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Linear-Label so that it will guarantee the same property also for any two sepa-
ration nodes tfll and tij even if they are in the same 2-edge-connected component
(that is, ¢, = 42). For example, consider the nodes s and ¢ in Figure 6. The re-
fined algorithm will guarantee that the sub-path between the separation nodes
t1 and 3 of either of the paths Path(s,t,Lg) and Path(t,s,Lg) is a shortest
length path (although s and ¢ are in the same 2-edge-connected component).

Gl G2| a3 G4| Gl G2
t1I t1.tEvf v2.t%

Fig.6. A decomposition of a graph whose superstructure is a line. Every G7 is a
2-node-connected graph (with leaves)

The refinement of Algorithm Linear-Label in order for it to imply the stronger
property for this family of graphs is as follows. When traversing the graph in the
first phase in order to construct a DFS tree, we start in any node r in the last
2-node-connected component, G¥ (G2 in Figure 6). We traverse first a shortest
length path P from it to the separation node ¢} and then continue the DFS
traversal arbitrarily. We label the nodes, as in the general case, such that all
the nodes in the path P are leftmost nodes. It should be clear, by the same
considerations as in the general case, that the stronger property is satisfied by
this refined version of Algorithm Linear-Label.

It is interesting to note that the graphs for which this refinement could be
applied (graph that satisfy that the superstructure of their reduced graph is a
line) are all the graphs that are not Petal graphs. In [EMZ96], Petal graphs were
introduced and a lower bound of the totals-diameter (a quantity that can be as
large as the square of the diameter) on the efficiency of Linear-Interval Routing
was proved for all Petal graphs. Thus, the fact that the refinement of Algorithm
Linear-Label applies to all non-petal graphs is not surprising.
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to s. Since L(t) > L(s) then if s is not in T3, the message will traverse a path in
G; until an ancestor of s, z, is reached and then it will traverse the unique path
on T between x and s, and, again, the sub-path between v} and v? is a shortest
length path.

Algorithm Linear-Label could be easily modified so that every link of the
network (at least in one direction) will be used for routing. This property is
desirable since it implies a more balanced load on the links of the network.
Consider an LIRS L generated by Algorithm Linear-Label, and a node € V.
Let Back(z) = {(x,v1),....(z,vr)} be the set of fronds in G w.r.t T from =
to its ancestors. At most one of these edges could be the back edge, back(z),
assigned to by Algorithm Linear-Label. Algorithm Linear-Label assigns a null
interval to all other edges in Back(xz). We can thus distribute the load on the
edge (x, Pp(x)) from z to its predecessor in T also between the edges in the
set Back'(z) = Back(x) — {back(x)}. We will divide the interval {max(Ty) +
1, maz) assigned to (z, Pp(x)) to |Back/(x)|+1 approximately equal subintervals
(maz(Ty) + 1,n1), (n1,na), ..., (np—1, max) and assign every subinterval to a
different edge in Back'(x) U {(x,pr(z))}. Tt is easily seen that the algorithm
remains correct after the modification although a message from node  to node
y with larger label will not necessarily traverse the path on the tree 7' from
z to y; the path on which the message will traverse up to a common ancestor
may contain some fronds. Since every edge which is not an edge of T is of the
form (z, v;) where v; is an ancestor of z, that is, the size of the interval initially
assigned to (z, Pr(x)) is at least |Back(x)'|+1, then after the modification every
edge is assigned a non-empty interval in at least one direction. We assume here
that there are no multiple edges (that is, the graph is simple). Indeed, if the
graph is not simple then any deterministic labeling algorithm cannot guarantee
that each link will be used for routing since there could be more links than
destinations.

4.2 Refinement of Algorithm Linear-Label for Subsets of Graphs

We show in this section how to refine Algorithm Linear-Label for a family of
graphs which is a subset of the non-lithium graphs.

