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Abstract. Cloud providers are moving towards auctioning cloud re-
sources rather than renting them using fixed prices. Vickrey-Clarke-
Groves (VCG) auctions are likely to be used for that purpose, since they
maximize social welfare—the participants’ aggregate valuation of the re-
sources. However, VCG auctions are prone to collusion, where users try
to increase their profits at the expense of auction efficiency. We propose
a coalition formation mechanism for cloud users that helps both users
and providers. Our mechanism allows the auction participants to collab-
orate profitably while also maintaining the auction’s resource allocation
efficiency. Our experiments show that when using our mechanism, par-
ticipants’ mean profit increases by up to 1.67x, without harming the
provider’s allocation efficiency.
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1 Introduction

Cloud computing provides flexibility to clients by allowing them to pay per use
for the rental of services and VMs. Renting reduces the waste of prepurchased but
unutilized hardware [14]. Recently, cloud computing has been moving towards
the more economical Resource-as-a-Service model (RaaS) [10, 12]: instead of hor-
izontal scaling (renting more VMs), RaaS clouds enable vertical scaling—renting
more resources (such as CPU, RAM, and I/O resources) for a few seconds at
a time, at sub-second granularity. For example, CloudSigma charges separately
for CPU, RAM, SSD storage, and data transfer, and it adjusts burst prices ev-
ery few minutes [5]. Amazon Web Services (AWS) [1], Azure [4], and Google
Cloud Platform [6] all offer a pay-as-you-go pricing method. AWS Lambda [2]
and Azure Functions [3] allow uploading code and paying for computing time
only when the code is triggered to run.

RaaS systems use economic mechanisms, such as auctions, to allocate re-
sources [13, 22, 44]. AWS EC2 spot instances [11], Alibaba Cloud spot instances [7],
and Packet spot market [8] are examples of auctions in horizontal elasticity. We
predict that auctions will be deployed in vertical elasticity as they are now de-
ployed in horizontal elasticity.
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The Vickrey-Clarke-Groves (VCG) auction [43, 20, 24] is well-suited for this
purpose. VCG auctions maximize the social welfare: the aggregate valuation of
all users of the resource allocated to them. They allocate resources first to the
users who value them most, and thus enable getting the most out of the machine.
VCG auctions are already used by Facebook to allocate ad spaces [32] and have
been used by Google for contextual ads since 2012 [42]. They have also been
shown suitable for network bandwidth allocation [27].

Ginseng systems are examples of VCG auctions used for resource allocation
(for RAM [13] or cache [22]). In this work we focus on Ginseng for RAM (re-
ferred to as Ginseng from this point on). Ginseng [13] consists of a market-driven
RAM allocation mechanism called Memory Progressive Second Price (MPSP)
that resembles a VCG auction. In Ginseng, guests run economic agents who bid
for resources auctioned by the host. Thus, the mechanism incentivizes selfish,
rational agents, who only care about their own profit, to bid with their true
valuation of the RAM. Ginseng was shown to achieve up to 16% improvement
in guest benefit from RAM allocation and up to 43% improvement from cache
allocation, compared to state-of-the-art approaches. Since the number of auc-
tion participants is bound by the number of VMs on a single physical machine,
the host computation time is not a bottleneck. For example, for 24 guests, the
computation takes less than a second.

However, VCG auctions are not perfect. To maximize the social welfare, they
incur additional costs to the users, possibly hindering profitability. VCG auc-
tions, especially in repeated settings, are also not collusion-proof [17, 18, 21, 23,
41, 28, 30, 36, 38, 40]. Colluding to increase profit may reduce social welfare [21],
e.g., by bid rotation [31, 15, 16, 35] or sub-optimal redistribution of the goods [21,
36]. In a cloud environment, goods can only be transferred with the host’s con-
sent, so a collusion scheme involving resource transfer is impossible, but other
forms of collusion are possible. For example, consider a cloud machine with 10
GB of RAM, and two VMs running memory-heavy applications, requiring the
entire available RAM. Suppose one VM owner (Alice) values the RAM at 15¢
per hour, while the other (Bob) values it at 10¢ per hour. Alice and Bob can
discover who the other VM belongs to [37], and they can agree on a collusion
scheme. Since agents care only about their profits and are not exposed to each
other’s private information, there is no guarantee that they will agree on an
efficient scheme, where Alice gets the RAM. Instead, they might agree that Bob
gets the RAM and compensates Alice 7¢ per hour for not bidding. Both their
profits increase, but the social welfare drops from 15¢ to 10¢ per hour.

