divided by b.) 

In particular, for the program of length 0, F0 (i.e. the program x c- lx), MF,, = Dh, = 

RFo= 1. 

Lemma 3.1. Let n be a positive integer divisible by DF. Then for each m, F(n + ,W ) = 

F(n)+F(m) = RFn +F(m). 

Proof. This follows from the observation that if b 1 n (i.e., IZ is divisible by b), then 
(n + m)lb = (n/b)+ m/b for all nr. 

Lemma 3.2. If F = G, then RF = RG. 

Proof. Substituting m = 0 in Lemma 3.1, we get that for eafch n divisible by DFD,, 

F(n) = RFn and G(n) = RGn. Since F(n) = G(n), RF = RG. 

Lemma 3.3. For each program F and each positive integer n, F(n) s RFn. F(n) = RFn 

if and only if when executing the program on input n, each time a division instruction 

x +x/d is encountered, the value of x is divisible by d. 



l Od = g )eq) sueaw qD!qM Lx -+ x aq Jsntu g u! uo!)anlsSu! 
ls.xy aql JeqJ ~MOIIOJ 11 •uo~~~~pe~~uo~ e ‘( r)Og = 1 = I=JH > (1)~ 6c.s miwq Aq 

‘alo3aJaqL l ( p dq aIq!sTATp Lou s! 3 .a*!) 3 $ p pue ‘3 sl x 30 anp?A aq3 uaqm paJalurwua 
s! uogwlsu! puo9as s!q, 6~ =- u lndu! uo ‘a3uaH l I = (p 6+pS3 pue I< p a.taqm 
‘p/x + x ‘alloqie (uu) 6q ‘s! uol)anr)su! puoaas aql pue ‘( I< 3 = =Qf as!iwaqlo) 1 c(d) 
qJ%ural uaql ‘( 1 c 3 aray*) x3 + x s! uo!ianJ:lsuy: isly aqi 31 l oy!paJiuoD e ‘( 1 ):Jd 
= 1 # 0 = (I& uaq) ‘( 1 < p aJaqM) p/x 3 x s! g y uo!,anJlsuf 1s~~ aq, 31 l 1 = ‘=+‘y = “a 

‘r*c ewuaq 1cq ‘uaq,L l Og 5 d )er;: aurnssv ‘0~ E d uaqg ‘Od = d. 3! %paal3 l goord 

‘1 = (p ‘D)pail uaql %uo~~~nJ3su~ aA!)nDasuoa a.ke p/x 3 x : x3 3 x 31 pue ‘lapJo %u! 
-wwa)~e u! Jna3o wel%ord-1 us u! suoi$anJlsu! uo!y~!p pua uo!yza!~dplnw au (UU~ 

l auu) IeTuuouQod u! uw%oJd-; ua 03 suo~~wu 
-Jo3suel) heluawala 1cq paanl$zt aq UE~ {p/x + x ‘x3 + x} JaAo waJ%oJd Auv (u) 

l swe.BozI ,uaywlnba ng swa.G?oJd dlzur suoym13o3sua~~ i~a$uatua~a (!) 
:leq]l Moqs 01 hea s! $1 l J! of aIqaydda s! 

uo;lewo3sue~~ 6JeJuatuaIa ou 3~ (um&o~d-I ue ‘)Joqs ui) alqyzpa+ s! umJ%oJd pr 
(*palaIap s! uoi)anr)su! (puo~as) 1sJy aql uaql ‘( 1 = p) 1 = 3 II) 

gplx+x 5X3+X 6q pyfx + x 4 xq + x suoganJ$sui aAynaasuo3 z %uiaeIdaa (g) 
l ~p~pfx+xrCq~p~x+x f ‘p/x + x suoy~lp agmasuo:, z %uyIdaa (2) 

*XQ 13 dq XQ + x f xl 3 + x suopwId!Jpw aApnaasuo3 2 %upelda~ (1) 
:suoywado 

c %U~MOIIO~ aq, 30 auo so d uxejrzold E’ uo ,uo~~eu~1o3sue1~ Lwiatuala, uv 

l v 1 q 31 Lluo pue ,J! Aaganba qb!m ‘(q/v) 

3 q/v ‘(I pue v sJa%a$mi aAp!sod ~03 )eqJ )XJ aqt 1x10~3 @SW sMo[~o3 S!qJ, ‘J-J&j 



Complexity of simple arithmetic expressions 21 

Proof. Let a = gcd(A) and assume that a > 1. By definition, M/d = ax for some 
x 2 0, i.e. M = uxd + r for some r < d. Since d kM, r > 0. Hence, for some k, 
d s kr c 2d. The integer kM/d is in A, and kM = kaxd + kr. Hetlce kM/d = kax + 1. 
Since a > 1, a # kM/d, a contradiction. 