Consider a graph G such that the superstructure (defined in [E79]) of its re-
duced graph R(G) is a line. These graphs can be decomposed in two levels; one
level is by their 2-edge-connected components (as in the general case). A refined
level is to further decompose every 2-edge-connected component to its 2-node-
connected components. This decomposition could be represented as a sequence;
(G111, G2, 2, ...tlfl_l, Glfl), (v3,vd), o (02, ), (GL L, . tE= GEr) where ev-
ery Gg is the jth 2-node-connected component in the ¢th 2-edge-connected com-
ponent, tg is a separation node common to the 2-node-connected components Gg
and Gg“, and (v, Uz'1+1) is the bridge connecting two 2-edge-connected compo-
nents. (The decomposition is demonstrated in Figure 6). Algorithm Linear-Label
guarantees that a path traversed by any message between any two bridge points

is a shortest length path. For this family of graphs we can refine Algorithm



Fig.5. A graph G together with an LILS for it, generated by Algorithm Linear-Label.

4 Properties and Extensions of Algorithm Linear-Label

4.1 Properties of the Algorithm

Let s € V; and t € V; be any two nodes in G; and Gj, respectively, ¢ < j.
We show that the sub-path between the bridge points v? and v} of either of
the paths Path(s,t, Lg) and Path(t, s, Lg), where Lg is the LILS generated by
Algorithm Linear-Label, is a shortest length path.

The path P in the tree T (which was constructed by the algorithm) between
its root r and the node v? is a shortest length path which passes through the
nodes r, v}l v2 | .. v?. By Algorithm Linear-Label, L(t) > L(s) and thus a
message from s to ¢ will traverse the unique path between s and ¢ in the tree T'.
Since the sub-path of this path between v? and v} is a sub-path of the shortest
length path P, 1t is also a shortest length path. Now consider a message from ¢



Phase 2:
A. Assigning labels to nodes
Traverse T in a depth first style; when a node z is reached for the first time,

1. If  is a node in the path P then let y; € Sp(x) be its successor in the path
P. Recursively traverse first T, and then each T, z € Sp(x) — {y1 }.
Otherwise, let back(z) = (u,v). If u = z then recursively traverse each T},
z € Sp(x), in an arbitrary order.
Otherwise (back(x) = (u,v), u # ), let y1 € Sp(x) be the successor of »
such that u is a node in Ty, . Recursively traverse first 7,, and then each 7,
z € Sp(x) — {y1} (in an arbitrary order).

2. Assign an integer L(z) to .

3. Integers are assigned in ascending order.

B. Assigning labels to edges

For anode # € V we denote by max(Ty) and min(T;) the maximal and minimal
label of a node 1n 7.

Let # € V and let y1,...,y be its successors in an ascending order (of their
labeling).

o If x is a node in the path P then I,(x,11) = {(min, maz(Ty,)), L(z,y) =
(min(Ty,), max(Ty,)) for every 2 < i <, I;(z, Pi(x)) = (max(T,)+ 1, maz)
Otherwise, let back(z) = e = (u,v).

o If u = & then I, (e) = (min, min(T;) — 1), L(z, y) = (min(Ty,), maz(T,,))
for every 1 < i <! I(x, Pi(x)) = (max(Ty)+ 1, max)

e Otherwise (x # u) the labeling of the edges in this case is similar to the first
case.

If the algorithm does not specify how to label an edge e at one of its end nodes
u (that is, if € = (u,v) is neither an edge of the tree nor the back edge of Node
u) then Ly(e) = () (the null interval).

