
Deconstructing Amazon EC2 Spot Instance Pricing

Orna Agmon Ben-Yehuda Muli Ben-Yehuda Assaf Schuster Dan Tsafrir

Computer Science Department
Technion – Israel Institute of Technology

Haifa, Israel
{ladypine, muli, assaf, dan}@cs.technion.ac.il

Abstract—Cloud providers possessing large quantities of
spare capacity must either incentivize clients to purchase it
or suffer losses. Amazon is the first cloud provider to address
this challenge, by allowing clients to bid on spare capacity
and by granting resources to bidders while their bids exceed
a periodically changing spot price. Amazon publicizes the spot
price but does not disclose how it is determined.

By analyzing the spot price histories of Amazon’s EC2 cloud,
we reverse engineer how prices are set and construct a model
that generates prices consistent with existing price traces. We
find that prices are usually not market-driven as sometimes
previously assumed. Rather, they are typically generated at
random from within a tight price interval via a dynamic hidden
reserve price. Our model could help clients make informed
bids, cloud providers design profitable systems, and researchers
design pricing algorithms.

Keywords-cloud; spot price; spot instance; Amazon EC2

I. INTRODUCTION

Unsold cloud capacity is wasted capacity, so cloud
providers would naturally like to sell it. Clients might be
enticed to purchase it if they are provided with enough
incentive, notably, a cheaper price. In late 2009, Amazon
was the first cloud provider to attempt to provide such an
incentive by announcing its spot instances pricing system.
“Spot Instances [...] allow customers to bid on unused
Amazon EC2 capacity and run those instances for as long
as their bid exceeds the current Spot Price. The Spot
Price changes periodically based on supply and demand,
and customers whose bids exceeds it gain access to the
available Spot Instances” [1]. With this system, Amazon
motivates purchasing cheaper capacity while ensuring it can
continuously act in its best interest by maintaining control
over the spot price. Section II summarizes the publicly
available information regarding Amazon’s pricing system.

Amazon does not disclose its underlying pricing policies.
Despite much interest from outside Amazon [2]–[4], its spot
pricing scheme has not, until now, been deciphered. The
only information that Amazon does reveal is its temporal
spot prices, which must be publicized to make the pricing
system work. While Amazon provides only its most recent
price history, interested parties record and accumulate all
the data ever published by Amazon, making it available on
the Web [5], [6]. We leverage the resulting trace files for

this study. The trace files, along with the methodology we
employ to use them, are described in Section III.

Knowing how a leading cloud provider like Amazon
prices its unused capacity is of potential interest to both
cloud providers and cloud clients. Understanding the consid-
erations, policies, and mechanisms involved may allow other
providers to better compete and to utilize their own unused
capacity more effectively. Clients can likewise exploit this
knowledge to optimize their bids, to predict how long their
spot instances would be able to run, and to reason about
when to purchase cheaper or costlier capacity.

Motivated by these benefits, we attempt in Sections IV–
V to uncover how Amazon prices its unused EC2 capacity.
We construct a spare capacity pricing model and present
evidence suggesting that prices are typically not determined
according to Amazon’s public definition of the spot pricing
system as quoted above. Rather, the evidence suggests that
spot prices are usually drawn from a tight, fixed price
interval, reflecting a random reserve price that is not driven
by supply and demand. (A reserve price is a hidden price
below which bids are ignored.) Consequently, published
spot prices reveal little about actual, real-life client bids;
studies that assume otherwise (e.g., [7], [8]) are, in our
view, misguided and their results questionable. We speculate
that Amazon utilizes such a price interval because its spare
capacity usually exceeds the demand.

In Section VI we put our model to the test by conducting
pricing simulations and by showing their results are con-
sistent with EC2 price traces. We then discuss the possible
benefits of using dynamic reserve price systems (such as the
one we believe is used by Amazon) in Section VII. Finally,
we survey the related work in Section VIII and offer some
concluding remarks in Section IX.

II. PRICING CLOUD INSTANCES

Amazon’s EC2 clients rent virtual machines called in-
stances, such that each instance has a type describing its
computational resources as follows: m1.small, m1.large
and m1.xlarge, respectively denote small, large, and extra
large “standard” instances; m2.xlarge, m2.2xlarge, and
m2.4xlarge respectively denote extra large, double extra
large, and quadruple extra large “high memory” instances;

and c1.medium and c1.xlarge respectively denote medium
and extra-large “high CPU” instances.