We propose a platform for collaboration among guests that will increase their
profits, thus reducing their incentive to collude, without changing the auction
efficiency and the social welfare. In this model, guests can ask the host to consider
them as a single guest when computing their bill. Since MPSP is based on
exclusion-compensation [27], where guests pay for the damage they cause others,
they would pay less if they are billed together. The host acts as a trusted third
party, since guests already share their (private) valuations with the host in the
auction. They tell the host how they want to share the discount (in terms of
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profit parts). The host calculates the reduced bills accordingly. A host might
support such interactions if its main revenue is from a base payment rate, as
in Ginseng, where each guest rents a base amount of the resource for a fixed
price. A host also might support such interactions in private clouds, where the
only goal is to maximize social welfare. This mechanism does not significantly
increase the computational load on the host: computing a bill for a coalition is
computationally equivalent to computing the bill for a single guest.

Our contribution is the proposal, implementation, and evaluation of a
guest coalition mechanism that does not harm social welfare and which RaaS
hosts have an incentive to support. It allocates resources efficiently while lower-
ing guests’ costs, thus reducing their incentive to collude in a harmful manner.
The economic mechanism can thus be used for its original purpose: optimal re-
source allocation, which leads to optimal hardware use. The implementation was
released as free software [9].

2 Simplified Memory Progressive Second Price Auction

We begin by describing a representative VCG-like resource auction, called Sim-
plified Memory Progressive Second Price (SMPSP). It resembles bandwidth auc-
tions [27, 29], and is identical to the MPSP auction used by Ginseng [13] when
guests have monotonically increasing, concave functions, consistent with dimin-
ishing returns (which are common in auction schemes [27, 29]). The SMPSP
auction is identical to repeating the auction proposed by Maillé and Tuffin [29]
when the valuation function is approximated by using a single point. SMPSP is
also used by Movsowitz et al. [34]. As in [29], this auction converges to approx-
imately optimal social welfare, and therefore approximately optimal allocation.

SMPSP is a repeated auction, performed in rounds, each composed of steps.
In each SMPSP round, the host first announces the free amount of resource for
rent. Each guest i responds with a bid: a pair (pi, qi), where pi is the unit price
the guest is willing to pay to rent a resource quantity qi (the bid quantity). The
host collects all bids. Guests are sorted in decreasing order by their unit prices
and allocated their bid amount (or the free amount left). Bills are calculated
according to the exclusion compensation principle. Let q′i denote the amount
allocated to guest i, and let q′′j denote the amount guest j would have received
if guest i did not exist. Then the bill guest i would pay is given by

Bi =
1

q′i

∑
j 6=i

pj(q
′′
j − q′j). (1)

Finally, guests are notified of the new allocation and the host redistributes the
resource.

Throughout this work, we assume that allocation efficiency is more important
to the provider than the guest auction payments. This assumption always holds
in private clouds, and sometimes in public clouds. In public clouds, the available
resources usually suffice for all the guests. When there is temporary resource
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pressure, the auction mechanism serves as a bridge solution until the problem
is solved: either by the client purchasing reserved resources, or by the provider
migrating the client to a different physical machine. Therefore, in public clouds
as well, the auction payments are not the main source of revenue, but auction
efficiency is crucial, as it allows the provider more time to handle the migration.

We focus on the case where the resource does not suffice for all the guests,
as sometimes happens in spot instances [1, 7, 8]. Otherwise, SMPSP bills are 0
and the coalitions are unnecessary.