Frample 2. Figure 5 is an example of a graph G that was labeled according to
Algorithm Linear-Label (null intervals of edges are not marked). The graph G
has three components which are 2-edge-connected graphs G1, G3 and G3. We
refer to the nodes in G by the integers assigned to them as labels. The edges
(6,8) and (15,17) are the strong bridges that connect GG with G5 and G2 with
('3, respectively. Edges of the DFS spanning tree found by Algorithm Linear-
Label are directed. A shortest length path P in 7" which passes through all the
bridges is the path (21,17,15,9,8,6). Note that all the nodes in P are leftmost
nodes. Consider for example the path a message from node 19 to node 2 will
traverse. Since 19 is larger then 2 but node 2 is not a descendant of node 19, the
message will go up the back edge of 19 to node 20. Still 2 is not a descendant of
20 thus the message go down to 18 and then up the back edge of node 20 (and
18) to node 21. Now 2 is a descendant of 21 thus the message will go down the
tree to 17,15,9,8,6 and 2. Note that the sub-path of this path between 17 and
6 is a shortest length path in G. A message from node 2 to node 19 will traverse
the unique path on 7" between them. Again, the sub-path of this path between
node 6 and node 17 is a shortest length path.



Consider a labeled DFS tree T. A node v is termed ¢ leftmost node if every
node u with label smaller than the label of v is a successor of v (that is, u is a
node in the sub-tree T,). Note that a back edge for a leftmost node in a DFS tree
which was labeled by Algorithm Linear-Label is not needed (since the interval
of nodes with labels smaller than L(v) that are not in T, is empty).

The structure of a non-lithium graph 1s a sequence of 2-edge-connected graphs
(with leaves) connected by bridges. In a DFS spanning tree of the reduced graph
of a non-lithium graph a back edge could be found to every node except for
some of the bridge points. Therefore, the extension of Algorithm Linear-Label
for non-lithium graphs will guarantee that every end-node of a bridge will be a
left-most node in the tree (thus, a back edge for it is not needed).

Following is an informal description of the algorithm. Let G = (V, E) be
a non-lithium graph represented by the sequence of components Gy, (v?, v3),
G, (v3,03), Gs, ..., (v2_1,v}), Gy, where G; = (V;, E;) is a 2-edge-connected
graph with leaves. We first find a strict-LIRS for the reduced graph of G, R(G),
and then transform it into an LIRS of (5, as explained in Section 3.3. To simplify
the notations, in the sequel G will stand for R(G). In the first phase we traverse
G in order to find a DFS spanning tree; for this, we first traverse a shortest
length simple path P from the root - an arbitrary node r € V,, - to the node
v? (such a path must pass through all the bridge points), then we continue to
span (G in a depth-first style arbitrarily. In this phase, we also assign a back
edge to every node that is not on the path P. After a DFS spanning tree T
is constructed, we traverse T' in a depth-first style in order to label the nodes;
when we reach a node x € P we first traverse recursively T, where y € Sp(x) is
the successor of # in P, thus guaranteeing that all the nodes in P are leftmost
nodes in the tree. Other nodes are treated as in the original algorithm.

Note that for the correctness of the algorithm the path P does not have to
be a shortest length path. We construct P as a shortest length path in order
to guarantee that the path that any message traverses between any two bridge
points is a shortest length path (a property that will be analyzed in Section
4.1). The only difference between the two versions of Algorithm Linear-Label is
that in the new version some nodes are not assigned a back edge. Note however
that all such nodes are nodes in the path P, that is, leftmost nodes for which
a back edge is not needed. The path P contains all the bridge points, thus for
every node which is not contained in 1t, there exists a back edge.

Following is the formal code of Algorithm Linear-Label for any non-lithium
graph together with an example.

Algorithm Linear-Label

Phase 1:

Start from any node r in (G, and construct a DFS spanning tree T' of (; traverse
first a shortest length path P between r and v? and then the rest of the graph.
Assign to every node z that is not in the path P a back edge, back(x), while
keeping the following invariant.

INYV : For every node & with back(z) = (u,v) and for every node y on the path
in T from z to u, back(y) = back(z).



2. Assign an integer L(z) to .
3. Integers are assigned in ascending order.

back(z)—=

Pr(z)

(min, min(Ty, ) —
maz(T:) + 1, mazx) maz(T) + 1, mazx)

{min(Ty, ), maz(Ty, min(Ty, ), maz(Ty, )} min(Ty,), maz(Ty, )}

(min, maz(Ty, ))

(a) (b)

Fig.4. The labeling of the edges outgoing a node = where (a) back(z) is an edge
outgoing z (b) Otherwise (back(x) = (u,v) and w is in Ty, ).

