
Design
Implementation

Evaluation
Conclusions

Difference Engine: Harnessing Memory
Redundancy in Virtual Machines

Diwaker Gupta, Sangmin Lee,Michael Vrable, Stefan Savage,
Alex C. Snoeren, George Varghese, Geoffrey M. Voelker, and

Amin Vahdat, OSDI0́8

Presenter: Orna Agmon Ben-Yehuda

Department of Computer Science
Technion — Israel Institute of Technology

Advanced Topics in Computer Systems, Computer Science
Seminar 5 (236805), Spring 2010

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 1/37

Design
Implementation

Evaluation
Conclusions

Why Share Memory?

Server consolidation saves money and energy.

Memory is a key bottleneck for VM consolidation.

Sharing enables memory over-commitment.

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 2/37

Design
Implementation

Evaluation
Conclusions

Memory Over-Commit Mechanisms for Virtualization

1 Ballooning - well established, drivers widely available
2 Page Sharing

Collaborative (e.g. Satori: Enlightened Page Sharing, by
Milos et al.) - requires guest modification
(paravirtualization) or by hypervisor only (unmodified
guest OS - full virtualization)?
Content based or by tracking changes (faster, requires
guest changes, e.g., Satori)
Whole pages (Waldspurger of VMware, OSDI’02) or
sub-pages?

3 Paging - orthodox but slow

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 3/37

Design
Implementation

Evaluation
Conclusions

Memory Over-Commit Mechanisms for Virtualization

1 Ballooning - well established, drivers widely available
2 Page Sharing

Collaborative (e.g. Satori: Enlightened Page Sharing, by
Milos et al.) - requires guest modification
(paravirtualization) or by hypervisor only (unmodified
guest OS - full virtualization)?
Content based or by tracking changes (faster, requires
guest changes, e.g., Satori)
Whole pages (Waldspurger of VMware, OSDI’02) or
sub-pages?

3 Paging - orthodox but slow

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 3/37

Design
Implementation

Evaluation
Conclusions

Memory Over-Commit Mechanisms for Virtualization

1 Ballooning - well established, drivers widely available
2 Page Sharing

Collaborative (e.g. Satori: Enlightened Page Sharing, by
Milos et al.) - requires guest modification
(paravirtualization) or by hypervisor only (unmodified
guest OS - full virtualization)?
Content based or by tracking changes (faster, requires
guest changes, e.g., Satori)
Whole pages (Waldspurger of VMware, OSDI’02) or
sub-pages?

3 Paging - orthodox but slow

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 3/37

Design
Implementation

Evaluation
Conclusions

Memory Over-Commit Mechanisms for Virtualization

1 Ballooning - well established, drivers widely available
2 Page Sharing

Collaborative (e.g. Satori: Enlightened Page Sharing, by
Milos et al.) - requires guest modification
(paravirtualization) or by hypervisor only (unmodified
guest OS - full virtualization)?
Content based or by tracking changes (faster, requires
guest changes, e.g., Satori)
Whole pages (Waldspurger of VMware, OSDI’02) or
sub-pages?

3 Paging - orthodox but slow

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 3/37

Design
Implementation

Evaluation
Conclusions

Outline

1 Design
Sharing
Patching
Compression
Paging

2 Implementation
3 Evaluation

Times of Individual Operations
Clock
Isolated Mechanisms
Real World Workloads
Aggregate System Performance

4 Conclusions

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 4/37

Design
Implementation

Evaluation
Conclusions

Sharing
Patching
Compression
Paging

Cascade of Mechanisms

Initial ⇒ Share, Patch, Compress, Page

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 5/37

Design
Implementation

Evaluation
Conclusions

Sharing
Patching
Compression
Paging

Sharing

Identify: Hash collision + verification

Share: directing guest pages to the same physical page,
read only

Break: Copy On Write (COW)

Clean: when 0 references

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 6/37

Design
Implementation

Evaluation
Conclusions

Sharing
Patching
Compression
Paging

Mixed Real-World Workloads

Each VM with 512 MB. Stressing memory. Following VMmark
(VMware), VMbench (Moeller, PhD thesis)