An instance is rented within a geographical region. We use
data from four EC2 regions: us-east, us-west, eu-west and
ap-southeast, which correspond to Amazon’s data centers
in Virginia, California, Ireland, and Singapore.

Amazon offers three purchasing models, all requiring a
fee from a few cents to a few dollars, per hour, per running
instance. The models provide different assurances regarding
when instances can be launched and terminated. Paying a
yearly fee (of hundreds to thousands of dollars) buys clients
the ability to launch one reserved instance whenever they
wish. Clients may instead choose to forgo the yearly fee
and attempt to purchase an on-demand instance when they
need it, at a higher hourly fee and with no guarantee that
launching will be possible at any given time. Both reserved
and on-demand instances remain active until terminated by
the client.

The third, cheapest purchasing model provides no guaran-
tee regarding either launch or termination time. When plac-
ing a request for a spot instance, clients bid the maximum
hourly price they are willing to pay for running it (called
declared price or bid). The request is granted if the bid is
higher than the spot price; otherwise it waits. Periodically,
Amazon publishes a new spot price and launches all waiting
instance requests with a maximum price exceeding this
value; the instances will run until clients terminate them
or the spot price increases above their maximum price. All
running spot instances incur a uniform hourly charge, which
is the current spot price. The charge is in full hours, unless
the instance was terminated due to a spot price change, in
which case the last fraction of an hour is free of charge.

In this work, we assume that instances with bids equal
to the spot price are treated similarly to instances with bids
higher than the spot price.

III. METHODOLOGY

Trace Files: We analyze 64 (= 8×4×2) spot price trace
files associated with the 8 aforementioned instance types, the
4 aforementioned regions, and 2 operating systems (Linux
and Windows). The traces were collected by Lossen [5] and
Vermeersch [6]. They start as early as November 30, 2009
(traces for region ap-southeast are only available from the
end of April 2010). In this paper, unless otherwise stated,
we use data accumulated until July 13, 2010,

Availability: We define the availability of a declared
price as the fraction of the time in which the spot price
was equal to or lower than that declared price. Formally,
a persistent request is a series of requests for an instance
that is immediately re-requested every time it is terminated
due to the spot price rising above its bid. Given a declared
price D, we define D’s availability to be the time fraction
in which a persistently requested instance would run if D
is its declared price. Formally, let H be a spot price trace

file, and let Tb and Te be the beginning and end of a time
interval within H . The availability of D within H during
[Tb, Te] is:

availabilityH(D) |[Tb,Te] =
TH
b→e(D)

Te − Tb

where TH
b→e(D) denotes the time between Tb and Te during

which the spot price was lower than or equal to D. The
availability of price D reflects the probability that spot
instances with this bid would be immediately launched when
requested at some uniformly random time within [Tb, Te].

IV. EVIDENCE FOR ARTIFICIAL PRICING INTERVENTION

A. Market-Driven Auctions

Amazon’s description of “How Spot Instances Work” [1]
gives the impression that spot prices are set through a
uniform price, sealed-bid, market-driven auction. “Uniform
price” means all bidders pay the same price. “Sealed-bid”
means bids are unknown to other bidders. “Market-driven”
means the spot price is set according to the clients’ bids. One
example of such an auction is an (N + 1)th price auction
of multiple goods, with retroactive supply limitation (after
clients bid), to maximize the provider’s revenue. However,
Amazon might be using some other mechanism consistent
with their description.

In an (N + 1)th price auction of multiple goods, each
client bids for a single good (i.e., a spot instance). The
provider chooses the top N bidders. The provider may
set N up-front on the basis of available capacity. The
provider might retroactively set N after receiving the bids,
to maximize revenue. In any case, N cannot exceed the
available capacity. The provider sets the uniform price to
the price declared by the highest bidder who did not win
the auction (bidder number N + 1) and publishes it. The
top N winning bidders pay the published price and their
instances start running. In this case, the published price is a
price bid by an actual client.

The provider may also decide to ignore bids below a
publicly known minimal price or below a hidden reserve
price (no relation to reserved instances), to prevent the
goods from being sold cheaply, or to give the impression
of increased demand.

We conjecture that usually, contrary to impressions con-
veyed by Amazon [1] and assumptions made by re-
searchers [7], [8], the spot price is set according to a
constantly changing reserve price, disregarding client bids.
In other words, most of the time the spot price is not market-
driven but is set by Amazon according to an undisclosed
algorithm.