B. Assigning labels to edges

For anode # € V we denote by max(Ty) and min(T;) the maximal and minimal
label of a node in T, (note that maz(T,) = L(x)).

Let # € V and let y1,...,y be its successors in an ascending order (of their

labeling). Let back(z) = e = (u,v).

1. If & = v then I.(e) = (min, min(Ty) — 1), L (z,y;) = (min(T,,), maz(Ty,))
for each 1 < i </, I (z, Pi(x)) = {max(Ty) + 1, max) (see Figure 4(a)).

2. Otherwise (z # u), the only difference in labeling in this case is: I;(z,y1) =
(min, maxz(Ty,)) (the back edge of z is not labeled yet) (see Figure 4(b)).

If the algorithm does not specify how to label an edge e at one of its end nodes
u (that is, if e = (u, v) is neither an edge of the tree nor the back edge assigned
to node u) then Ly(e) = () (the null interval).

Algorithm Linear-Label generates a strict-LIRS for any 2-edge-connected
graph. As explained in [FG94], it is straightforward to generate from a strict-
LIRS of any graph GG, an LIRS for a graph G’ whose reduced graph is equal to
G (i.e., R(G") = G; Definition 8).

3.4 Labeling any Non-Lithium Graph

We now extend Algorithm Linear-Label to any non-lithium graph.



ancestor of y is reached. Note that the third case is the only one in which the
path traversed by a message is not the unique path in the tree 7'

There are two phases in Algorithm Linear-Label. In the first phase a DFS
tree T'is constructed and a back edge is assigned to every node. In the second
phase we traverse the tree in a (specific) depth-first search and label the nodes
(in a post-order fashion) and the edges. Specifically, consider any node  with a
set of successors y1, ..., y; and let e = (u,v) be the back edge assigned to z in
the first phase. If u # « (that is, the back edge of x emanates from a successor
u of # which is not equal to z) then assume that T, is the sub-tree to which u
belongs. Then the subtree 7y, is traversed first and then all other subtrees T,
y; € Sr(z), are traversed in an arbitrary order. This traversal guarantees that
the interval of labels of nodes in 7, is smaller then the interval of labels of nodes
in any other sub-tree 7, y; € Sp(x). This property enables us to send both
messages destined to nodes in 7, and messages destined to nodes not in 73 but
with smaller labels, on the edge from # to y; (towards the back-edge assigned to
z) since the union of both sets of labels form a contiguous interval. If the back
edge assigned to # emanates from x (that is, u = ), then there is no restriction
on the order of the traversal of the subtrees T}, y; € Sp(x).

The formal code of Algorithm Linear-Label for any 2-edge-connected graph
with leaves is presented in Section 3.3. The generalization of Algorithm Linear-
Label to any non-lithium graph is in Section 3.4.

3.3 Labeling a 2-Edge-Connected Graph with Leaves

The input to Algorithm Linear-Label 1s a 2-edge-connected graph and the output
1s a strict-LIRS for it. Given a graph G, a strict-LIRS for it L4, and a graph
G’ such that R(G') = G (see Definition 8) it is straightforward to generate an
LIRS Lg: for G’ (see, [FG94]). Algorithm Linear-Label does not specify how to
find back edges; however this task can be easily performed while doing the DFS
traversal (see, e.g., [E79]).

Algorithm Linear-Label

Phase 1: Construct a DFS spanning tree T rooted at any node r of the graph
(. Assign to every node x a back edge, back(xz), while keeping the following
invariant.

INV: For every node x with back(x) = (u,v) and for every node y on the path
in T from z to u, back(y) = back(z).