In the remainder of this section, unless otherwise specified, all programs are 
assumed to be C-programs. 

Lemma 3.6. (a) If x t- x/d is the Las: .*nstruction in F, then gcd(NF) = 1. 
(b) If x + cx is the last instruction in F, then gcd(NF) = c. 

Proof. (a) By Lemma 3.1, for each k EN, F’(kDF) = kMF9 and hence F(kD& = 
kMJd. It follows that the set AF = {kMp/d: k E N} is included in N_r. By the definition 
of a C-program, d # MF. Hence, by Lemma 3.5, with A = AF and M = MF, gcd(AF) = 
1, and hence gcd(NF) = 1. 

(b) If F = F,-,, then N~F = N and c == 1, so the result holds trivially. If F Z FO, then 
N(F= {cn : n E NFp}, where either F’ == Fb or the last instruction in F’ is x + x/d for 
some d > 1. In both cases gcd(NF) = 1 and hence gcd(N& = c. 

Lemma 3.7. If F = G and the lasi instruction in F is x c- cx, then so is the last 
instruction in G. 

Proof. The lemma is obvious if length(F) = 0 by Lemma 3.4. So assume that 
length(F) > 0. If F = G, then clearly N)F = NG, and hence gcd(NF) = gcd(N&. ‘The 
result now follows easily from Lemma 3.6(b). 

Lemma 3.8. Let F = G and let the last instruction in F be x + x/d. Then 
(a) the last instruction in G is x +x/e for some e and 
(b) 1&z = Mo, DF = DG. 

Proof. Part (a) follows from Lemma 3.7. Now by Lemma 3.2, (M,lD& = (MG/DG). 
Also, from part (a) and the definition of C-programs (see (iv)), gcd(MF, DF) = 
gcd(Mtz, Do) = 1. It follows that MF = MG: and DF = DG. 

Lemma 3.9. Let k, M, a, e be integers such that kM = ae -t 1. Then gcd(M, a) = 1 l 

Proof. Suppose d divides M and a. Then d divides kM - ae ; hence, d divides 1. 
It follows that gcd(M, a) = 1. 

Theorem 3.1. F = G if ahd only if F = G. 

Soof. Clearly, we need only prove the ‘if’ part. The proof is an induction on 
length(F) + length(G). The result is trivial if length(F) + length(G) = 0. Assume that 



uI wuM3o~d-~ IOU a.w 



Complexity of sinaple arithmetic expressions 23 

Proof. Let m be any odd posiltive integer. Then the program x + ntx; x+x/2; 
x t 2x ; A: + x/m is an I-program (but not a C-program) which Es equivalent to the 
C-progralm x +x/2; x + 2x. 

Open Problem. Is the equivalence problem for I-programs decidable in polynomial 
time? It can be shown (see [6]) that the inequivalence problem can be decided in 
nondeterministic polynomial time. 

4. The bounded inequivalence problem for {x + cx, x + x/2)-programs 

In this section, we show that the problem of deciding for two {x + CX; x + 

x/2}-programs P and P’ and a positive integer I whether or not P and P’ disagree 
on some nonnegative integer input x < I is NP-complete. (We saw in Section 3 that 
when there is no upper bound on x, i.e. I = 00, the problem is decidable in polynomial 
time.) This result is similar in spirit to the following theorem in 181: The problem 
of deciding for positive integers m, n, and 1 whether or not there is a positive 
integer x < 1 such that x2 = - m (mod n) is NP-complete. (Again, if there is no upper 
bound on x, the problem is decidable in polynomial time.) The proof lof our 
NP-completeness result involves an intricate coding of the satisf’iability problem 
for Boolean formulas. That the reduction can be carried out with only one program 
variable using only the operations of multiplication by positive integer constants 
and integer division by 2 is rather surprising. We believe that this coding technique 
is quite interesting and c an be used to prove other new NP-completeness results. 
(The proof of the x2= m (mod n 1 result mentioned above uses an entirely different 
construction.) 

To simplify the discussion, we first prove the following intermediate result which 
is of independent interest: The satisfiability problem for Boolean formulas in 
conjunctive normal form (CNF) where each clause contains exactly 3 negated 
variables or 3 unnegated variables is NP-hard. The theorem without the ‘exactly 
three literals per clause’ requirement follows directly from results of Cook [l] and 
Gold [2]. We state it as a lemma. 

Lemma 4.1. The satisfiability problem for Boolean formulas in CNF with at most 
three literals per clause where each clause contains either all negated variables or all 
unnegated variables is NP-hard. 