3 Related Work

In VCG and VCG-like auctions, guests may collude in various ways, most of
which reduce the social welfare by preventing optimal allocation. One possi-
ble collusion scheme is a secondary resource market, conducted without the
host’s awareness [23, 28, 31]. In this scheme, a bidding ring is formed: a special
trusted agent or third party acts as the ring center and holds a knockout auction
among ring members to decide on the winner and on money transfers. In another
work [17] the ring center is replaced by complete knowledge of the ring members’
valuations, and the designated winner passes the won goods to other colluders.
Neither the existence of a trusted specific agent nor the complete knowledge of
valuations is practical in our case, due to the lack of trust between guests. In
addition, in our model goods can only be transferred with the host’s consent.

Another possible scheme is price shading, where one agent bribes another for
falsely reporting its bid price or reducing it to zero [21, 36]. This scheme can harm
the allocation efficiency: there is no guarantee that the briber is the agent with
the higher valuation, and, when bills are artificially lowered, winning guests are
incentivized to increase their bid quantity beyond their original request (without
collusion). Since the original allocation was approximately optimal, the change
will harm its efficiency.

Bid rotation [31, 15, 16, 35, 18, 40] can be seen as a private case of price shad-
ing in repeated auctions, where agents take turns falsely reducing their bid price
to 0 (effectively not participating in the auction). In addition to harming the
social welfare, when the auctioned resource is RAM, this scheme also harms the
agents themselves: frequently passing RAM from one agent to another reduces
its utility, as demonstrated by Movsowitz et al. [34].

Krause et al. [26] present coalition formation in a task oriented domain:
agents form a group to perform a task and must decide on a division of the
profit. Several division strategies are proposed: equal division of profits, division
proportional to contribution, or by an algorithm that finds a stable division—
such that there is no group of agents with an incentive to defect. An agent
can choose to forgo some profit in each of the division strategies. Simulations
showed that equal division with a compromise of 20% yields the highest profits.
Implementing these findings in our model is left for future work. Chatterjee
et al. [19] present bidding rings as a coalition formation bargaining game, but
assume bidders have complete information regarding their valuations.
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The negative effects of collusion between auction participants and the recom-
mended auctioneer responses have been widely studied. Some works study the
effects of money transfers [31], cooperation enforcement types [30], and auction
types [41, 30] on viable collusion schemes. Second price auctions were found to be
more amenable to incentive-compatible collusion schemes than first price. Rec-
ommended auctioneer responses include reserve prices [23, 31], ceiling prices [25],
and withholding information about the value of the goods [38].

Movsowitz et al. [33] review cloud attacks that can be applied in the RaaS
model and various ways to defend against them. Movsowitz et al. [34] study
economic attacks that are unique to the RaaS model, taking advantage of the
economic mechanisms used in RaaS clouds.

Our collaboration mechanism does not involve agents changing their bids
and does not assume any trust between them. If the attackers are rational, i.e.,
profit-driven, our mechanism makes both attacks and collusion less appealing,
by reducing the profit to be gained from them.

4 Negotiation Protocol

Agents form a coalition that the host considers as a single agent when computing
their bill. Agents are still charged separately, but the sum of their bills is lower.
They negotiate the division of the additional profit.

The agents negotiate after each auction round’s results are announced, before
submitting a new bid (see Fig. 1). Each agent can negotiate with all others, but
can only create a coalition with one other agent/coalition in each round. This is
a design choice intended to simplify the protocol. It could easily be changed so
that each auction round contains multiple negotiation rounds.

Fig. 1. Coalition Protocol: Auction Timeline

4.1 Negotiation between Two Agents

In the base case of the protocol, two agents negotiate the creation of a coalition.
Each protocol step consists of an offer, followed by a positive response (accept),
a rejection or a counter-offer. An offer is a map from agents to profit parts—
positive fractions of the profit each agent receives, whose sum is 1.
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If a coalition is formed, both agents send the host this map. The host uses it
to compute their bills as follows: Let TC denote the bill for the entire coalition,
calculated as if agents in the coalition were one combined agent. If agent i gets
amount q′i of the resource, let Bi(q

′
i) denote i’s undiscounted bill for it. Finally,

let fi denote the fraction of the coalition’s discount that i should get. Then the
new bill for coalition member i is

billi = Bi (q′i)− fi

∑
j∈C

Bj

(
q′j
)
− TC

 . (2)

An agent’s bill may be negative. For example, if i had no bill before joining the
coalition, i.e., Bi = 0, and i and j are the only agents in the system, then the
total bill of their coalition is 0. But since i has a positive profit part, the host
transfers money from j to i.