Phase 2:
A. Assigning labels to nodes
Traverse T in a depth first style; when a node x is reached for the first time,

1. If 2 = r or back(x) = (u,v) and u = =z then recursively traverse each T,
y € St(x), in an arbitrary order.
Otherwise (back(x) = (u,v), u # ), let y1 € Sp(x) be the successor of »
such that u is a node in 7}, . First recursively traverse 7,, and then each T},
z € Sp(x) — {y1}, in an arbitrary order.



an edge of the graph which is not an edge of the tree. A DFS spanning tree of
a graph satisfies the property that any frond is an edge that connects a node
with one of its ancestors in the tree. Additionally, it is well known (see, e.g.,
[E79]) that in a DFS spanning tree of a 2-edge-connected graph for every node
z (except for the root) there is a frond which connect a descendant of # and an
ancestor of it in the tree.

3.2 An Informal Description of Algorithm Linear-Label

We start by giving an informal description of Algorithm Linear Label in 2-
edge-connected graphs. It is rather simple to generate an ILS (Interval Labeling
Scheme) for any (undirected) graph G by using any spanning tree of G (such a
scheme was presented in [SK82]). In order to label the nodes, we traverse the
tree in a depth-first-style and label the nodes in a post-order fashion. Let T
denote the resulted directed tree. For every node x, the labels of the nodes in
T, form a contiguous interval, and L(z) > L(u) for every node w in T,. The
label I, (e) for an edge in F,, for any node v, is defined as follows: if ¢ = (z, y),
and y is a successor of # in T, then I;(e) is the interval of labels of nodes in
T,, otherwise, if y is the predecessor of # in T, then the interval I,(y) is the
cyclic complement interval of the interval of labels of the nodes in T}.. The path
a message traverses under such IRS is the unique path in the tree T between its
source and its destination.

When considering LIRSs, cyclic intervals are not allowed. As a consequence,
an interval of an edge from a node to its predecessor on the tree cannot contain
both labels that are smaller than the labels of the nodes in 7, and labels that
are larger than them. To avoid this problem we utilize the special structure
of a non-lithium graphs which is a sequence of 2-edge-connected components
(with leaves) connected by bridges. We first present a labeling algorithm for
any 2-edge-connected graph (with leaves) and then generalize it to a labeling
algorithm for any non-lithium graph (Section 3.4).

By Algorithm Linear-Label, a DFS spanning tree 7' of a 2-edge-connected
graph G is found and each node # (# # r) is assigned a back edge, i.e., a frond
between a descendant of # and an ancestor of it (note that since G is 2-edge-
connected, such back edge exists for every node). A message from z to a node
y in T, will traverse the path in 7" from z to y. A message to a node y with
L(y) > L(z) will traverse the unique path in 7" from x to a common ancestor
z of z and y, and then from z down to y. The interesting case is when « has a
message destined to a node y that is not in the tree T, (i.e., y is not a descendant
of #) and such that L(y) < L(#). In this case we use the back edges to go up
the tree until a common ancestor of # and y is reached. More specifically, let
e = (u,v) be the back edge assigned to z; a message from z to y will traverse
the path in 7" from x to u, then will continue on e to v, which is an ancestor of
z. If v is an ancestor of y then we get to a previous case (and the message will
continue down T towards y), otherwise, it will continue through another back
edge (the back edge assigned to v) to an “upper” node in 7', and so on, until an



3 A Labeling Algorithm

3.1 Preliminaries

In this section we present a new algorithm, Algorithm Linear-Label, that gen-
erates an LIRS for every graph which admits one (i.e., for every connected non-
lithium graph). Our algorithm, as the one of [FG94], does not imply any non-
trivial upper bound for general non-lithium graphs (this question is still open),
but it has the following advantages. First, it is based on a DFS-spanning tree of
the graph, thus, it resembles the algorithms for IRS mentioned in Section 1 and
is easier to understand and to implement. Second, it guarantees that the path
that any message traverses between any two bridge points is a shortest length
path (see Example 1). Last, it could be easily modified (as will be shown in the
sequel) such that every link of the network (at least in one direction) will be
used for routing.