B. Evidence: Availability as a Function of Price

In support of this conjecture, we analyze the relationship
between an instance’s declared price (how much a client
would be willing to pay for it) and the resulting availability

2

between January 20th and July 13th, 2010. Fig. 1 shows the
availability of different spot instance types as a function of
declared price (price-availability graphs), for all examined
Windows spot instance types in all regions. Results for in-
stances running Linux (not shown) are qualitatively similar.
The prices of different resources seem unrelated, except that
they share the same functional shape: a sharp linear increase
in availability until a knee (sharp change in slope) is reached.
The knee is usually high, representing an availability of 0.95
or more. After the knee, the availability grows with declared
price but at a slower, non-linear rate.

Fig. 2 shows normalized price-availability graphs for
Linux: prices on the horizontal axis are normalized by their
instance-type’s respective on-demand prices. We see that
Linux types can be classified by region. Each of the two
region classes has a distinct normalized price range in which
the availability’s dependency on the price is linear. One class
contains us-east, and the other class contains the other
regions.

Fig. 3 shows the data presented in Fig. 1 as normalized
price-availability graphs. As in Fig. 2, different types can
be classified by region: us-east or all other regions. Not as
in Fig. 2, different types have different normalized prices
within a class, and the relative price difference between
any type pair is the same in each class. The m1.small
type, indicated in Fig. 3 by an arrow, has a particularly
low knee, with an availability of 0.45. Figs.. 1–3 show
that availability strongly depends on declared price for all
regions and all instance types, and that this dependency
has a typical recurring shape, which can be explained by
assuming that Amazon uses the same mechanism to set
the price in different regions. The particular shape of the
dependency could be explained in one of two ways: either
Amazon’s spot prices reflect real client bids and the shaped
dependency occurs naturally, or the spot prices are the result
of a dynamic hidden reserve price algorithm, of which the
shaped dependency is an artifact.

Let us first consider the assumption that the shaped
dependency occurs naturally due to real client bids. The
differences between absolute price ranges of the same type
in different regions (Fig. 1) show that different regions expe-
rience different supply and demand conditions. This means
that uncoordinated client bids for different types and regions
would have to naturally and independently create all of
the following phenomena: (1) normalized prices turning out
identical for various Linux types but different for Windows
types; (2) a rigid linear connection between availability and
price that turns out to be identical for different types and
regions; (3) a distinct region having a normalized price range
different than all the rest (which turn out to have identical
ranges); and (4) normalized prices for Windows instances
which differ from one another by identical amounts in each
of the two region classes, creating the same pattern for both.

For the sake of argument, let us also consider the possibil-

ity that a conspiring group of clients have already reverse-
engineered Amazon’s algorithm and submit coordinated
bids that cause the aforementioned phenomena. Since the
phenomena we describe can be seen in all 64 analyzed
traces, these clients would have to consume a sizable share
of the spot instance supply in all 64 resources, bidding low
bids (which would then eventually become the spot price).
This would systematically limit the supply available to the
many different legitimate clients known to use EC2 spot
instances. When these clients then bid higher than the spot
price, the spot price rises, terminating the conspiring clients’
instances. From this point on, the conspiring clients’ effect
on the spot price is limited. Furthermore, customers must
have Amazon’s approval for the purchase of spot instances
beyond the first 100. Hence, we consider this explanation
highly unlikely.

Our hypothesis: we consider it unlikely that all four
phenomena could have resulted from Amazon setting the
price solely on the basis of client bids. We therefore lean
towards the hypothesis that Amazon uses a dynamic algo-
rithm, independent of client bids, to set a reserve price for
the auction, that the auction’s result is usually identical to
the reserve price, and that the prices Amazon announces are
therefore usually not market-driven. Both the simulation re-
sults presented in Section VI and Occam’s razor—preferring
the simplest explanation—support this hypothesis.

If our hypothesis is correct, then all four phenomena
listed above are easily explained by a dynamic reserve
price algorithm which gets as input prices normalized by
respective on-demand prices. This input is different for the
us-east region, for different sets of types, and for different
operating systems.

C. Dynamic Random Reserve Price

First we will characterize the requirements for a dynamic
reserve price algorithm that will be consistent with the
published EC2 price traces. Then we will construct such an
algorithm, and propose it as a candidate for the algorithm
behind the EC2 pricing.

We contend that for each spot instance type, the dynamic
reserve price algorithm gets as input a floor price F and
a ceiling price C, expressed as fractions of the on-demand
price. The floor price is the minimal price, exemplified in
Fig. 1. The ceiling price is the price corresponding to the
knee in the graph (shown in the same figure), or the maximal
price if no knee exists. The algorithm dynamically changes
the reserve price such that there is a linear relation between
availability and prices in the pricing band (the floor–ceiling
range). It guarantees that the reserve price is kept within the
band.