1 Mixed-1
1 Windows, running RUBiS (e-commerce: Apache+MySQL)
2 Debian, compiling Linux kernel
3 Slackware , compiling Vim, then running lmbench (memory,

network, filesystem, signals....)
2 Mixed-2

1 Windows, Apache with 32K static pages requested by
external httperf

2 Debian, Sysbench (db) with 10 threads creating 100K
requests

3 Slackware, dbench (filesystem) with 10 clients for 6
minutes, then IOZone (filesystem)

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 7/37

Design
Implementation

Evaluation
Conclusions

Sharing
Patching
Compression
Paging

Potential Estimate for Patching and Sharing

Ran Mixed-1
Suspended the VM after completing the benchmark
Took memory snapshot
Computed patches with XDelta (FOSS binary diff)
Patch limit: 2K (half a page), average patch: 1K
Zero pages appear less when VMs get less memory, when
scrubbing is used less, when Linux caches more files

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 8/37

Design
Implementation

Evaluation
Conclusions

Sharing
Patching
Compression
Paging

HashSimilarityDetector(k,s),c

Hash k · s randomly chosen 64-byte block locations on the
page

Group to k groups, each group is an index in the hash table

HashSimilarityDetector(2,1): two keys for each page, two
indexations (a candidate needs to match only one)

c: number of different pages stored for each key (choose
the best patch among the stored pages)

Smaller k,s,c ⇒ less resources used

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 9/37

Design
Implementation

Evaluation
Conclusions

Sharing
Patching
Compression
Paging

Savings from Patching Only as Function of k,s,c

mem savings = 100% ·
(

1 −
used

allocated to VMs

)

Chosen: 2 hash keys of single locations. 1 stored page. 18-bit
hashes (32 bit hashes yields: 25% instead of 20% for mixed-1).

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 10/37

Design
Implementation

Evaluation
Conclusions

Sharing
Patching
Compression
Paging

Compression

When:
Compression ratio is high enough.
Page is infrequently accessed - “Not Recently Used” (NRU).
Page is unique.

Compressed page is invalidated, so the hypervisor knows
when to decompress it.
Pluggable: currently supports

LZO (Lempel-Ziv, very fast decompression, trade-off
between compression speed and quality)
WKdm (fast encoding)

Decompressed page remains open in memory until
considered for compression again.

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 11/37

Design
Implementation

Evaluation
Conclusions

Sharing
Patching
Compression
Paging

Paging

Involves disk I/O - slow

Extends beyond physical memory

Candidates — NRU

Swapped out pages cannot be shared or referenced for
patching

Safety net

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 12/37

Design
Implementation

Evaluation
Conclusions

Changes to Xen

14.5K lines added + 19K lines for existing libraries

Changes mainly in guest physical to machine table, and in
the shadow page tables

Difference Engine (DE) not in effect during boot, only when
shadow page tables are used

Not touching Dom0 to avoid circularity

ioemu (IO emulator, in Dom0) changed to map only several
guest pages to Dom0.

Block allocator - to efficiently manage storage of
compressed and shared pages (consume less than one
page).

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 13/37

Design
Implementation

Evaluation
Conclusions

Clock

Clock used to find NRU pages.
Each invocation

Resets Read, Modified bits
Scans a part of memory
Returns limited-size list of NRU pages

Invocations at least 4 seconds apart

Xen’s shadow page tables code modified: setting those
R/M bits in the guest physical to host physical map, based
on the shadow page tables.

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 14/37

Design
Implementation

Evaluation
Conclusions

Clock Conditions: Policy/Mechanism Separation

recently=since last scan
1 C1 — Recently modified
2 C2 — Recently read only
3 C3 — Recently nothing
4 C4 — Nothing for several scans (needs 2 additional bits)

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 15/37

Design
Implementation

Evaluation
Conclusions

Clock Conditions: Policy/Mechanism Separation

Default Policy:
1 C1 — Recently modified
2 C2 — Recently read only
3 C3 — Recently nothing
4 C4 — Nothing for several scans

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 15/37

Design
Implementation

Evaluation
Conclusions

Clock Conditions: Policy/Mechanism Separation

Default Policy:
1 C1 — Recently modified — ignore
2 C2 — Recently read only
3 C3 — Recently nothing
4 C4 — Nothing for several scans

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 15/37

Design
Implementation

Evaluation
Conclusions

Clock Conditions: Policy/Mechanism Separation

Default Policy:
1 C1 — Recently modified — ignore
2 C2 — Recently read only — share/patch reference
3 C3 — Recently nothing
4 C4 — Nothing for several scans

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 15/37

Design
Implementation

Evaluation
Conclusions

Clock Conditions: Policy/Mechanism Separation

Default Policy:
1 C1 — Recently modified — ignore
2 C2 — Recently read only — share/patch reference
3 C3 — Recently nothing — share/patch
4 C4 — Nothing for several scans

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 15/37

Design
Implementation

Evaluation
Conclusions

Clock Conditions: Policy/Mechanism Separation

Default Policy:
1 C1 — Recently modified — ignore
2 C2 — Recently read only — share/patch reference
3 C3 — Recently nothing — share/patch
4 C4 — Nothing for several scans — anything

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 15/37

Design
Implementation

Evaluation
Conclusions

Clock Conditions: Policy/Mechanism Separation

Default Policy:
1 C1 — Recently modified — ignore
2 C2 — Recently read only — share/patch reference
3 C3 — Recently nothing — share/patch
4 C4 — Nothing for several scans — anything

Alternative policies:

Consider all pages for anything - insignificant excess
saving

Compression before patching - slightly less savings, less
performance overhead.