Proof. In [l] it is shown that the satisfiability problem for Boolean formulas in 
CNF with at most three literals per clause is NP-hard. So let F = C& . . . Ck be a 
formula where each clause Ci has at most three literals. Modify 17 to a formula F’ 
by replacing each Ci, 1 c i G k, as follows: 

(1) If Ci has only negated variables or only unnegated variables, Ci remains the 
same. 
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(2) If Ct = Ni + Ui, w h ere Ni and Ui are the sum of ,the negated and unnegated 
variables, respectively, replace Ci by the formula (Ni + pi)( Ui + yi), where yi is a 
new variable. Clearly Ci is satisfiable if and only if (IV, -t- j&)( Uj + yi) is satisfiable. 
The formula F’ is in CNF with at most three literals per clause and each clause 
contiins either all negated variables or all unnegated, variables. Moreover, F’ is 
satisfiable if and only if F is. The result follows. 

LemrPlrr 4.2. Let z 1, . . . , x5 be distinct variables. Let F3 = FoFlFz, where 

Fo = product (i.e. conjunction) of all clauses of the form 

F1 = product of all clauses of the form 

(51 f ij + Tk), ‘Laj<k<S, 

Fz = product of all clauses of the form 

Then FS is satisfied if and only if zl= 22 = 0 and 23 = z4 = zg = 1. 

Proof. Clearly, I;‘0 is satisfied for given values of 21, . . . , zg if and only if at least 
three variables are 1. Hence, if zl= z2 = 0 and z3 = z4 = zs = 1, then F3 is satisfied. 
Now suppose F3 = F&& is satisfied for given values of z 1, . . . , z5 . Then at least 
three of these variables are 1. If z1 is one of these variables and t, and zs are at 
least two (others that ar*s 1, then (Zl + r’, + &j will make FI have value 0. Hence 
z1 cannot be 1. Similarly, 2.2 cannot be 1. It follows that if F3 is satisfied, then 
z1 =z2=Oandz35=z4=z5= 1. 

Combining Lemmas IS. 1 and 4.2, we have 

Theorem 4.1. The satisfiabilitl,r problem for Boolean formulas in CNF with exactly 
three literals per c!ause where each clause contains either all negated variables or all 
unnegated variables is N&hard. 

Proof. Let F5 = F3F4, where F3 is the formula of Lemma 4.2 and F4 is the formula 
obtained from F’ +sf Lemma 4.1 by adding the literals 21, z2 to clauses with less 
than 3 unnegateid variables and the literals Z 3, & to clauses with less than 3 
negated vaiiables. (We assume, of course, that zl, . . . , z5 are variables distinct from 
those in F’.) It is clear that we can construct Fs to have exactly three variables per 
clause with each clause containing only all negated variables or all unnegated 
variables. Moreover, Fs is satisfiable if and only F’ is. 

The next theorem is the main result of this section. It shows that the inequivalerice 
problem for (x + CX, x c- x/2)-programs over bounded inputs is NP-hard. 
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Theorem 4.2. It is NP-hard to determine for i’wo {x + cx, x * x/2)-programs P and 
P’ and a positive integer I whether or not P and P’ disagree on sowar nonnegative 
integer input x C 1. 

Proof. Let F’ = Cz , . , Cm be a Boolean formula in CNF over variables x2, . . . , xn, 

where each Ci is a disjunction (i.e. sum) of exactly 3 negated variables or 3 unnegated 
variables. By Theorem 4.1, the satisfiability problem for such formulas is NP-hard. 
Let x1 be a new variable, and let F = Cl C2 . . . Cm, where Cl = x1. Then F is 
satisfiable if and only if E”’ is satisfiable. Let I = 2”. We shall construct a program 
PF such that PF outputs an odd number for some input x < I if and only if F is 
satisfiable. Pb will be the program obtained from PF by adding the following 
instructions at the end of PF: x * x/2; x $- 2.x. Then PF and Ph will disagree on 
some input x c I if and only if F is satisfiable. PF has the following form: 

Pm 
x*x/2& 

At the beginning of al, x = . . . OOOX,X,-~ . . . x2x1, where xn, x,+1, . . . , x2, x 1 are 
binary digits. We describe the tasks of LY 1, . . . , an9 &, . . . . Pm, omitting the details. 
The actual coding can be found in [7]. 

Each ai is of the following form: 

x+ax 

x c-42. 

After cI . . . an9 x looks like this: 

where the O..O strings of zeroes are sufficiently long. ( # represents a string of digits 
whose composition is not important.) Also, Ai is a linear combination of prefixes 
of X,X,-l l . . ~2x1 so that the third bit from the right of Ai is a one if? clause Ci is 
true in the interpretation specified by xnxn -1 , . . x2x1. For example, for the clause 
Ci=x2txs+xg,wewantRitobe3+x2+xg+xg.Ifeitherx2=1,xs=1orx6=1, 
the third bit from the rig!ht of Ai is one. Now, we cannot add constant 3 SO we use 

x1 instead, i.e., we have 3;~ +x2+x5+x6. Similarly, if the clause Ci = ,& + x’, + .&, 
we want Ai to be 5x1 +x2-t x5 +x6. Finally, in order to add xi we add JLX,-I , l l Xi 
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an!3 subtract xnxn -1 . . . xi+ rO. Now we cannot subtract. However, since we are only 
inzerested in the result module 8, we can add 7 * x~x,,_~ . . . .Yj+lO instead of subtrac- 
tion (since 7 + X,X,-i . . . Xj+*O E -X&-i m . . X~+~O (mod 8)). Hence a suitable non- 
negative linear combination of prefixes of X,X,-~ . . . x1 gives us the desired result. 
If x looks like this: 