Upon notification of an auction round’s results, the host also notifies each
agent of its actual bill, the bill it would have paid outside the coalition, and
the profit parts map (to confirm the coalition’s validity). The agent can then
compute its profit from the coalition in this round.

4.2 Negotiating a Coalition of Coalitions

In the following rounds, a two-agent coalition can grow by negotiating with
another agent/coalition. The leader of the larger of the two coalitions leads the
joint coalition in further negotiations. If coalition sizes are equal, the agent whose
proposal was accepted is the leader. If approached, a non-leader defers to the
leader. Only the agents are aware of the chosen leader: this role is irrelevant for
the host.

This design decision encourages coalition growth, since the leader of the larger
coalition has successfully negotiated before. Moreover, if only agents that were
allocated their full bid quantity are allowed to participate in coalitions (see §5.1),
that leader is likely to be allowed to participate in the next auction round as
well. For same-size coalitions, choosing the accepting party as the leader may
mean choosing a leader whose proposals have been rejected, and thus are likely
to be rejected in the future, preventing the coalition’s growth.

Two leaders negotiate the merger of their respective coalitions similarly to
the two-agent protocol. First they report their coalition sizes in a preliminary
protocol step. Leaders normalize the sent or received offers by coalition sizes (as
explained below). After negotiating the profit parts as in the two-agent case (see
§5.2), each leader communicates its profit parts map to the other leader and
informs its old coalition members of the negotiation results and the new leader,
so that every member can compute the new map and send it to the host.

4.3 Normalization of Offer Values

If profits were hierarchically equally shared in each negotiation, and C would have
joined a coalition (A : 1

2 , B : 1
2 ), the new map would be (A : 1

4 , B : 1
4 , C : 1

2 ).
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Fig. 2. Coalition Protocol: Two leaders negotiating a merge.

Eventually, even though the aggregate profit of a large coalition is larger, profit
parts of early-joining agents would deteriorate. They would be incentivized to
leave the coalition and start afresh, resulting in unstable coalitions.

To avoid this problem, leaders normalize the offer values. If a single agent A
would have offered 0 < α < 1 to a potential single partner B, then when agents

A and B lead coalitions CA and CB respectively, A offers B 2α |CB |
|CA|+|CB | . As

long as 0 < α ≤ 1
2 , the normalized value is in (0, 1). For two coalitions of size

1, the normalized value equals α. In the example above, the resulting map is
(A : 1

3 , B : 1
3 , C : 1

3 ), and agents are not incentivized to start afresh.

4.4 Leaving a Coalition

An agent who wishes to leave a coalition need only refrain from sending the map
to the host. The host will exclude this agent from the coalition, normalize the
other members’ profit parts, and notify the other members. If the leader leaves
the coalition, the coalition dissolves, and members must negotiate to create new
ones.

4.5 Finding the Majority Version

The host may receive different map versions for the same coalition, e.g., when
an agent wants to leave the coalition or dishonestly try to divide the profit parts
differently. In this case, if there is a majority version, the host will consider it the
true map. The host will remove the agents who sent a different map, normalize
the map, and notify the remaining members. Otherwise (there is no majority
version), the coalition is rejected, and an empty map is returned.

5 Host Policy and Agent Strategy

In view of the suggested protocol, the host and agents may use various strategies.
In this paper we are interested in identifying plausible host policies which lead to
our goal of stable and social-welfare-safe collaborations. To evaluate how these
policies actually lead to our goals, we analyze how guests should behave under
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these policies to optimize their profit. This allows us to accurately model the
behavior of plausible, rational guests and justify our conclusions regarding the
proposed protocol.

5.1 Host Policy

In addition to collecting the agents’ coalition requests and returning the resulting
map, the host may enforce rules on agents’ participation in coalitions.

