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Linear�Label so that it will guarantee the same property also for any two sepa�
ration nodes tj�i� and t

j�
i�
even if they are in the same ��edge�connected component

�that is� i� � i��� For example� consider the nodes s and t in Figure 	� The re�

ned algorithm will guarantee that the sub�path between the separation nodes
t�� and t�� of either of the paths Path�s� t�LG� and Path�t� s�LG� is a shortest
length path �although s and t are in the same ��edge�connected component��

t�� t�� t�� v�� v��

ts

t��

G�
� G�

� G�
� G�

� G�
� G�

�

Fig� �� A decomposition of a graph whose superstructure is a line� Every G
j
i is a

��node�connected graph 	with leaves


�

The re
nement of AlgorithmLinear�Label in order for it to imply the stronger
property for this family of graphs is as follows� When traversing the graph in the

rst phase in order to construct a DFS tree� we start in any node r in the last
��node�connected component� Gkr

r � �G�
� in Figure 	�� We traverse 
rst a shortest

length path P from it to the separation node t�� and then continue the DFS
traversal arbitrarily� We label the nodes� as in the general case� such that all
the nodes in the path P are leftmost nodes� It should be clear� by the same
considerations as in the general case� that the stronger property is satis
ed by
this re
ned version of Algorithm Linear�Label�

It is interesting to note that the graphs for which this re
nement could be
applied �graph that satisfy that the superstructure of their reduced graph is a
line� are all the graphs that are not Petal graphs� In �EMZ�	� Petal graphs were
introduced and a lower bound of the total��diameter �a quantity that can be as
large as the square of the diameter� on the e�ciency of Linear�Interval Routing
was proved for all Petal graphs� Thus� the fact that the re
nement of Algorithm
Linear�Label applies to all non�petal graphs is not surprising�
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to s� Since L�t� � L�s� then if s is not in Tt� the message will traverse a path in
Gj until an ancestor of s� x� is reached and then it will traverse the unique path
on T between x and s� and� again� the sub�path between v�j and v�i is a shortest
length path�

Algorithm Linear�Label could be easily modi
ed so that every link of the
network �at least in one direction� will be used for routing� This property is
desirable since it implies a more balanced load on the links of the network�
Consider an LIRS LG generated by Algorithm Linear�Label� and a node x � V �
Let Back�x� � f�x� v��� ���� �x� vk�g be the set of fronds in G w�r�t T from x
to its ancestors� At most one of these edges could be the back edge� back�x��
assigned to x by Algorithm Linear�Label� Algorithm Linear�Label assigns a null
interval to all other edges in Back�x�� We can thus distribute the load on the
edge �x� PT �x�� from x to its predecessor in T also between the edges in the
set Back��x� � Back�x� � fback�x�g� We will divide the interval hmax�Tx� �
��maxi assigned to �x� PT �x�� to jBack��x�j�� approximately equal subintervals
hmax�Tx� � �� n�i� hn�� n�i� ���� hnk����maxi and assign every subinterval to a
di�erent edge in Back��x� � f�x� pT �x��g� It is easily seen that the algorithm
remains correct after the modi
cation although a message from node x to node
y with larger label will not necessarily traverse the path on the tree T from
x to y� the path on which the message will traverse up to a common ancestor
may contain some fronds� Since every edge which is not an edge of T is of the
form �x� vi� where vi is an ancestor of x� that is� the size of the interval initially
assigned to �x� PT �x�� is at least jBack�x��j��� then after the modi
cation every
edge is assigned a non�empty interval in at least one direction� We assume here
that there are no multiple edges �that is� the graph is simple�� Indeed� if the
graph is not simple then any deterministic labeling algorithm cannot guarantee
that each link will be used for routing since there could be more links than
destinations�

��� Re�nement of Algorithm Linear�Label for Subsets of Graphs

We show in this section how to re
ne Algorithm Linear�Label for a family of
graphs which is a subset of the non�lithium graphs�

Consider a graph G such that the superstructure �de
ned in �E��� of its re�
duced graph R�G� is a line� These graphs can be decomposed in two levels� one
level is by their ��edge�connected components �as in the general case�� A re
ned
level is to further decompose every ��edge�connected component to its ��node�
connected components� This decomposition could be represented as a sequence�
�G�

�� t
�
�� G

�
�� t

�
�� ���t

k���
� � Gk�

� �� �v��� v
�
��� ���� �v

�
r��� v

�
r�� �G

�
r� t

�
r � ���� t

kr��
r � Gkr

r �� where ev�

ery Gj
i is the jth ��node�connected component in the ith ��edge�connected com�

ponent� tji is a separation node common to the ��node�connected components Gj
i

and Gj��
i � and �v�i � v

�
i��� is the bridge connecting two ��edge�connected compo�

nents� �The decomposition is demonstrated in Figure 	�� AlgorithmLinear�Label
guarantees that a path traversed by any message between any two bridge points
is a shortest length path� For this family of graphs we can re
ne Algorithm
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Fig� 	� A graph G together with an LILS for it� generated by Algorithm Linear�Label�

� Properties and Extensions of Algorithm Linear�Label

��� Properties of the Algorithm

Let s � Vi and t � Vj be any two nodes in Gi and Gj� respectively� i � j�
We show that the sub�path between the bridge points v�i and v�j of either of
the paths Path�s� t�LG� and Path�t� s�LG�� where LG is the LILS generated by
Algorithm Linear�Label� is a shortest length path�

The path P in the tree T �which was constructed by the algorithm� between
its root r and the node v�� is a shortest length path which passes through the
nodes r� v�n� v

�
n��� ���� v

�
�� By Algorithm Linear�Label� L�t� � L�s� and thus a

message from s to t will traverse the unique path between s and t in the tree T �
Since the sub�path of this path between v�i and v�j is a sub�path of the shortest
length path P � it is also a shortest length path� Now consider a message from t



Phase ��

A� Assigning labels to nodes

Traverse T in a depth 
rst style� when a node x is reached for the 
rst time�

�� If x is a node in the path P then let y� � ST �x� be its successor in the path
P � Recursively traverse 
rst Ty� and then each Tz� z � ST �x�� fy�g�
Otherwise� let back�x� � �u� v�� If u � x then recursively traverse each Tz�
z � ST �x�� in an arbitrary order�
Otherwise �back�x� � �u� v�� u �� x�� let y� � ST �x� be the successor of x
such that u is a node in Ty� � Recursively traverse 
rst Ty� and then each Tz�
z � ST �x�� fy�g �in an arbitrary order��

�� Assign an integer L�x� to x�
�� Integers are assigned in ascending order�

B� Assigning labels to edges

For a node x � V we denote by max�Tx� and min�Tx� the maximal and minimal
label of a node in Tx�
Let x � V and let y�� ���� yl be its successors in an ascending order �of their
labeling��
� If x is a node in the path P then Ix�x� y�� � hmin�max�Ty� �i� Ix�x� yi� �
hmin�Tyi ��max�Tyi�i for every � � i � l� Ix�x� Pt�x�� � hmax�Tx� � ��maxi
Otherwise� let back�x� � e � �u� v��
� If u � x then Ix�e� � hmin�min�Tx� � �i� Ix�x� yi� � hmin�Tyi ��max�Tyi�i
for every � � i � l� Ix�x� Pt�x�� � hmax�Tx� � ��maxi
� Otherwise �x �� u� the labeling of the edges in this case is similar to the 
rst
case�
If the algorithm does not specify how to label an edge e at one of its end nodes
u �that is� if e � �u� v� is neither an edge of the tree nor the back edge of Node
u� then Lu�e� � hi �the null interval��

Example �� Figure � is an example of a graph G that was labeled according to
Algorithm Linear�Label �null intervals of edges are not marked�� The graph G
has three components which are ��edge�connected graphs G�� G� and G�� We
refer to the nodes in G by the integers assigned to them as labels� The edges
�	� �� and ���� ��� are the strong bridges that connect G� with G� and G� with
G�� respectively� Edges of the DFS spanning tree found by Algorithm Linear�
Label are directed� A shortest length path P in T which passes through all the
bridges is the path h��� ��� ��� �� �� 	i� Note that all the nodes in P are leftmost
nodes� Consider for example the path a message from node �� to node � will
traverse� Since �� is larger then � but node � is not a descendant of node ��� the
message will go up the back edge of �� to node ��� Still � is not a descendant of
�� thus the message go down to �� and then up the back edge of node �� �and
��� to node ��� Now � is a descendant of �� thus the message will go down the
tree to ��� ��� �� �� 	 and �� Note that the sub�path of this path between �� and
	 is a shortest length path in G� A message from node � to node �� will traverse
the unique path on T between them� Again� the sub�path of this path between
node 	 and node �� is a shortest length path�



Consider a labeled DFS tree T � A node v is termed a leftmost node if every
node u with label smaller than the label of v is a successor of v �that is� u is a
node in the sub�tree Tv�� Note that a back edge for a leftmost node in a DFS tree
which was labeled by Algorithm Linear�Label is not needed �since the interval
of nodes with labels smaller than L�v� that are not in Tv is empty��

The structure of a non�lithiumgraph is a sequence of ��edge�connected graphs
�with leaves� connected by bridges� In a DFS spanning tree of the reduced graph
of a non�lithium graph a back edge could be found to every node except for
some of the bridge points� Therefore� the extension of Algorithm Linear�Label
for non�lithium graphs will guarantee that every end�node of a bridge will be a
left�most node in the tree �thus� a back edge for it is not needed��

Following is an informal description of the algorithm� Let G � �V�E� be
a non�lithium graph represented by the sequence of components G�� �v

�
�� v

�
���

G�� �v
�
�� v

�
��� G�� ���� �v

�
n��� v

�
n�� Gn� where Gi � �Vi� Ei� is a ��edge�connected

graph with leaves� We 
rst 
nd a strict�LIRS for the reduced graph of G� R�G��
and then transform it into an LIRS of G� as explained in Section ���� To simplify
the notations� in the sequel G will stand for R�G�� In the 
rst phase we traverse
G in order to 
nd a DFS spanning tree� for this� we 
rst traverse a shortest
length simple path P from the root � an arbitrary node r � Vn � to the node
v�� �such a path must pass through all the bridge points�� then we continue to
span G in a depth�
rst style arbitrarily� In this phase� we also assign a back
edge to every node that is not on the path P � After a DFS spanning tree T
is constructed� we traverse T in a depth�
rst style in order to label the nodes�
when we reach a node x � P we 
rst traverse recursively Ty� where y � ST �x� is
the successor of x in P � thus guaranteeing that all the nodes in P are leftmost
nodes in the tree� Other nodes are treated as in the original algorithm�

Note that for the correctness of the algorithm the path P does not have to
be a shortest length path� We construct P as a shortest length path in order
to guarantee that the path that any message traverses between any two bridge
points is a shortest length path �a property that will be analyzed in Section
����� The only di�erence between the two versions of Algorithm Linear�Label is
that in the new version some nodes are not assigned a back edge� Note however
that all such nodes are nodes in the path P � that is� leftmost nodes for which
a back edge is not needed� The path P contains all the bridge points� thus for
every node which is not contained in it� there exists a back edge�

Following is the formal code of Algorithm Linear�Label for any non�lithium
graph together with an example�

Algorithm Linear�Label

Phase ��

Start from any node r in Gn and construct a DFS spanning tree T of G� traverse

rst a shortest length path P between r and v�� and then the rest of the graph�
Assign to every node x that is not in the path P a back edge� back�x�� while
keeping the following invariant�
INV � For every node x with back�x� � �u� v� and for every node y on the path
in T from x to u� back�y� � back�x��



�� Assign an integer L�x� to x�
�� Integers are assigned in ascending order�

PT �x

y�y�

Ty�

hmax�Tx � ��maxi

v

back�x � back�y�

Ty�

hmin�max�Ty� i

x

u

	b


hmin�Ty� �max�Ty� i

back�x

Ty� Ty�

y�

hmax�Tx � ��maxi

y�

x

v

hmin�Ty� �max�Ty� i

PT �x

	a


hmin�Ty� � max�Ty� i

hmin�min�Ty�  � �i

Fig� �� The labeling of the edges outgoing a node x where 	a
 back	x
 is an edge
outgoing x 	b
 Otherwise 	back	x
 � 	u� v
 and u is in Ty�
�

B� Assigning labels to edges

For a node x � V we denote by max�Tx� and min�Tx� the maximal and minimal
label of a node in Tx �note that max�Tx� � L�x���
Let x � V and let y�� ���� yl be its successors in an ascending order �of their
labeling�� Let back�x� � e � �u� v��

�� If x � u then Ix�e� � hmin�min�Tx� � �i� Ix�x� yi� � hmin�Tyi ��max�Tyi�i
for each � � i � l� Ix�x� Pt�x�� � hmax�Tx� � ��maxi �see Figure ��a���

�� Otherwise �x �� u�� the only di�erence in labeling in this case is� Ix�x� y�� �
hmin�max�Ty� �i �the back edge of x is not labeled yet� �see Figure ��b���

If the algorithm does not specify how to label an edge e at one of its end nodes
u �that is� if e � �u� v� is neither an edge of the tree nor the back edge assigned
to node u� then Lu�e� � hi �the null interval��

Algorithm Linear�Label generates a strict�LIRS for any ��edge�connected
graph� As explained in �FG��� it is straightforward to generate from a strict�
LIRS of any graph G� an LIRS for a graph G� whose reduced graph is equal to
G �i�e�� R�G�� � G� De
nition ���

��� Labeling any Non�Lithium Graph

We now extend Algorithm Linear�Label to any non�lithium graph�



ancestor of y is reached� Note that the third case is the only one in which the
path traversed by a message is not the unique path in the tree T �

There are two phases in Algorithm Linear�Label� In the 
rst phase a DFS
tree T is constructed and a back edge is assigned to every node� In the second
phase we traverse the tree in a �speci
c� depth�
rst search and label the nodes
�in a post�order fashion� and the edges� Speci
cally� consider any node x with a
set of successors y�� ���� yk and let e � �u� v� be the back edge assigned to x in
the 
rst phase� If u �� x �that is� the back edge of x emanates from a successor
u of x which is not equal to x� then assume that Tyi is the sub�tree to which u
belongs� Then the subtree Tyi is traversed 
rst and then all other subtrees Tyj �
yj � ST �x�� are traversed in an arbitrary order� This traversal guarantees that
the interval of labels of nodes in Tyi is smaller then the interval of labels of nodes
in any other sub�tree Tyj � yj � ST �x�� This property enables us to send both
messages destined to nodes in Tyi and messages destined to nodes not in Tx but
with smaller labels� on the edge from x to yi �towards the back�edge assigned to
x� since the union of both sets of labels form a contiguous interval� If the back
edge assigned to x emanates from x �that is� u � x�� then there is no restriction
on the order of the traversal of the subtrees Tyj � yj � ST �x��

The formal code of Algorithm Linear�Label for any ��edge�connected graph
with leaves is presented in Section ���� The generalization of Algorithm Linear�
Label to any non�lithium graph is in Section ����

��� Labeling a ��Edge�Connected Graph with Leaves

The input to AlgorithmLinear�Label is a ��edge�connected graph and the output
is a strict�LIRS for it� Given a graph G� a strict�LIRS for it LG� and a graph
G� such that R�G�� � G �see De
nition �� it is straightforward to generate an
LIRS LG� for G� �see� �FG���� Algorithm Linear�Label does not specify how to

nd back edges� however this task can be easily performed while doing the DFS
traversal �see� e�g�� �E����
Algorithm Linear�Label

Phase �� Construct a DFS spanning tree T rooted at any node r of the graph
G� Assign to every node x a back edge� back�x�� while keeping the following
invariant�
INV � For every node x with back�x� � �u� v� and for every node y on the path
in T from x to u� back�y� � back�x��

Phase ��

A� Assigning labels to nodes

Traverse T in a depth 
rst style� when a node x is reached for the 
rst time�

�� If x � r or back�x� � �u� v� and u � x then recursively traverse each Ty�
y � ST �x�� in an arbitrary order�
Otherwise �back�x� � �u� v�� u �� x�� let y� � ST �x� be the successor of x
such that u is a node in Ty� � First recursively traverse Ty� and then each Tz �
z � ST �x� � fy�g� in an arbitrary order�



an edge of the graph which is not an edge of the tree� A DFS spanning tree of
a graph satis
es the property that any frond is an edge that connects a node
with one of its ancestors in the tree� Additionally� it is well known �see� e�g��
�E��� that in a DFS spanning tree of a ��edge�connected graph for every node
x �except for the root� there is a frond which connect a descendant of x and an
ancestor of it in the tree�

��� An Informal Description of Algorithm Linear�Label

We start by giving an informal description of Algorithm Linear Label in ��
edge�connected graphs� It is rather simple to generate an ILS �Interval Labeling
Scheme� for any �undirected� graph G by using any spanning tree of G �such a
scheme was presented in �SK���� In order to label the nodes� we traverse the
tree in a depth�
rst�style and label the nodes in a post�order fashion� Let T
denote the resulted directed tree� For every node x� the labels of the nodes in
Tx form a contiguous interval� and L�x� � L�u� for every node u in Tx� The
label Iv�e� for an edge in Ev� for any node v� is de
ned as follows� if e � �x� y��
and y is a successor of x in T � then Ix�e� is the interval of labels of nodes in
Ty� otherwise� if y is the predecessor of x in T � then the interval Ix�y� is the
cyclic complement interval of the interval of labels of the nodes in Tx� The path
a message traverses under such IRS is the unique path in the tree T between its
source and its destination�

When considering LIRSs� cyclic intervals are not allowed� As a consequence�
an interval of an edge from a node to its predecessor on the tree cannot contain
both labels that are smaller than the labels of the nodes in Tx and labels that
are larger than them� To avoid this problem we utilize the special structure
of a non�lithium graphs which is a sequence of ��edge�connected components
�with leaves� connected by bridges� We 
rst present a labeling algorithm for
any ��edge�connected graph �with leaves� and then generalize it to a labeling
algorithm for any non�lithium graph �Section �����

By Algorithm Linear�Label� a DFS spanning tree T of a ��edge�connected
graph G is found and each node x �x �� r� is assigned a back edge� i�e�� a frond
between a descendant of x and an ancestor of it �note that since G is ��edge�
connected� such back edge exists for every node�� A message from x to a node
y in Tx will traverse the path in T from x to y� A message to a node y with
L�y� � L�x� will traverse the unique path in T from x to a common ancestor
z of x and y� and then from z down to y� The interesting case is when x has a
message destined to a node y that is not in the tree Tx �i�e�� y is not a descendant
of x� and such that L�y� � L�x�� In this case we use the back edges to go up
the tree until a common ancestor of x and y is reached� More speci
cally� let
e � �u� v� be the back edge assigned to x� a message from x to y will traverse
the path in T from x to u� then will continue on e to v� which is an ancestor of
x� If v is an ancestor of y then we get to a previous case �and the message will
continue down T towards y�� otherwise� it will continue through another back
edge �the back edge assigned to v� to an �upper� node in T � and so on� until an



� A Labeling Algorithm

��� Preliminaries

In this section we present a new algorithm� Algorithm Linear�Label� that gen�
erates an LIRS for every graph which admits one �i�e�� for every connected non�
lithium graph�� Our algorithm� as the one of �FG��� does not imply any non�
trivial upper bound for general non�lithium graphs �this question is still open��
but it has the following advantages� First� it is based on a DFS�spanning tree of
the graph� thus� it resembles the algorithms for IRS mentioned in Section � and
is easier to understand and to implement� Second� it guarantees that the path
that any message traverses between any two bridge points is a shortest length
path �see Example ��� Last� it could be easily modi
ed �as will be shown in the
sequel� such that every link of the network �at least in one direction� will be
used for routing�

Example �� As an example consider the graph G depicted in Figure �� Each
Gi� � � i � n� is a simple cycle of length n� with nodes ui�� u

i
�� ���� u

i
n� and an

additional edge �ui�� u
i
n������ The edge �uin��� u

i��
� � is the bridge that connects

Gi and Gi��� Under Algorithm Linear�Label a message between s � Gi and
t � Gj� i � j� will traverse a path of length at most �n� ��j � i � �� � �j � i�
�since the shortest length path between each ui� and uin�� is of length ��� The

algorithm of �FG�� however� will route a messages between each ui� and uin�� on
a cycle that contains both of the nodes� As a consequence� a message between s
and t will traverse a path of length at least n�� � �j � i� �� � �j � i��

���

u��
u�n��

��� ��� ��� ���

������������

u�n��

u�� un��

�

u
n��

n��

un�
unn��

Fig� �� An example�

Algorithm Linear�Label is based on the theory of DFS �Depth First Search�
spanning trees� A DFS spanning tree of a graph is constructed by traversing
the graph in a depth 
rst style� backtracking only when there is no unvisited
adjacent node� The DFS spanning tree T that is constructed throughout this
traversal is a directed tree� rooted at the origin of the traversal� For any node
x� we denote by Tx the sub�tree of T rooted at x� Each node in Tx including x
is a descendant of x� Every node on the path from the root r to x except for x
is an ancestor of x� Every node x �except for the root� has a predecessor PT �x�
and every non�leaf node has a �non�empty� set of successors ST �x�� A frond is
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V�
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 	b


V�

Fig� �� 	a
 The general form of a lithium graph� 	b
 The simplest lithium graph�

De�nition	�

�� The reduced graph of a graph G� R�G�� is the graph obtained from G by
removing all of its leaves and the edges adjacent to them �where a node v is
a leaf if it has only one adjacent node� that is� jEvj � ���

�� A ��edge�connected graph with leaves is a graph G for which the reduced
graph R�G� is ��edge�connected �a graph is ��edge�connected if it does not
contain any bridge� note that a graph that contains a single node is ��edge�
connected��

A non�lithiumgraph G � �V�E� can be represented as a sequence G�� �v��� v
�
��� G��

�v��� v
�
��� G�� ���� �v�n��� v

�
n�� Gn� n 	 �� where Gi � �Vi� Ei� is a ��edge�connected

graph with leaves �De
nition ��� v�� � V�� v
�
n � Vn� v�i � v

�
i � Vi for every

� � i � n� V � �n
i��Vi� E � �n

i��Ei � �n��
i�� f�v

�
i � v

�
i���g and each �v�i � v

�
i���

is a bridge that connects Gi and Gi��� The vertices fv�i � v
�
i g��i�n are termed

bridge points� �See Figure ���

G� G� G� Gn�� Gn

v�
�

v�
�

v�
�

v�
�

v�
�

v�n��
v�n��

v�n
���

Fig� �� A non�lithium graph� The Gis are ��edge�connected graph with leaves and the
v
j
i s are the bridge points�



�In other words� the non�empty intervals associated with all the edges adja�
cent to any node v form a partition of N or of N � fL�v�g��
For e � �u� v� we will write Iu�u� v� instead of Iu��u� v���

For simplicity� from now on� given an ILS and a node u� we will not distinguish
between the node u and its node number L�u��

Two variants of interval labeling scheme are de
ned as follows�

De�nition�� A linear interval labeling scheme �LILS� LG of a graph G is an
interval labeling scheme in which all the intervals Iv�e� � for every v � V and
every e � Ev � are either linear or null�

De�nition�� A strict�linear interval labeling scheme �strict�LILS� LG of a
graph G � �V�E� is a linear interval labeling scheme in which v �� Iv�e� for
every v � V and every e � Ev�

By a labeling scheme we mean ILS or any of its two variants� Given a graph
with any labeling scheme� the routing of messages is performed as follows� If
node u has a message destined to node v� v �� u� then u will send the message
on the unique edge e such that v � Iu�e�� Obviously� if the labeling scheme is
arbitrary� the routing cannot ensure that every message will eventually arrive
at its destination� though a message from u to v cannot be stuck at any node�
it still can cycle forever without getting to v� We thus introduce the following
de
nition�

De�nition
� A valid labeling scheme of a graph is a labeling scheme that guar�
antees that every message will eventually arrive at its destination�

Given a valid labeling scheme LG ofG� and two nodes u and v� PathG�u� v�LG�
denotes the path along which a message� destined to v� will traverse starting from
u� under the labeling scheme LG� From the de
nitions it is clear that if the rout�
ing is done according to a valid labeling scheme� each message will follow a simple
path �in which all nodes are distinct�� which implies a trivial upper bound of
n�� on the length of such paths� We denote by IRS �Interval Routing Scheme� a
valid ILS and correspondingly LIRS and strict�LIRS� A precise characterization
of the graphs that admit LIRS was given in �FG��� To state it� we 
rst need
the following de
nition�

De�nition�� A lithium graph is a connected graph G � �V�E�� V � V� � V� �
V��V�� such that the sets Vi are disjoint� jV�j� jV�j� jV�j 	 � and there is a unique
edge connecting V� with each of the Vi�s� i � �� �� �� and no edge between any
two di�erent Vi and Vj � � � i� j � � �see Figure ���

Theorem�� ��FG�	
� A �connected� graph G admits an LIRS i� G is not a
lithium graph�

In order to de
ne a general representation of a non�lithium graph we 
rst de
ne�



paths traversed by messages �which depend on the structure of the network and
will be completely characterized� are shortest length paths�

In Section � we present the model� previous results and a precise description
of the routing methods under discussion� In Section � we present the algorithm
and analyze its correctness� Properties and extensions are discussed in Section ��
Most of the proofs are only brie�y sketched or omitted in this Extended Ab�
stract�

� Preliminaries

We assume a point�to�point asynchronous communication network where pro�
cessors communicate with their neighbors by exchanging messages along the
communication links� which are bidirectional� The network topology is modeled
by a �connected� undirected graph G � �V�E�� jV j � n� where the set V of
nodes corresponds to the processors� and the set E of edges corresponds to the
communication links connecting them� An edge e connecting u and v is denoted
by e � �u� v�� For a node v� Ev denotes the set of edges adjacent to v�

Each message has a header that includes its destination� When a message
arrives at an intermediate node then the edge on which it will continue is deter�
mined by a local routing decision function�

The routing methods under discussion involve a labeling of the nodes and
edges of the graph� Each node is labeled with a unique integer in N � f�� ���� ng�
termed node number� and at each node v� each of the edges in Ev is labeled with
an interval of N � de
ned as follows�

De�nition�� An interval of N is one of the following�

�� A linear interval hp� qi � fp� p� �� ���qg� where p� q � N and p � q�
�� A wrap�around interval hp� qi � fp� p� �� ���� n� �� ���� qg� where p� q � N and

p � q�
�� The null interval hi which is the empty set�

We say that a node u � V is contained in an interval hp� qi if u � hp� qi� Note
that the null interval does not contain any node�

De�nition�� An interval labeling scheme �ILS� LG � �L� fIvgv�V � of a graph
G � �V�E� is de
ned by�

�� A one�to�one function L � V 
 N that labels the nodes of V �
�� A set of edge labeling functions Iv � Ev 
 I� for every v � V � where I is the

set of all intervals of N� that satisfy the following properties for every v � V �

union property the union of all the intervals corresponding to the edges
in Ev is equal to N or to N � fL�v�g�

disjunction property the intervals Iv�e�� and Iv�e�� corresponding to any
two edges e�� e� � Ev are disjoint�



A popular compact routing method is Interval Routing which was introduced
in �SK��� discussed together with other compact routing methods in �LT�� and
implemented on INMOS transputer C��� Router chips �I��� Under Interval
Routing the nodes are labeled with unique integers from the set f�� ���� ng� where
n is the number of nodes in the network� and at each node� each of its adjacent
edges is labeled with one interval of f�� ���� ng� Cyclic intervals �i�e�� intervals
that wrap�around over the end of the name segment� are allowed� Under such
Interval Labeling Scheme �ILS�� at each node i� messages destined to node j are
sent on the unique edge that is labeled with an interval that contains j� A valid
ILS of a network is an ILS under which every message will eventually arrive at
its destination� A simple algorithm that generates a valid ILS for every network
was presented in �SK��� The algorithm is based on a BFS spanning tree of the
network� it implies an upper bound of �D on the length of a path a message
traverses� where D is the diameter of the network� but it has the disadvantage
that all routings are performed on a tree� �LT�� presented a di�erent algorithm
for ILS� based on a DFS spanning tree� though the algorithm does not imply
any upper bound on the length of a path traversed by a message� it has the
advantage that every link of the network is used for routing� In �R�� a lower
bound of ���D � ��� was proved for the maximal length of a path a message
traverses under Interval Routing� and this bound was improved in �TL�� to
����D � ��

Linear Interval Routing ��BLT��� is a restricted variant of Interval Routing
which uses only linear intervals �i�e�� intervals with wrap�around are not allowed��
It is also the simplest form of Pre
x Routing which is another compact routing
method �introduced in �BLT���� It was noted in �BLT�� that not every network
has a valid Linear Interval Labeling Scheme �LILS�� A complete characterization
of the networks that admit a valid LILS was presented in �FG��� together with
an algorithm that generates a valid LILS in case one exists� The algorithm in
�FG�� is incremental in the sense that it starts by labeling a small sub�network
and then in each iteration it labels an unlabeled path in the network until all
nodes and edges are labeled� The algorithm does not imply any upper bound on
the length of a path traversed by a message� indeed� the question of 
nding a
non�trivial upper bound for Linear Interval Routing is still open� In �EMZ�	 a
lower bound of ��D�� on the length of a path a message traverses in a network
under a valid LILS was presented�

In this paper we present a new algorithm that generates an LILS for every
network that admits one� Our algorithm is based on a DFS spanning tree of
the network and thus is �in the spirit� of the algorithms for Interval Routing
��SK��� LT���� In fact� by utilizing the special structure of networks which
admit valid LILS� it accomplishes the same bene
ts as the algorithm in �LT��
for Interval Routing but it does not use wrap�around intervals� Our algorithm
has the following advantages over the algorithm of �FG��� ��� It utilizes the
well�known theory of DFS spanning trees� and is thus simpler to understand
and to implement� ��� it uses all links of the network �at least in one direction�
for routing� thus it better distributes the load� and ��� it guarantees that some
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Abstract� Linear Interval Routing is a space�e�cient routing method
for point�to�point communication networks� It is a restricted variant of
Interval Routing where the routing range associated with every link is
represented by an interval with no wrap�around� It was noted in �BLT���
that not every network has a valid Linear Interval Labeling Scheme
	LILS
� A complete characterization of the networks that admit a valid
LILS was presented in �FG���� together with an algorithm that generates
a valid LILS in case one exists� We present a new algorithm that gener�
ates an LILS for every network that admits one� Our algorithm is based
on a DFS spanning tree of the network� and is �in the spirit� of the algo�
rithms for Interval Routing� Our algorithm has few advantages over the
algorithm of �FG���� it utilizes the well�known theory of DFS spanning
trees and is thus simpler to understand and to implement� it uses all
links of the network for routing 	thus it better distributes the load
� and
it guarantees that some paths traversed by messages are shortest length
paths�

� Introduction

In a communication network� where communication between nodes is accom�
plished by sending and receiving messages� a routing algorithm is employed to
ensure that every message will reach its destination� An optimal routing method
routes every message to its destination in the shortest way� Usually optimal rout�
ing is achieved by keeping in each node a table with n entries and such that the
i�th entry in the table determines the edge to be traversed by a message destined
to node i� For large networks it is practical to consider routing methods in which
less than ��n� space is used in each node� though such routing methods may not
be optimal� The trade�o� between space and e�ciency was extensively studied
in the past decade �see� e�g�� �PU��� ABLP��� AP��� GP�	a� GP�	b� and many
compact routing methods were developed and analyzed �see� e�g���SK��� LT���
BLT��� BLT��� FGS��� FGNT����

� This reseaech was supported by the fund for promoting reseach in the Technion� and
by the Bernard Elkin Chair in Computer Science�


