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Why Share Memory?

@ Server consolidation saves money and energy.
@ Memory is a key bottleneck for VM consolidation.
@ Sharing enables memory over-commitment.
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Memory Over-Commit Mechanisms for Virtualization

© Ballooning - well established, drivers widely available
© Page Sharing
@ Collaborative (e.g. Satori: Enlightened Page Sharing, by
Milos et al.) - requires guest modification
(paravirtualization) or by hypervisor only (unmodified
guest OS - full virtualization)?
@ Content based or by tracking changes (faster, requires
guest changes, e.g., Satori)
@ Whole pages (Waldspurger of VMware, OSDI'02) or
sub-pages?

© Paging - orthodox but slow
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Sharing
Patching
Compression
Paging

Design

Cascade of Mechanisms
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Design Sharing
Patching
Compression
Paging

Sharing

@ |dentify: Hash collision + verification

@ Share: directing guest pages to the same physical page,
read only

@ Break: Copy On Write (COW)
@ Clean: when 0 references
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Design Sharing
Patching
Compression
Paging

Mixed Real-World Workloads

Each VM with 512 MB. Stressing memory. Following VMmark
(VMware), VMbench (Moeller, PhD thesis)
©Q Mixed-1
@ Windows, running RUBIS (e-commerce: Apache+MySQL)
@ Debian, compiling Linux kernel
© Slackware , compiling Vim, then running Imbench (memory,
network, filesystem, signals....)
O Mixed-2
@ Windows, Apache with 32K static pages requested by
external httperf
@ Debian, Syshench (db) with 10 threads creating 100K
requests
© Slackware, dbench (filesystem) with 10 clients for 6
minutes, then 10Zone (filesystem)
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Design Sharing
Patching
Compression
Paging

Potential Estimate for Patching and Sharing

Ran Mixed-1

Took memory snapshot

Suspended the VM after completing the benchmark

Computed patches with XDelta (FOSS binary diff)
Patch limit: 2K (half a page), average patch: 1K
Zero pages appear less when VMs get less memory, when

scrubbing is used less, when Linux caches more files

Pages Initial After After
Sharing Patching
Unigue 191.646 191.646
Sharable (non-zero) 52436 3577
Zemo 149,038 1
Total 303,120 105224 | 8B 422
Reference 50,727 | 50,727
Patchable 144 497 | 37.695
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Design Sharing
Patching
Compression
Paging

HashSimilarityDetector(k,s),c

@ Hash k - s randomly chosen 64-byte block locations on the
page
@ Group to k groups, each group is an index in the hash table

@ HashSimilarityDetector(2,1): two keys for each page, two
indexations (a candidate needs to match only one)

@ c: number of different pages stored for each key (choose
the best patch among the stored pages)

@ Smaller k,s,c = less resources used
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Design Sharing
Patching

Compression
Paging

Savings from Patching Only as Function of k,s,c
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Chosen: 2 hash keys of single locations. 1 stored page. 18-bit
hashes (32 bit hashes yields: 25% instead of 20% for mixed-1).
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Design Sharing
Patching
Compression
Paging

Compression

@ When:

@ Compression ratio is high enough.

@ Page is infrequently accessed - “Not Recently Used” (NRU).
@ Page is unique.

@ Compressed page is invalidated, so the hypervisor knows
when to decompress it.
@ Pluggable: currently supports

@ LZO (Lempel-Ziv, very fast decompression, trade-off
between compression speed and quality)
@ WKdm (fast encoding)

@ Decompressed page remains open in memory until
considered for compression again.
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Design Sharing
Patching
Compression

Paging

@ Involves disk 1/O - slow

@ Extends beyond physical memory
@ Candidates — NRU

°

Swapped out pages cannot be shared or referenced for
patching

Safety net
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Implementation

Changes to Xen

@ 14.5K lines added + 19K lines for existing libraries

@ Changes mainly in guest physical to machine table, and in
the shadow page tables

@ Difference Engine (DE) not in effect during boot, only when
shadow page tables are used

@ Not touching DomO to avoid circularity

@ ioemu (IO emulator, in DomO0) changed to map only several
guest pages to Dom0.

@ Block allocator - to efficiently manage storage of
compressed and shared pages (consume less than one

page).
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Implementation

Clock used to find NRU pages.

@ Each invocation
@ Resets Read, Modified bits

@ Scans a part of memory
@ Returns limited-size list of NRU pages

@ Invocations at least 4 seconds apart

@ Xen's shadow page tables code modified: setting those
R/M bits in the guest physical to host physical map, based
on the shadow page tables.
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Implementation

Clock Conditions: Policy/Mechanism Separation

recently=since last scan
© C1 — Recently modified
@ C2 — Recently read only
© C3 — Recently nothing
© C4 — Nothing for several scans (needs 2 additional bits)
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Implementation

Clock Conditions: Policy/Mechanism Separation

Default Policy:
© C1 — Recently modified — ignore
@ C2 — Recently read only
© C3 — Recently nothing
© C4 — Nothing for several scans
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Implementation

Clock Conditions: Policy/Mechanism Separation

Default Policy:
© C1 — Recently modified — ignore
@ C2 — Recently read only — share/patch reference
© C3 — Recently nothing — share/patch
© C4 — Nothing for several scans — anything
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Implementation

Clock Conditions: Policy/Mechanism Separation

Default Policy:
© C1 — Recently modified — ignore
@ C2 — Recently read only — share/patch reference
© C3 — Recently nothing — share/patch
© C4 — Nothing for several scans — anything
Alternative policies:

@ Consider all pages for anything - insignificant excess
saving

@ Compression before patching - slightly less savings, less
performance overhead.
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Implementation

Sharing

@ SuperFastHash
@ Hash table needs to fit in Xen’s limited memory (12M)

@ Constant 5 passes, hashing 1/5 of the range each time :
1.76M page sharing hash table size
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Implementation

Patching

@ Similarity Hash Table is also stored in Xen itself, statically
allocated, sized 2 unsigned longs (1MB).
@ Clearing:
= At least after a full clock pass (=5x partial) - allows finding

similarity between keys from different passes.
< Early clearing reduces stale data (pages changed after
indexing).
= Similarity Hash Table cleared each full clock pass.
@ Races:

@ Locking only when building patch and replacing page.
@ Other races only result in larger patches.
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Implementation

Compression

@ Compression postponed till after all pages are checked for
similarity (prevents patching)

@ Condition C4 used to identify a complete cycle of page
sharing checks.
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Implementation

Swapping implemented in DomO, where Xen defers all I/O.

—

@ Athread for each guest to handle wapd ] || VM-1

swap-in requests
@ A thread (memory_monitor) T

tl‘aCkS System mem Event [| Channel
| Xen |

VM-2

swapd may initiate swap-out when:

© Mem exceeds HIGH_WATERMARK (till
LOW_WATERMARK achieved)

@ Xen notifies via event channel, e.g. for share break
© Process requests via IPC (XenStore), e.g. for VM cloning
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Implementation

Paging - Cont.

Upon failure swapd continues silently:
@ Full swap space
@ No swap candidates

Implementation includes VM pausing. Actual swap file writing
can happen asynchronously.
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Implementation

Paging: ioemu-swapd interaction

@ Pages mapped by ioemu are ineligible for swapping out.

@ ioemu mapped pages are swapped in before accessed, if
needed.

@ Race prevented by blocking ioemu when swapping-in
(using shared memaory).
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Times of Individual Operations
Clock

Isolated Mechanisms

Real World Workloads
Aggregate System Performance

Evaluation

Default Evaluation Setup

@ 4 cores (dual processor, dual core 2.33 GHz Intel Xeon)
@ Page size 4K

@ How much memory?
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Times of Individual Operations
Clock
Isolated Mechanisms

Evaluation Real World Workloads

Aggregate System Performance

Times of Individual Operations

Using micro benchmarks.

Function ‘ Mean execution time (ps)
share_pages 0.2
cow break 251
compress_page 207
uncompress 104
patch page 338.1
unpatch 18.6
swap_out_page 489
swap-in_page 7151.6

Table 2: CPU overhead of different functions.

Swap-in may even take longer (swap file size, scheduling in
DomaO,...)
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Times of Individual Operations
Clock

Isolated Mechanisms

Real World Workloads
Aggregate System Performance

Evaluation

Clock Performance - Lifetime of Patched/Compressed
Pages

@ A good clock should give

high lifetimes to T =Rues
compressed/patched o == Mixea Wordosd
pages, which are costly to & o
access. 1.

@ Performance of hetero - .
workload close to

homogeneous workload. e
@ Good performance?

ie i 17 1k 1o
Life time (ms)
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Times of Individual Operations
Clock
Isolated Mechanisms

Evaluation Real World Workloads

Aggregate System Performance

Isolated Mechanisms — Workload

@ 4 steps:

© (1)-(2) Allocate pages (zero, random, identical, similar but
not identical)

Q (3)-(4) Read all pages

© (5)-(6) Make some small writes

@ (7)-(8) Free mem and (9) exit

@ After each step: pause and let memory stabilize (80 s).
@ Each runisin a new VM.

@ After each run the memory is allowed to stabilize.

@ Each VM gets 256MB, of which 75% is filled.

@ How many concurrent VMs?

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 25/37



Times of Individual Operations
Clock

Isolated Mechanisms

Real World Workloads
Aggregate System Performance

Evaluation

Identical Pages

@ With zero pages performance is similar.
@ Reading invalidates condition C3 and C4, but not C2.
@ Reads are free for sharing, otherwise performance is close.
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Figure 5. Workload: Identical Pages. Performance with zero pages is very similar. All mechanisms exhibit similar gains
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Times of Individual Operations
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Real World Workloads
Aggregate System Performance

Evaluation

Random Pages

None performs well, sharing is the worst.
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Figure 6: Workload: Random Pages. None of the mechanisms perform very well, with sharing saving the least memory.
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Times of Individual Operations
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Real World Workloads

Evaluation

Aggregate System Performance

Pages 95% Similar to an Original Page

Sharing and compression do not take advantage of similarity
(compared to random pages). Patching does.
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Figure 7: Workload: Similar Pages with 95% similarity. Patching does signifi

antly better than compression and sharing.
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Times of Individual Operations
Clock
Isolated Mechanisms

Evaluation Real World Workloads

Aggregate System Performance

Hypervisor Settings for Real World Workloads

To enable comparison against VMware ESX:
@ Limited to one CPU (2.3 GHz Intel Xeon) due to license.
@ How much memory?
@ Same Os images.

@ ESX set to most aggressive configuration (10,000 253,
DE configured similarly. But according to Carl
Waldspurger, ESX’s scan is capped at 500 P22° per VM!

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 29/37



Times of Individual Operations
Clock
Isolated Mechanisms

Evaluation Real World Workloads

Aggregate System Performance

Homogeneous VMs: Xen vs. Xen+DE

Workloads: 1-6 VMs with 256 MB.

@ More sharing opportunities expected: PHP RUBIS on
Debian. 2 client machines, each with 100 client sessions.
Duration: 20 minutes.

@ Less sharing opportunities expected: Linux kernel
compilation.
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Times of Individual Operations
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Real World Workloads
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Homogeneous VMs: Xen vs. Xen+DE

Evaluation

@ RUBIS: Performance is unaffected, 60% of the memory is
saved.

@ Kernel: performance within 5%, 40% savings for 4 and
more machines.

@ Sharing is by design the largest memory saver.

o
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(a) Total requests handled (b) Average response time (¢) Average and maximum savings

Figure 8: Difference Engine performance with homogeneous VMs running RUBIS
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Times of Individual Operations
Clock

) Isolated Mechanisms
Evaluation

Real World Workloads
Aggregate System Performance

Homogeneous VMs: Xen+DE, ESX

Workload: 4 VMs, each with 512MB. dbench for 10 minutes, 20
minutes stabilization.

100y

=== DE Shared DE Total
-- DE Patched
-ee: DE Compressed

60|

Savings (%)

ESX aggrossive

In the end ESX catches up, but during operation DE performs

1.5 times better. ESX finds more sharing opportunities!
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Evaluation

Mixed-1: DE up to 45% better.

------ DE Shared
-~ DE Patched
-+x DE Compressed

DE Tolal

Savings (%)

a 200 400 600 8O0 1000 1200 1400 1600
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Heterogeneous VMs: Xen+DE, ESX

Savings (%)

Mixed-2: DE X2 better.
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Times of Individual Operations
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Evaluation

Real World Workloads
Aggregate System Performance

Heterogeneous VMs: Xen+DE, ESX Performance

Overhead (for Mixed-1)

@ Xen+DE over Xen: up to 7%.
@ ESX with aggressive (capped!) page sharing over ESX
without page sharing: 5%.

Kernel Vim RUBIS RUBIiS
Compile compile, requests response
(sec) lmbench time(ms)
(sec)
Baseline | 670 620 3149 1280
DE 710 702 3130 1268

Table 3: Application performance under Difference Engine for the het-
erogencous workload MIXED-1 is within 7% of the baseline.
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Times of Individual Operations
Clock
Isolated Mechanisms

Evaluation Real World Workloads

Aggregate System Performance

Settings for Aggregate System Performance

@ 4 cores
@ 2.8GB free machine memory (excluding DomO).
@ 4 VMs and above, each allocated 650MB

@ Workload: RUBIS (Java servlets implementation), 2 client
machines
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Evaluation Real World Workloads

Aggregate System Performance

Aggregate Performance for Memory Over-Commit

@ Xen: At 960 clients, 4 VMs use over 95% memory, some
OS paging. 2 VMs with 1.2GB each do no better.

@ Best DE: 6 VMs: manages 1.4 times the available memory

@ Beyond 1400 clients: hypervisor paging (5000-20000
pages out, £ of it in)
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Conclusions

Conclusions and Future Work

Conclusions

@ Patching and in-memory compression can bring significant
savings over sharing only.

@ Difference Engine outperforms (a handicapped) VMware
ESX by 1.6-2.5 for a similar performance overhead.

Future Work:

@ DE mechanisms can improve a single OS memory
management.

@ Compress NRU shared pages.
@ Protect against side channel attacks.
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