To preserve social welfare, the host should enforce a no-increase policy:
an agent who attempts to increase a bid quantity will be removed from the
coalition. We will demonstrate how without this policy, allocation efficiency is
compromised. Agents evaluate their utility from a possible bid quantity q as
U(q) = V (q)− bill(q), where V (q) is their valuation and bill(q) is the estimated
bill they will pay. This estimation is based on previous bills. Let i denote such an
agent. Since i’s valuation function Vi is monotonically increasing and concave,
i’s participation in a coalition increases argmaxq(U) and as a result—i’s bid
quantity. Unless i is the last guest to be allocated a resource, this will cause at
least one agent to get less of the resource. The original allocation is based on
truthful bids and therefore is approximately optimal (as in [27]), so any deviation
from it reduces the social welfare.

The no-increase policy does not impede the system’s ability to accommodate
changes in the guest valuation function over time. If the load on the guest in-
creases, it will be worthwhile to the agent to increase its bid quantity and leave
the coalition.

A host may decide that only agents allocated their full bid quantity may
be admitted to a coalition. We define such agents as satisfied. Allowing only
satisfied agents in a coalition protects the host from a possible strategy of un-
satisfied agents: if they can join a coalition, they can attempt to increase their
compensation by pretending that an allocation causes them more harm than it
actually does. They do so by bidding for a large quantity in advance, knowing
they will neither win it nor pay for it but will still get compensated by other
coalition members.

With these precautions, the social welfare is likely to be preserved. However,
the mechanism is still vulnerable to agents leaving the coalition, increasing their
resource demand, and then rejoining a coalition. Allowing only satisfied guests
in coalitions reduces the potential profit of this scheme, but does not eliminate
it completely.

5.2 Agent Strategy

Given the protocol we defined and the host’s policy, what should the agent’s
strategy be?

Bill Estimation SMPSP agents are p-truthful : for a bid quantity qi, and
valuation function V , the best strategy for choosing a bid price is pi(qi) =
V (qi+base)−V (base)

qi
[13]. So, agents need only decide on the bid quantity.
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A rational agent in a coalition should weigh the consequences of increasing
qi, assuming its bill is undiscounted for the new amount, at least until rejoining
a coalition. Let Di(qi) denote agent i’s estimated discount from the coalition.
i estimates it will take N1 rounds to rejoin a similar coalition, and N2 rounds
for the game to end or for i’s valuation to change. Finally, let qprevi denote i’s
previous bid quantity. So, when considering a bid quantity qi, i will estimate the
expected value of its future bill as:

billest(qi) =

{
Bi(qi)−Di(qi), if qi ≤ qprevi

Bi(qi)−Di(qi)
N2−N1

N2
, otherwise

(3)

In other words, the agent expects to lose the discount (due to the host’s no-
increase policy) until rejoining the coalition after N1 rounds. However, if the
agent does not increase q, then it expects to stay in the coalition and continue
paying the discounted price. This means that agents will avoid changing their
bid quantity unless necessary, for example when their valuation changes.

Agent i can estimate Bi(qi) and Di(qi) on the basis of i’s previous bills and
discounts. Agent i can estimate the time during which its own load and valuation
are expected to remain the same. When it expects its resource requirements to
change, it also expects the coalition to break. In addition, i may learn the typical
duration of a coalition, according to its experience with specific partners. N1 can
be estimated optimistically as log2(|coalition|), as would happen if all possible
coalitions are formed in each round, or pessimistically as |coalition|−1, as would
happen if a single guest joins the coalition in each round. N1 and Di(qi) also
depend on the agent’s negotiation strategy.

Negotiation Strategy The negotiation strategy of an agent is a pair (OV,AT ),
where Offer Value OV ∈ (0, 1) is the initial profit part offer the agent proposes,
and Accept Threshold AT ∈ (0, 1) is the minimal profit part the agent is willing
to accept. A high AT and low OV will increase the agent profit (Di(qi)) in a given
coalition. However, such values will discourage potential partners from forming
a coalition with the agent, i.e., increase N1. Suppose the agent has learned the
others’ values, e.g., from previous negotiations. Then to increase its chances of
joining a coalition sooner rather than later, the agent should choose a high OV ,
just above the others’ values, and a suitably low AT . This will maximize the
number of rounds the agent spends in coalitions and the total profit over time
(a formal analysis is available in the appendix). Hence, a uniform environment,
where all agents have the same (OV,AT ), is unstable. We focus instead on a
mixed environment, where each agent has its own negotiation profile, and we
conduct experiments to find the optimal values.

6 Experimental Evaluation

We experimented to find good strategies in a mixed environment, to determine
the effect of coalitions on agent profits and social welfare, and to characterize
the connection between coalition size and agent profits.
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6.1 Experimental Setup

Experiments were run on a server with 24 cores and 16GB of RAM, running
Ubuntu Linux 4.4.0-53-generic. Agents were run on virtual machines in an im-
plementation of Ginseng [13]. The code was released as free software and is
available from [9].

Our experimental environment represents a cloud machine, with 10 VMs
running servers. Each server runs elastic memcached [13]—an elastic memory
version of a widely used key-value cloud application. Memcached has a concave
performance function. For the valuation function we used V (performance) =
c ·performance. c is a constant, chosen for each guest i.i.d. from a Pareto distri-
bution with α = 1.36, as in [13]. The available RAM for auction was determined
as one-third of the aggregate demand, to create resource pressure, under which
there are payments in the SMPSP auction.

6.2 Optimal Negotiation Profile

We restricted the agent strategy to choosing a constant negotiation profile and
analyzed which profiles yield the most profit. Analyzing strategies which evolve
over time and depend on partner identity is left for future work.

To create a mixed environment, we sampled 20 valuation sets and ran 5
experiments of 40 rounds each for each set. In each experiment OV and AT were
drawn i.i.d. from a uniform distribution. OV ∼ U(0, 1), and AT ∼ U(0, 1−OV ),
since an agent should not decline a value above what would be obtained from
offering OV . If after normalization (§4.3) OV > 1, then the agent would refrain
from offering it. All agents were allowed to participate in coalitions. Agents’
valuations were shuffled every 10 rounds so that coalitions would break (due to
the no-increase policy), allowing for more negotiation opportunities.

In a mixed environment, accept thresholds matter. Too high a threshold
means being too “picky”. Too low a threshold means settling for deals with
lower profits. Offer values matter as well. When the offer value is low, the agent
keeps more of the profit, and earns more from each coalition. When it is high,
so is the agent’s chance of joining a coalition. In our settings, the optimal AT is
around 0.8 (Fig. 3a) and the optimal OV is around 0.2 (Fig. 3b). The profit peak
at OV = 0.2 is caused by the way AT s are drawn: over half of the AT s drawn this
way are below 0.2. Therefore, if an agent’s OV is higher than 0.2, most partners
are likely to accept it. As OV grows, the agent relinquishes a larger part of the
profit to its partner, without notably increasing the chances of acceptance while
decreasing profits. Exact values depend on the profile distribution.

6.3 Social Welfare and Guest Profit

How are the social welfare and profit affected by negotiations? Given our results
in §6.2, we chose a symmetric profile that is likely for rational agents: OV = 0.2
and AT just below it at 0.15, so that coalitions can form. With this profile we ran
three experiment scenarios: coalitions are allowed for satisfied agents, coalitions
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(a) Accept Threshold (b) Offer Value

Fig. 3. Profit from coalitions as a function of negotiation parameters in a mixed en-
vironment. Mean values are shown as triangles. The boxes represent the first, second
and third quartiles.

are allowed for all agents, or coalitions are prohibited. Each experiment ran for
40 rounds. Valuations for the guests are as in §6.2, but they were not shuffled.

In each experiment, we calculated the social welfare and the mean profit
for guests in each round. The profit is the difference between the valuation of
the resource and the actual (occasionally discounted) amount paid. While the
social welfare remains the same (i.e., the allocation of goods remains efficient),
the mean profit increases by up to 67% (60% on average), as shown in Fig. 4a.
When coalitions are allowed for all agents, the mean profit reaches the profit from
the optimal collusion scheme, where guests share their entire private valuations
and bid for the same quantities they would get from the host, so their bill is
zero.

6.4 Optimal Coalition Size

What is the optimal coalition size for agents? We ran two experiment batches,
one with only satisfied guests and one with all guests. In each batch, 5 different
valuation sets were drawn. Each set was run 10 times.

Although a single coalition of all agents has the largest aggregate profit,
it does not necessarily optimize the mean profit of a single member. In fact,
the opposite is true: some agents, when joining the coalition, do not increase
the total coalition profit but share it: their mean profit does not monotonically
increase with the coalition size, (see Fig. 4b). This result holds whether or not
unsatisfied agents are allowed. It means that a single coalition of all agents is not
in the agents’ best interest, and so it is unstable. The instability can be resolved
using a Shapley value based division, where each agent’s profit depends on its
contribution.
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(a) Coalition effect on profit (b) Coalition size effect on profit

Fig. 4. Fig. 4a shows the mean profit for guests in each round, for different host coali-
tion support policies. Fig. 4b shows the mean profit from coalitions per agent in a
single round as a function of the coalition size.

7 Conclusion and Future Work

As cloud computing advances, we expect more clouds to shift to economic mech-
anisms such as auctions for selling cloud resources. As they do so, the importance
of understanding and handling collusion between auction participants will grow.
We presented and implemented a negotiation mechanism for coalition formation
in a VCG-like auction, which is suitable for auctioning computing resources.
It maintains the auction’s social welfare while reducing the participants’ costs.
Although coalition participants pay lower bills, they nonetheless refrain from
unnecessarily increasing their resource demands. In a mixed environment, profit
will be maximized for an agent willing to accept a profit share of at least 45% and
who offers partners 40%. Nor do large coalitions necessarily benefit their mem-
bers. We conjecture that negotiation strategies that change over time and with
different partners may increase the agents’ profit. Exploring different division
schemes such as Shapley [39]-based division is left for future work.

VCG auctions can also be used for multi-resource allocation using the same
exclusion-compensation principle as for a single resource. Therefore, given a VCG
multi-resource auction implementation, the anti-collusion coalition mechanism
can be applied to it as well.
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9 Appendix

In this appendix we provide a mathematical model for the expected profit of an
agent as a function of its offer value, and show that this profit depends greatly
on the specific strategies used by other agents in the environment. We use the
same notations as in section 5.2. N1 denotes the number of rounds required to
create a coalition of all N agents in the system, and N2 denotes the number of
rounds the coalition is expected to hold until it breaks (as a result of a change
in guest load or a change in the guest population on the machine). We analyze
a cycle of N1 + N2 rounds. Assume guest i has AT = 1 − OV . Then in each
coalition, the fraction f of the coalition discount D that i would get is at least
1− OV . In one cycle, the expected profit from coalitions per round for a guest
i is

pi(f) =
N2

N1 +N2
fD. (4)

N1 is a monotonically increasing function of f : the higher the AT , the harder it
is for i to join a coalition. Note that N1 is also monotonically increasing in N
(the number of agents), since the other agents could join the coalition before i.
However, we currently assume the number of guests is approximately constant,
i.e., changes significantly more slowly than the guest load. Then we can write:

N1 ∼ h(f) (5)

where h is an unknown monotonically increasing functions. h represents the spe-
cific agent strategy for response on offers, for example, how the agent chooses
among multiple acceptable offers. Assume N is constant. Using Tailor approxi-
mation of the second order, we can write:

N1(f) = C +Af +Bf2 +O(f3) (6)

Substituting this into the profit expression, we have:

pi(f) =
N2

C +Af +Bf2 +N2
fD (7)

The agent would like to maximize this function by changing f , or equivalently,
minimize the following expression:

D

pi(f)
=
C +Af +Bf2 +N2

N2f
=

=

(
C

N2
+ 1

)
1

f
+

A

N2
+

B

N2
f

(8)

The first term is monotonically decreasing in f . The second is constant,
while the third is monotonically increasing with f . Therefore, the optimal f
depends on the h function, that is, the specific agent strategy. This means that for
different environments, depending on the specific implementation of the agent,
the optimal f values are different, and as a result, so are the optimal OV,AT
values.