We deconstruct the reserve price algorithm using traces
from April–July, 2010, when the spot price in eight ap-
southeast.windows instance types almost always stayed
within the pricing band. We matched the price changes in

3

0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

a
va

ila
b

ili
ty

declared price [$/hour]

us−east m1 instances

us−east m2.xlarge instance

us−east m2 2xlarge and 4xlarge

us−east c1 instances

other regions m1 instances

other regions m2.xlarge instances

other regions m2 2xlarge and 4xlarge instances

other regions c1 instances

Ceiling
Price (C)

Floor
Price (F)

Figure 1: Availability of Windows-running spot instance types as a function of their declared price. The legend is multiplexed:
us-west, eu-west, ap-southeast all appear in the legend as “other regions”. m1.small, m1.large and m1.xlarge all appear
as m1. c1.medium and c1.xlarge appear as c1.

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

0.2

0.4

0.6

0.8

1

av
ai

la
bi

lit
y

declared price as fraction of on−demand price

us−east m1 instances

us−east m2.xlarge instance

us−east m2 2xlarge and 4xlarge .

us−east c1 instances

other regions m1 instances

other regions m2.xlarge instances

other regions m2 2xlarge and 4xlarge instances

other regions c1 instances

Figure 2: Availability of Linux-running spot instance types as a function of their normalized declared price. The declared
price is divided by the price of a similar on-demand instance. The legend is multiplexed as in Fig. 1. Most of the curves
overlap.

0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

a
va

ila
b

ili
ty

declared price as fraction of on−demand price

us−east m1 instances

us−east m2.xlarge instance

us−east m2 2xlarge and 4xlarge .

us−east c1 instances

other regions m1 instances

other regions m2.xlarge instances

other regions m2 2xlarge and 4xlarge instances

other regions c1 instances

us−east m1.small

Figure 3: Availability of Windows-running spot instance types as a function of their normalized declared price. The declared
price is divided by the price of a similar on-demand instance. The legend is multiplexed as in Fig. 1. Many of the curves
overlap. us-east.windows.m1.small is indicated by an arrow.

4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
−0.02

0

0.02

0.04

0.06

0.08

band width [$]

m
a

tc
h

e
d

 w
h

it
e

 n
o

is
e

 σ
 o

f
A

R
1

 p
ro

c
e

s
s

y = 0.39*x − 0.00026

ap−southeast−1

 linear

ap−southeast−1.windows.m1.small

Figure 4: Standard deviation of matched AR(1) process as
a function of pricing band width.

those traces (denoted by ∆) with an AR(1) (auto-regressive)
process .We found a good match (i.e., negligible coefficients
of higher orders ai for i > 1) to the following process:

∆i = −a1∆i−1 + ε(σ), (1)

where a1 = 0.7 and ε(σ) is white noise with a standard
deviation σ. We matched σ with a value of 0.39(C − F).
These parameters fit all the analyzed types except m1.small,
which matched different values (a1 = 0.5, σ = 0.5(C −
F)). The standard deviations are given in Fig. 4. This close
fit—the same parameters characterizing the randomness of
several different traces—is consistent with our hypothesis
that the prices are usually set by an artificial algorithm.

Prices within the band might also result from clients
bidding within the band (although others have already noted
that such bids are not cost-effective [2], [4]), but mean
price analysis indicates otherwise. Since an AR(1) process
is symmetric, its theoretic average is the middle of the band.
For the 8 traces we used here, the average price was 98%-
100% of the middle of the band. This, too, supports our
hypothesis that the spot price within the band is almost
always determined solely by the AR(1) process, i.e., is equal
to the reserve price. In addition, we find that on average over
all the 64 traces we analyzed, prices are within the band
98% of the time. We conclude that prices are determined
artificially by an AR(1) reserve price algorithm and do not
represent real client bids around 98% of the time.

On the basis of this analysis, we construct the AR(1)
reserve price algorithm: The first two reserve prices are
defined as P−1 = F + 0.1(C − F), P0 = F . The
following prices are defined as Pi = Pi−1 + ∆i, where
∆i = −0.7 · ∆i−1 + ε(0.39 · (C − F)). The process is
truncated to the [F,C] range by regenerating the white noise
component while Pi is outside the [F,C] range or identical
to Pi−1. All prices are rounded to one-tenth of a cent, as
done by Amazon during 2010.