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 15/37

Design
Implementation

Evaluation
Conclusions

Sharing

SuperFastHash

Hash table needs to fit in Xen’s limited memory (12M)

Constant 5 passes, hashing 1/5 of the range each time :
1.76M page sharing hash table size

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 16/37

Design
Implementation

Evaluation
Conclusions

Patching

Similarity Hash Table is also stored in Xen itself, statically
allocated, sized 218 unsigned longs (1MB).
Clearing:
⇒ At least after a full clock pass (=5× partial) - allows finding

similarity between keys from different passes.
⇐ Early clearing reduces stale data (pages changed after

indexing).
= Similarity Hash Table cleared each full clock pass.

Races:
Locking only when building patch and replacing page.
Other races only result in larger patches.

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 17/37

Design
Implementation

Evaluation
Conclusions

Compression

Compression postponed till after all pages are checked for
similarity (prevents patching)

Condition C4 used to identify a complete cycle of page
sharing checks.

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 18/37

Design
Implementation

Evaluation
Conclusions

Paging

Swapping implemented in Dom0, where Xen defers all I/O.

A thread for each guest to handle
swap-in requests

A thread (memory_monitor)
tracks system mem

swapd may initiate swap-out when:
1 Mem exceeds HIGH_WATERMARK (till

LOW_WATERMARK achieved)
2 Xen notifies via event channel, e.g. for share break
3 Process requests via IPC (XenStore), e.g. for VM cloning

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 19/37

Design
Implementation

Evaluation
Conclusions

Paging - Cont.

Upon failure swapd continues silently:

Full swap space

No swap candidates

Implementation includes VM pausing. Actual swap file writing
can happen asynchronously.

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 20/37

Design
Implementation

Evaluation
Conclusions

Paging: ioemu-swapd interaction

Pages mapped by ioemu are ineligible for swapping out.

ioemu mapped pages are swapped in before accessed, if
needed.

Race prevented by blocking ioemu when swapping-in
(using shared memory).

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 21/37

Design
Implementation

Evaluation
Conclusions

Times of Individual Operations
Clock
Isolated Mechanisms
Real World Workloads
Aggregate System Performance

Default Evaluation Setup

4 cores (dual processor, dual core 2.33 GHz Intel Xeon)

Page size 4K

How much memory?

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 22/37

Design
Implementation

Evaluation
Conclusions

Times of Individual Operations
Clock
Isolated Mechanisms
Real World Workloads
Aggregate System Performance

Times of Individual Operations

Using micro benchmarks.

Swap-in may even take longer (swap file size, scheduling in
Dom0,...)

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 23/37

Design
Implementation

Evaluation
Conclusions

Times of Individual Operations
Clock
Isolated Mechanisms
Real World Workloads
Aggregate System Performance

Clock Performance - Lifetime of Patched/Compressed
Pages

A good clock should give
high lifetimes to
compressed/patched
pages, which are costly to
access.

Performance of hetero
workload close to
homogeneous workload.

Good performance?

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 24/37

Design
Implementation

Evaluation
Conclusions

Times of Individual Operations
Clock
Isolated Mechanisms
Real World Workloads
Aggregate System Performance

Isolated Mechanisms — Workload

4 steps:
1 (1)-(2) Allocate pages (zero, random, identical, similar but

not identical)
2 (3)-(4) Read all pages
3 (5)-(6) Make some small writes
4 (7)-(8) Free mem and (9) exit

After each step: pause and let memory stabilize (80 s).

Each run is in a new VM.

After each run the memory is allowed to stabilize.

Each VM gets 256MB, of which 75% is filled.

How many concurrent VMs?

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 25/37

Design
Implementation

Evaluation
Conclusions

Times of Individual Operations
Clock
Isolated Mechanisms
Real World Workloads
Aggregate System Performance

Identical Pages

With zero pages performance is similar.
Reading invalidates condition C3 and C4, but not C2.
Reads are free for sharing, otherwise performance is close.