Ezample I. As an example consider the graph G depicted in Figure 3. Each
Gi, 1 <1 < n,is a simple cycle of length n, Wlth nodes u}, ub, ..., ul, and an
additional edge (ub, u n/2-|—1)' The edge (uf ,,,ui™") is the bridge that connects
G; and G;41. Under Algorithm Linear-Label a message between s € G4 and
t € Gy, 1< j, will traverse a path of length at most 2n +3(j — ¢ — 1)+ (j — 1)
(since the shortest length path between each u! and U;/z is of length 3). The
algorithm of [FG94] however, will route a messages between each u} and U;/z on
a cycle that contains both of the nodes. As a consequence, a message between s
and ¢ will traverse a path of length at least n/2-(j —i— 1)+ (j — 9).

nl
u

Fig.3. An example.

Algorithm Linear-Label is based on the theory of DFS (Depth First Search)
spanning trees. A DFS spanning tree of a graph is constructed by traversing
the graph in a depth first style, backtracking only when there i1s no unvisited
adjacent node. The DFS spanning tree T that is constructed throughout this
traversal is a directed tree, rooted at the origin of the traversal. For any node
z, we denote by T; the sub-tree of T' rooted at . Each node in 7, including =
i1s a descendant of x. Every node on the path from the root r to x except for =
is an ancestor of x. Every node x (except for the root) has a predecessor Ppr(x)
and every non-leaf node has a (non-empty) set of successors Sr(x). A frond is
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Fig.1. (a) The general form of a lithium graph. (b) The simplest lithium graph.

Definition 8.

1. The reduced graph of a graph G, R((), is the graph obtained from G by
removing all of its leaves and the edges adjacent to them (where a node v is
a leafif it has only one adjacent node, that is, |E,| = 1).

2. A 2-edge-connected graph with leaves is a graph G for which the reduced
graph R(G) is 2-edge-connected (a graph is 2-edge-connected if it does not
contain any bridge, note that a graph that contains a single node is 2-edge-
connected).

A non-lithium graph G = (V, E) can be represented as a sequence G, (v?, v3), G,
(v3,03),Gs, .oy (V21 0L), Gryn > 1, where Gy = (Vi, E;) is a 2-edge-connected
graph with leaves (Definition 8), v} € Vi, vl € V,, v},v? € V; for every
l<i<nV=UV,E=U_FEUU_ {0 Z+1)} andeach(l, vl
is a bridge that connects G; and Gz+1 The vertices {vl, v; }1<Z<n are termed

bridge points. (See Figure 2.)

Fig.2. A non-lithium graph. The G;s are 2-edge-connected graph with leaves and the

v!s are the bridge points.



(In other words, the non-empty intervals associated with all the edges adja-
cent to any node v form a partition of N or of N — {L(v)}.)
For e = (u,v) we will write I,,(u, v) instead of I,((u, v)).

For simplicity, from now on, given an ILS and a node u, we will not distinguish
between the node u and its node number L(u).
Two variants of interval labeling scheme are defined as follows.

Definition3. A linear interval labeling scheme (LILS) Lg of a graph G is an
interval labeling scheme in which all the intervals I,(e) - for every v € V and
every e € F, - are either linear or null.

Definition4. A strict-linear interval labeling scheme (strict-LILS) L& of a
graph G = (V, F) is a linear interval labeling scheme in which v ¢ I,(e) for
every v € V and every e € F,.

By a labeling scheme we mean ILS or any of its two variants. Given a graph
with any labeling scheme, the routing of messages is performed as follows. If
node u has a message destined to node v, v # u, then u will send the message
on the unique edge e such that v € I,(e). Obviously, if the labeling scheme is
arbitrary, the routing cannot ensure that every message will eventually arrive
at 1ts destination; though a message from u to v cannot be stuck at any node,
it still can cycle forever without getting to v. We thus introduce the following
definition.

Definition5. A walid labeling scheme of a graph is a labeling scheme that guar-
antees that every message will eventually arrive at its destination.