Fig. 5 provides a spectral analysis of one of the Amazon
traces and of prices produced by our AR(1) algorithm.
The match shows that our reverse-engineered reserve price
algorithm is consistent with Amazon’s algorithm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−100

−90

−80

−70

−60

−50

−40

Normalized frequency (× π rad/sample)

O
n
e
−

s
id

e
d
 P

S
D

(d

B
/r

a
d
/s

a
m

p
le

)

PSD estimate of EC2 ap−southeast trace

PSD estimate of AR(1) process

Figure 5: Power spectral density (Periodogram) estimate of
an EC2 price trace, and our derived AR(1) price trace.

V. PRICING EPOCHS

To statistically analyze spot price histories, it would be er-
roneous to assume that the same pricing model applies to all
the data in the history trace. Rather, each trace is divided to
contiguous epochs associated with different pricing policies.
We show here that our main traces are divided into three
parts as depicted in Fig. 6. Since the pricing mechanism
changes notably and qualitatively between epochs, data
regarding these epochs should be separated if an associated
statistical analysis is to be sound. Accordingly, for the
purpose of evaluating the effectiveness of client algorithms,
strategies, and predictions, the data from a (single) epoch of
interest should be used.

The first epoch starts, according to our analysis, as early
as November 30th, 2009 and ends on December 14th, 2009,
the date on which Amazon announced the availability of spot
instances. During this time instances were unknown to the
general public. Hence, the population which undertook any
bidding during the first epoch was smaller than the general
public, of nearly constant size, and possibly had additional
information regarding the internals of the pricing mechanism
at that time.

The second epoch begins with the public announcement
on December 14th, 2009. It ends with a pricing mechanism
change around January 8th, 2010, when minimal spot prices
suddenly change in most traces (usually decrease, though
Fig. 6 demonstrates an increase). It is characterized by long
intervals of constant low prices.

The third epoch begins on January 20th, 2010. Instance
types and regions began to change minimal price around
January 8th, but we define the beginning of the epoch as
the date in which the last one (eu-west.linux.m2.2xlarge)
reached a new minimal price. Due to (1) the gradual move
to the new minimal values and to (2) a bug in the pricing
mechanism that was fixed in mid-January 2010 [9], we
choose to disregard data from the transition period between
the second and third epochs.

Additional epoch-defining dates are dates when the price-
change timing algorithm was changed, e.g., July 25th, 2010
and February 9th, 2011 for the us-east region (see Sec-
tion VI).

5

Dec Jan Feb Mar Apr May Jun Jul

0.4

0.5

0.6

0.7

0.8

0.9

1

date (Dec 2009 − Jul 2010)

ch
ar

ge
d

pr
ic

es
 a

s

fr
ac

tio
n

of
 o

n
de

m
an

d
pr

ic
e

New
Min

Price

Tran−
si−
tion

2nd
epoch

1st
epoch

3rd
epoch

low prices Low and High Prices
High
Prices

Figure 6: Price history for us-east.windows.m1.small. Three time epochs are shown, with a transition period between the
second and third epochs. The spot price is presented as a fraction of the on-demand price for the same instance.

These abrupt time-correlated changes in many regions
and instance types further support our hypothesis, since
prices are likely to undergo coordinated and abrupt changes
precisely where they are artificial.

VI. SPOT PRICE SIMULATION

To get a better feel for the validity of our hypothesis, we
simulated the prices and availability resulting from setting
the price via a sealed-bid (N + 1)th price auction with a
reserve price with retroactive supply limitation, as described
in Section IV-A. The on-demand price was defined as 1.
The reserve price was either constant (0.4) or the AR(1)
algorithm defined in Section IV-C, with a band of [0.4, 0.45].

Workload Modeling: In the absence of cloud workload
traces, we fed the simulation with 20K tasks, with run-
times in the range of 10 minutes to 24 hours, out of the
LPC-EGEE cluster workload from 2004, kindly provided
by Medernach [10] via the Parallel Workloads Archive [11].
LPC-EGEE is characterized by tasks which are small in
comparison to the capacity of the cluster, allowing for
elasticity. In the simulation, each task was interpreted as a
single instance, submitted at the same time and requiring the
same amount of run-time as in the original trace to complete.

Customer Bid Modeling: Due to the lack of information
on the distribution of real client bids (since we argue that
Amazon’s price traces supply little information of this type),
we compare several bidding models, and verify that the
qualitative results are insensitive to the bid modeling. All
the distributions were adjusted to uniform minimal and on-
demand prices.