# O..OB,O..OB,,,_lO..O . . . 0..01310..0x,x,_1..xj, 

then a single multiplication by a suitable a, i.e., x + ax, will add a multiple of the 
prefix X&J -1 l e c xi to Eli : a different multiple can be added to each Bi. Then x + x/2 
hifts so we have x like this: 

# O..OB~O..OB~-1 O.-O . . . O..OBi O..O~nxn-l l * l xi+.1 

and the operation can be repeated. (Here 61; is Bi with some multiple of xn . v . xi 

added.) 
In a similar way, the pi gather together t!he third bits of each Ai. Let bi be the 

third bit from the riglht of Ai. Then after all /Bi have executed, x looks like this: 

#O..OC where C isxl+b2f2b3-1-464+8bs+~ l +2”-“b,. 

‘Now, the 2”-’ bit of C will be 1 iff x1 and all the hi’s are 1, that is, if Cl C2 . . . Cm 
is satisfied. Each fli is of the form 

x*x/2”; x+bx; x+x/2; x+cx 

where the division shifts x right until the third bit of A, is at the right of x. Then 
x+6x; x+x/2; X+V .rr adds the appropriate bit of Ai to C. This is done by adding 
a prefix of Ai; shifting right; and subtracting the new prefix of Ai. (The new prefix 
lacks the third bit.) We subtract yAi modulo 2” by adding (2” - y)Ai for large enough 
r. That is, x + (2’ - y )Aix. 

‘I’he final step, x +x/2&, brings the 2”-’ bit of C to the right of x. This bit is 1 
if C&z . . . Cm was satisfied by the assignment xnxn-l . . . x1. 

Let I$ be PF followed by x + x/2; x + 2x. Then Pb and PF are equivalent on x, 
1 s x s 2”, iff E is unsatisfiable. 

CorOrkry 4.1. The problem of deciding for two {x + cx, x + x/2)-programs P and 
P’ a& a positive integer 1 whether or not 
integer input x < 1 is NP-complete. 

P and P’ disagree on some nonnegative 

Proo%. The problem is clearly solvable in nondeterministic polynomial time (NP). 

When the instruction x + cx is restricted to c = 2, we can prove 

.I. The problem of deciding for two (x 6 2x, x * x/2)-programs P and 
P’ and u po&ive integer 1 whether or not P and P’ disagree on some nonnegative 
integer input x < 1 is solvable in polynomial time. 
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Proof. This follows from the observation that any program P can be reduced (in 
polynomial time) to one of the following forms (k, m are nonnegative integers): 

(1) x+2kx, 
(2) x f X/2k, 
(3) x * x /2k ; x * 2”x. 

Adding the instruction x * rem(x/d), where rem(x/d) = remainder of x divided 
by d makes the inequivalence problem NP-complete. 

Theorem 4.3. The inequivalence problem fOP (X+-CX,X~x/2,xt 
rem(xld))-programs [over nonnegative integer inputs) is NP-complete. The result 
holds even if the instruction x + rem(xld) is used exactly once in the programs, and 
d is a power of 2. 

Proof. Modify the programs PF and Pb of Theorem 4.2 by adding the instruction 
x * rem(x/2”) at the beginning. Then the modified PF and Ph are inequivalent if 
and only if F is satisfiable. Hence, the problem is NP-hard. That the problem is 
in NP follows from a result in [6]. However, a simple direct proof that inequivalence 
is in NP is the following: If F is a program, let DF be the product of all divisors in 
F and all d in rem(x/d) instructions. Then two programs F and G are inequivalent 
if and only if they disagree on some input x, 1 s x s DFDG. 

If x +rem(x/d) is used twice, we have 

Theorem 4.4, The problem of deciding if a {x + cx, x + x/2, x + rem(x/d))-program 
(over nonnegative integer inpicts) outputs a nonzero value for some input is NP- 
complete. The result holds even if .the insiruction x + rem(x/d) is used exactly twice 
in the programs, and in each instance, d is a power of 2. 

Proof. Modify the program PF by adding the instruction x cr~;il(x/2~ j at the 
beginning and the instruction x + rem(x/2) at the end. Thzn the new PF outputs 
a nonzero value for some input if and only if F is satisfiable. 
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