Given a valid labeling scheme L of G, and two nodes u and v, Pathg(u, v, L)
denotes the path along which a message, destined to v, will traverse starting from
u, under the labeling scheme L. From the definitions it is clear that if the rout-
ing is done according to a valid labeling scheme, each message will follow a simple
path (in which all nodes are distinct), which implies a trivial upper bound of
n—1 on the length of such paths. We denote by IRS (Interval Routing Scheme) a
valid ILS and correspondingly LIRS and strict-LIRS. A precise characterization
of the graphs that admit LIRS was given in [FG94]. To state it, we first need
the following definition.

Definition6. A lithium graph is a connected graph G = (V, E), V=V, UuW U
V2 U Vs, such that the sets V; are disjoint, [Vi], |Va|, |Va] > 2 and there is a unique
edge connecting V; with each of the V;’s; ¢ = 1,2,3, and no edge between any
two different V; and V;, 1 <4,j < 3 (see Figure 1).

Theorem 7. ([FG94]) A (connected) graph G admits an LIRS iff G is not a
lithium graph.

In order to define a general representation of a non-lithium graph we first define:



paths traversed by messages (which depend on the structure of the network and
will be completely characterized) are shortest length paths.

In Section 2 we present the model, previous results and a precise description
of the routing methods under discussion. In Section 3 we present the algorithm
and analyze its correctness. Properties and extensions are discussed in Section 4.
Most of the proofs are only briefly sketched or omitted in this Extended Ab-
stract.

2 Preliminaries

We assume a point-to-point asynchronous communication network where pro-
cessors communicate with their neighbors by exchanging messages along the
communication links, which are bidirectional. The network topology is modeled
by a (connected) undirected graph G = (V, E), |V| = n, where the set V of
nodes corresponds to the processors, and the set E of edges corresponds to the
communication links connecting them. An edge e connecting v and v 1s denoted
by e = (u,v). For a node v, E, denotes the set of edges adjacent to v.

Each message has a header that includes its destination. When a message
arrives at an intermediate node then the edge on which 1t will continue is deter-
mined by a local routing decision function.

The routing methods under discussion involve a labeling of the nodes and
edges of the graph. Each node is labeled with a unique integer in N = {1, ..., n},
termed node number, and at each node v, each of the edges in E, is labeled with
an interval of N, defined as follows.

Definition1. An interval of N is one of the following:

1. A linear interval {p,q) = {p,p+1,...¢}, where p,q € N and p < ¢.

2. A wrap-around interval {p,q¢) = {p,p+1,....,n,1,... ¢}, where p,q € N and
p>4q.

3. The null interval () which is the empty set.

We say that a node u € V' is contained in an interval {(p, ¢} if u € {p, q). Note
that the null interval does not contain any node.

Definition 2. An interval labeling scheme (ILS) Lg = (L, {I }vev) of a graph
G = (V, E) is defined by:

1. A one-to-one function L : V' — N that labels the nodes of V.

2. A set of edge labeling functions [, : £, — I, for every v € V', where I is the
set of all intervals of N, that satisfy the following properties for every v € V:
union property the union of all the intervals corresponding to the edges

in Fy, is equal to N or to N — {L(v)}.
disjunction property the intervals I, (e1) and I, (e2) corresponding to any
two edges e, es € F,, are disjoint.



A popular compact routing method is Interval Routing which was introduced
in [SK82], discussed together with other compact routing methods in [LT83] and
implemented on INMOS transputer C104 Router chips [I91]. Under Interval
Routing the nodes are labeled with unique integers from the set {1, ..., n}, where
n is the number of nodes in the network, and at each node, each of its adjacent
edges is labeled with one interval of {1,...,n}. Cyclic intervals (i.e., intervals
that wrap-around over the end of the name segment) are allowed. Under such
Interval Labeling Scheme (ILS), at each node ¢, messages destined to node j are
sent on the unique edge that is labeled with an interval that contains j. A valid
ILS of a network is an ILS under which every message will eventually arrive at
its destination. A simple algorithm that generates a valid ILS for every network
was presented in [SK82]. The algorithm is based on a BFS spanning tree of the
network, it implies an upper bound of 2D on the length of a path a message
traverses, where D is the diameter of the network, but it has the disadvantage
that all routings are performed on a tree. [LT83] presented a different algorithm
for ILS, based on a DFS spanning tree; though the algorithm does not imply
any upper bound on the length of a path traversed by a message, it has the
advantage that every link of the network is used for routing. In [R91] a lower
bound of 1.5D + 0.5 was proved for the maximal length of a path a message
traverses under Interval Routing, and this bound was improved in [TL94] to