The first model is a Pareto distribution (a widely applica-
ble economic distribution [12], [13]) with a minimal value
of 0.4, and a Pareto index of 2, a reasonable value for
income distribution [12]. The second model is N (0.7, 0.32),
truncated at 0.4. The third is a linear mapping from runtimes
to (0.4, 1], which reflects client aversion to having long-
running instances terminated.

Price Change Timing: Price changes in the simulation
are triggered according to the CDF of intervals between
them, collected during January–July 2010, and given in
Fig. 7 (solid line). This period was characterized by quiet
times—prices never changed before 60 minutes or between

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

step length: time between price changes [h]

p
ro

b
a
b
ili

ty

Jan 2010 − Jul 2010

Jul 2010 − Feb 2011

Feb 2011 − April 2011 (present day)

Figure 7: CDF of time interval between price changes for
different versions of the price change scheduling algorithm.
Input: us-east.linux.m1.small

90 and 120 minutes since the previous price change. It is
interesting to note that such quiet times can be monetized
by clients to gain free computation power with a probability
of about 25%, by submitting an instance with a bid of the
current spot price 31 minutes after a price change. The
instance would then have a 50% possibility of undergoing
another price change within 30-60 minutes. If that change
is a price increase, the instance would be terminated, and
the client would gain, on average, 45 minutes of free
computation. Clients do not exploit this loophole in our
simulation.

Fig. 7 also presents the evolution of the timing of price
changes for the us-east region. The next algorithm (in place
from July, 2010 until Feb 8th, 2011) allowed for a quiet hour
after a price change. The following one (starting Feb 9th,
2011) matches an exponential distribution with a 1.5 hour
rate parameter, with five quiet minutes. This almost memory-
less algorithm prevents abuse of the timing algorithm.

Simulator Event-Driven Loop: We created a trace-
based event-driven simulator, where events are: (1) instance
submission and termination and (2) price changes (due to a
scheduled change or to a waiting instance with a bid higher
than the spot price). We ran the simulation on 70 CPUs,
according to the number in the LPC-EGEE trace. We ended
the simulation when the last job had been submitted.

Simulation Results: Simulation results in terms of
price-availability graphs are presented in Fig. 8, for different

6

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

declared price [fraction of on demand price]

a
v
a

ila
b

ili
ty

 f
ra

c
ti
o

n

Const. reserve price, Pareto dist.

AR(1) band of reserve price, Pareto dist.

Const. reserve price, Linear by task length dist.

AR(1) reserve price, Linear by task length dist.

Const. reserve price, Normal dist.

AR(1) band of reserve price, Normal dist.

Figure 8: Simulation results for various bidding models, with
constant and AR(1) reserve price.

0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5 0.51

0.65

0.7

0.75

0.8

0.85

0.9

0.95

declared price as fraction of on demand

a
v
a

ila
b

ili
ty

 f
ra

c
ti
o

n

Figure 9: Availability as a function of the declared price
during the second epoch for us-west.linux.m1.xlarge.

bid models and price setting mechanisms. The functions of
simulations with the AR(1) reserve price feature a linear
segment and a knee in high availability, as do the availability
functions of EC2 during the third epoch, which are shown
in Figs. 1, 2, and 3. The constant reserve price functions
do not exhibit this behavior. Rather, they are jittery, like the
high price regime of the us-east.windows.m1.small graph
in Fig. 3, and the second epoch graph in Fig. 9.

Furthermore, the availability of the reserve price in the
constant reserve price simulations is high (0.5, 0.56, 0.9),
as it is in the second epoch (0.63 in Fig. 9). In contrast,
the availability of the minimal price in the AR(1) reserve
price simulations and in the third epoch tends to zero as the
number of discrete prices within the band grows.

We consider these simulation results another indication
that most prices in the EC2 traces during the third epoch
are set using an artificial, non-market-driven algorithm, in
particular an AR(1) reserve price. The simulation results
also suggest that Amazon set prices via a market-driven
auction with a constant reserve price during the second
epoch (December, 2009 until January, 2010), and that prices
above the band are market-driven.

VII. DYNAMIC RESERVE PRICE BENEFITS

The dynamic AR(1) reserve price mechanism has several
long-term, wide-range, benefits that may justify its use.

Like a constant minimal or reserve price, it guarantees
that on-demand instances are not completely cannibalized
by spot instances. Yet it also allows the provider to sell

instances on machines which would otherwise run idle,
to provide elasticity for the fixed price instances. Spot
instances, which can be quickly evacuated, still reduce the
costs associated with idle servers, with no real harm to the
main offering of on-demand instances.

Katkar and Reiley [14] found that for low-priced eBay
sales of up to $20, (hidden) reserve prices deter good clients
and yield lower revenues than minimal (published) prices.
However, the advantage of the (hidden) reserve price is that
the provider can set it using a random algorithm, with no
obligation to inform clients. A dynamic reserve price is
better than a constant minimal price, because it maintains an
impression of constant change, thus preventing clients from
becoming complacent. It forces them to either bid higher
than the band or tolerate sudden unavailability. It also serves
to occasionally clear queues of low bids within the band, a
purpose that is not served by a constant reserve price that is
equal to the ceiling price.

A random reserve price might also serve other goals, if
the public is unaware of its use. By creating an impression
of false activity (demand and supply changes), the random
reserve price can mask times of low demand and price
inactivity, thus possibly driving up the provider’s stock. A
large enough band covering the spectrum of probable prices
could also mask high demand and low supply, and thus
help to maintain the illusion of an infinitely elastic cloud.
However, if the pricing band is relatively small, as in the
case of Amazon EC2 spot prices, the provider’s use of an
AR(1) process for setting the price within the band is a
strong indication of low demand.

VIII. RELATED WORK

Optimizing Client Goals Using Spot Price Traces:
Andrzejak, Kondo and Yi used spot price histories to advise
the client how to minimize monetary costs while meeting
an SLA [15], and to schedule checkpoints [16] and migra-
tions [17]. The first two works used data from the transition
period between the second and third epoch, and focused on
eu-west, which suffered most from the transition. The last
interchangeably used data from before and after the change
in the price change algorithm on July 25, 2010.

Mattess, Vecchiola and Buyya [4] examined client strate-
gies for using spot instances to manage peak loads. They
evaluated the strategies using an EC2 spot instance trace of
the third epoch only, attributing the different trace behavior
prior to January 18th, 2010 to Christmas and to the recent
introduction of spot instances. They identified the price band
and recommended bidding right under the on-demand price,
noting that bidding just above the band is almost as good.

Chohan et al. [2] note the cost-effectiveness of bidding
at the top of the band. They analyze price histories from
the third epoch only, because of a pricing bug, which was
fixed in mid-January 2010 [9]. The bug allowed a region to
have a low price while in at least one availability zone in

7

that region instances with higher prices were terminated due
to congestion. The authors attributed the qualitative change
of prices between the second and third epoch to the bug
fix. However, this bug fix is unlikely to have caused the
qualitative price changes we observe during January 2010.

Optimizing Provider Algorithms Using Spot Traces:
Zhang et al. [7] assumed Amazon uses a market-driven
auction, and hence concluded that spot prices reflect actual
client bids. On this basis, they sought resource allocations
which optimized the provider’s revenue. Chen et al. [8]
assumed EC2 price traces represent market clearing prices.
We doubt these assumptions in light of our findings that
98% of the time, on average, EC2 price traces are the reserve
prices, and as such do not provide a lot of information about
real client bids, nor are necessarily clearing prices.

Free Spot and Futures Markets: While Amazon is cur-
rently the only provider offering “spot instances,” free com-
puting resource markets have already been analyzed [18]–
[20]. Price traces of such free markets [18], [19] differ from
EC2 spot price traces: they do not have a hard minimal
price and are not anchored in the bottom of the price
range. Rahman, Lu and Gupta [21] evaluate free spot market
options using EC2 traces, and note that the “data does not
show enough fluctuations as expected in a free market.”

IX. CONCLUSIONS

Amazon EC2 spot price traces provide more information
about Amazon than about its clients. We have shown that it
is likely that Amazon sets spot prices using a random AR(1)
(hidden) reserve price which might be the basis of a market-
driven mechanism, such that high prices may reflect market
changes, but most low prices, within a band of prices, are
usually indicative only of the dynamic reserve price.

Understanding how Amazon prices its spare capacity is
useful for clients, who can decide how much to bid for
instances; for providers, who can learn how to build more
profitable systems; and for researchers, who can differentiate
between prices set by an artificial process and prices likely to
have been set by real client bids. We have shown that many
price trace characteristics (e.g., minimal value, band width,
change timing) are artificial, and might change according
to Amazon’s decisions. Thus, researchers should be aware
of the epochs present in their traces when using those
traces to model future price behavior or to evaluate client
algorithm performance. We have shown that indiscriminately
using Amazon’s current traces to model client behavior is
unfounded on average 98% of the time.