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 26/37

Design
Implementation

Evaluation
Conclusions

Times of Individual Operations
Clock
Isolated Mechanisms
Real World Workloads
Aggregate System Performance

Random Pages

None performs well, sharing is the worst.

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 27/37

Design
Implementation

Evaluation
Conclusions

Times of Individual Operations
Clock
Isolated Mechanisms
Real World Workloads
Aggregate System Performance

Pages 95% Similar to an Original Page

Sharing and compression do not take advantage of similarity
(compared to random pages). Patching does.

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 28/37

Design
Implementation

Evaluation
Conclusions

Times of Individual Operations
Clock
Isolated Mechanisms
Real World Workloads
Aggregate System Performance

Hypervisor Settings for Real World Workloads

To enable comparison against VMware ESX:

Limited to one CPU (2.3 GHz Intel Xeon) due to license.

How much memory?

Same Os images.

ESX set to most aggressive configuration (10,000 page
s),

DE configured similarly. But according to Carl
Waldspurger, ESX’s scan is capped at 500 page

s per VM!

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 29/37

Design
Implementation

Evaluation
Conclusions

Times of Individual Operations
Clock
Isolated Mechanisms
Real World Workloads
Aggregate System Performance

Homogeneous VMs: Xen vs. Xen+DE

Workloads: 1-6 VMs with 256MB.

More sharing opportunities expected: PHP RUBiS on
Debian. 2 client machines, each with 100 client sessions.
Duration: 20 minutes.

Less sharing opportunities expected: Linux kernel
compilation.

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 30/37

Design
Implementation

Evaluation
Conclusions

Times of Individual Operations
Clock
Isolated Mechanisms
Real World Workloads
Aggregate System Performance

Homogeneous VMs: Xen vs. Xen+DE

RUBiS: Performance is unaffected, 60% of the memory is
saved.
Kernel: performance within 5%, 40% savings for 4 and
more machines.
Sharing is by design the largest memory saver.

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 31/37

Design
Implementation

Evaluation
Conclusions

Times of Individual Operations
Clock
Isolated Mechanisms
Real World Workloads
Aggregate System Performance

Homogeneous VMs: Xen+DE, ESX

Workload: 4 VMs, each with 512MB. dbench for 10 minutes, 20
minutes stabilization.

In the end ESX catches up, but during operation DE performs
1.5 times better. ESX finds more sharing opportunities!

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 32/37

Design
Implementation

Evaluation
Conclusions

Times of Individual Operations
Clock
Isolated Mechanisms
Real World Workloads
Aggregate System Performance

Heterogeneous VMs: Xen+DE, ESX

Mixed-1: DE up to 45% better. Mixed-2: DE X2 better.

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 33/37

Design
Implementation

Evaluation
Conclusions

Times of Individual Operations
Clock
Isolated Mechanisms
Real World Workloads
Aggregate System Performance

Heterogeneous VMs: Xen+DE, ESX Performance
Overhead (for Mixed-1)

Xen+DE over Xen: up to 7%.
ESX with aggressive (capped!) page sharing over ESX
without page sharing: 5%.

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 34/37

Design
Implementation

Evaluation
Conclusions

Times of Individual Operations
Clock
Isolated Mechanisms
Real World Workloads
Aggregate System Performance

Settings for Aggregate System Performance

4 cores

2.8GB free machine memory (excluding Dom0).

4 VMs and above, each allocated 650MB

Workload: RUBiS (Java servlets implementation), 2 client
machines

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 35/37

Design
Implementation

Evaluation
Conclusions

Times of Individual Operations
Clock
Isolated Mechanisms
Real World Workloads
Aggregate System Performance

Aggregate Performance for Memory Over-Commit

Xen: At 960 clients, 4 VMs use over 95% memory, some
OS paging. 2 VMs with 1.2GB each do no better.
Best DE: 6 VMs: manages 1.4 times the available memory
Beyond 1400 clients: hypervisor paging (5000-20000
pages out, 1

4 of it in)

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 36/37

Design
Implementation

Evaluation
Conclusions

Conclusions and Future Work

Conclusions

Patching and in-memory compression can bring significant
savings over sharing only.

Difference Engine outperforms (a handicapped) VMware
ESX by 1.6-2.5 for a similar performance overhead.

Future Work:

DE mechanisms can improve a single OS memory
management.

Compress NRU shared pages.

Protect against side channel attacks.

Gupta et al., presenter: Orna Agmon Ben-Yehuda Difference Engine 37/37

	Design
	Implementation
	Evaluation
	Conclusions