1.75D — 1.

Linear Interval Routing ([BLT91]) is a restricted variant of Interval Routing
which uses only linear intervals (i.e., intervals with wrap-around are not allowed).
It is also the simplest form of Prefix Routing which is another compact routing
method (introduced in [BLT90]). It was noted in [BLT91] that not every network
has a valid Linear Interval Labeling Scheme (LILS). A complete characterization
of the networks that admit a valid LILS was presented in [FG94], together with
an algorithm that generates a valid LILS in case one exists. The algorithm in
[FG94] is incremental in the sense that it starts by labeling a small sub-network
and then in each iteration 1t labels an unlabeled path in the network until all
nodes and edges are labeled. The algorithm does not imply any upper bound on
the length of a path traversed by a message; indeed, the question of finding a
non-trivial upper bound for Linear Interval Routing is still open. In [EMZ96] a
lower bound of £2(D?) on the length of a path a message traverses in a network
under a valid LILS was presented.

In this paper we present a new algorithm that generates an LILS for every
network that admits one. Our algorithm is based on a DFS spanning tree of
the network and thus is “in the spirit” of the algorithms for Interval Routing
([SK82, LT83]). In fact, by utilizing the special structure of networks which
admit valid LILS, it accomplishes the same benefits as the algorithm in [LT83]
for Interval Routing but it does not use wrap-around intervals. Our algorithm
has the following advantages over the algorithm of [FG94]: (1) Tt utilizes the
well-known theory of DFS spanning trees, and is thus simpler to understand
and to implement, (2) it uses all links of the network (at least in one direction)
for routing, thus it better distributes the load, and (3) it guarantees that some
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Abstract. Linear Interval Routing is a space-efficient routing method
for point-to-point communication networks. It is a restricted variant of
Interval Routing where the routing range associated with every link is
represented by an interval with no wrap-around. It was noted in [BLT91]
that not every network has a valid Linear Interval Labeling Scheme
(LILS). A complete characterization of the networks that admit a valid
LILS was presented in [FG94], together with an algorithm that generates
a valid LILS in case one exists. We present a new algorithm that gener-
ates an LILS for every network that admits one. Our algorithm is based
on a DFS spanning tree of the network, and is “in the spirit” of the algo-
rithms for Interval Routing. Our algorithm has few advantages over the
algorithm of [FG94]: it utilizes the well-known theory of DFS spanning
trees and is thus simpler to understand and to implement, it uses all
links of the network for routing (thus it better distributes the load), and
it guarantees that some paths traversed by messages are shortest length
paths.

1 Introduction

In a communication network, where communication between nodes is accom-
plished by sending and receiving messages, a routing algorithm 1s employed to
ensure that every message will reach its destination. An optimal routing method
routes every message to its destination in the shortest way. Usually optimal rout-
ing is achieved by keeping in each node a table with n entries and such that the
t-th entry in the table determines the edge to be traversed by a message destined
to node i. For large networks it is practical to consider routing methods in which
less than £2(n) space is used in each node, though such routing methods may not
be optimal. The trade-off between space and efficiency was extensively studied
in the past decade (see, e.g., [PU89, ABLP89, AP92, GP96a, GP96b]) and many
compact routing methods were developed and analyzed (see, e.g.,[SK82, LT83,
BLT90, BLT91, FGS93, FGNT95]).
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