REFERENCES

[1] “Amazon EC2 spot instances,” http://aws.amazon.com/ec2/
spot-instances/, [accessed Aug, 2011].

[2] N. Chohan, C. Castillo, M. Spreitzer, M. Steinder, A. Tantawi,
and C. Krintz, “See spot run: using spot instances for mapre-
duce workflows,” in USENIX Conference on Hot Topics in
Cloud Computing (HotCloud), 2010.

[3] D. Samovskiy, “Unexpected similarities in EC2 spot price
history between regions,” http://tinyurl.com/somic, Dec 2010,
[accessed Apr, 2011].

[4] M. Mattess, C. Vecchiola, and R. Buyya, “Managing peak
loads by leasing cloud infrastructure services from a spot
market,” in IEEE Int’l Conference on High Performance
Computing and Communications (HPCC), 2010.

[5] T. Lossen, “Cloud exchange,” http://cloudexchange.org/, [ac-
cessed Apr, 2011].

[6] K. Vermeersch, “Spot watch,” http://spotwatch.eu/input/, ac-
cessed Apr, 2011.

[7] Q. Zhang, E. Gurses, R. Boutaba, and J. Xiao, “Dynamic re-
source allocation for spot markets in clouds,” in Workshop on
Hot Topics in Management of Internet, Cloud, and Enterprise
Networks and Services (Hot-ICE), 2011.

[8] J. Chen, C. Wang, B. B. Zhou, L. Sun, Y. C. Lee, and A. Y.
Zomaya, “Tradeoffs between profit and customer satisfaction
for service provisioning in the cloud,” in HPDC, 2011.

[9] “Spot instance termination conditions?” http://tinyurl.com/
2dzp734, Mar 2010, online AWS Developer Forums discus-
sion, accessed Apr, 2011.

[10] E. Medernach, “Workload analysis of a cluster in a grid
environment,” in Workshop on Job Scheduling Strategies for
Parallel Processing, 2005.

[11] D. Feitelson, “Parallel workloads archive,” Website, http://
www.cs.huji.ac.il/labs/parallel/workload/index.html.

[12] W. Souma, “Physics of personal income,” 2002. [Online].
Available: http://arxiv.org/pdf/cond-mat/0202388

[13] M. Levy and S. Solomon, “New evidence for the power-law
distribution of wealth,” Physica A, vol. 242, pp. 90–94, 1997.

[14] R. Katkar and D. H. Reiley, “Public versus secret reserve
prices in ebay auctions: Results from a pokémon field exper-
iment,” Advances in Economic Analysis and Policy, 2006.

[15] A. Andrzejak, D. Kondo, and S. Yi, “Decision model for
cloud computing under SLA constraints,” in IEEE/ACM Inter-
national Symposium on Modelling, Analysis and Simulation
of Computer and Telecommunication Systems (MASCOTS),
2010.

[16] S. Yi, D. Kondo, and A. Andrzejak, “Reducing costs of spot
instances via checkpointing in the Amazon Elastic Compute
Cloud,” in IEEE International Conference on Cloud Comput-
ing (CLOUD), 2010.

[17] S. Yi, A. Andrzejak, and D. Kondo, “Monetary cost-aware
checkpointing and migration on Amazon cloud spot in-
stances,” IEEE Transactions on Services Computing, 2011.

[18] F. M. Ortuno and U. Harder, “Stochastic calculus model
for the spot price of computing power,” in Annual UK
Performance Engineering Workshop (UKPEW), 2010.

[19] K. Vanmechelen, W. Depoorter, and J. Broeckhove, “Com-
bining futures and spot markets: A hybrid market approach
to economic grid resource management,” Journal of Grid
Computing, vol. 9, pp. 81–94, 2011.

[20] J. Altmann, C. Courcoubetis, G. Stamoulis, M. Dramitinos,
T. Rayna, M. Risch, and C. Bannink, “GridEcon: A market
place for computing resources,” in Grid Economics and
Business Models, ser. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2008, vol. 5206, pp. 185–196.

[21] M. R. Rahman, Y. Lu, and I. Gupta, “Risk aware
resource allocation for clouds,” University of Illinois at
Urbana-Champaign, Tech. Rep., 2011. [Online]. Available:
http://hdl.handle.net/2142/25754

8

