Orna Agmon Ben-Yehuda

Presents

Communication-Efficient Online Detection of Network-Wide Anomalies

Ling Huang* XuanLong Nguyen*

Minos Garofalakis[§] Joe Hellerstein*

Michael Jordan* Anthony Joseph* Nina Taft§

*UC Berkeley §Intel Research

Coming on Spring 2011 to a

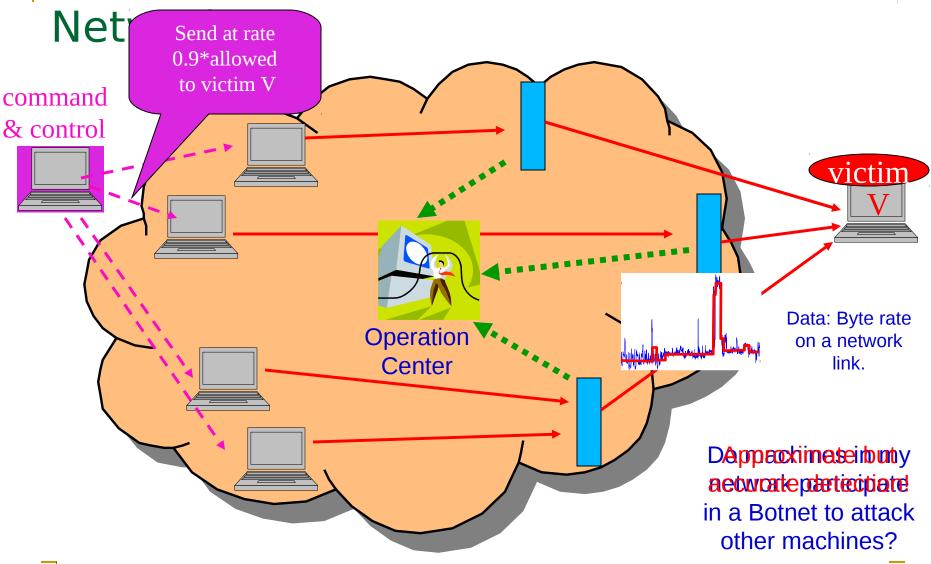
Seminar 236803 on Processing and Mining Distributed Data

Near you

Network-Wide Anomalies

- Are bad:
 - Router mis-configurations
 - Border Gateway Protocol (BGP) policy modifications
 - Device failures
- Or even malicious:
 - DDOS attacks
 - Viruses, spam sending
 - Port scanning
- But also just unpredictable
 - Flash Crowds (mob) supercomputing

Detection Problems in Enterprise



For efficient and scalable detection, push data processing to the edge of network!

We shall talk about:

- Lakhina et al.'s centralized algorithm
- Decentralized anomaly detection
- Slack determination
- Evaluation
- Open Discussion

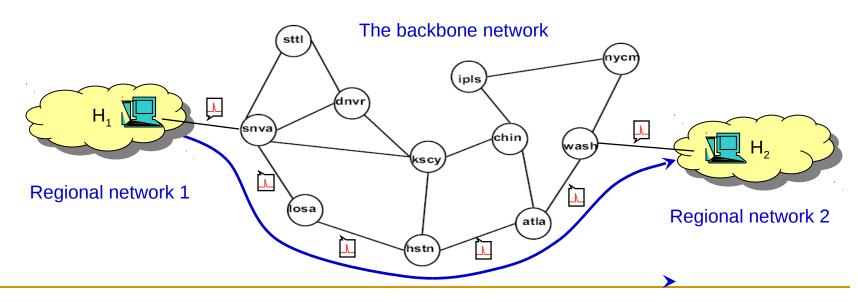
Towards Decentralized Detection

- Lakhina et al.: Distributed Monitoring & Centralized
 Computation
 - Stream-based data collection
 - Periodically evaluate detection function over collected data
 - Doesn't scale well in network size, timescale, detection delay
- Huang et al.: Decentralized Detection
 - Continuously evaluate detection function in a decentr. way
 - Low-overhead, rapid response, accurate and scalable
 - Detection accuracy controllable by a "tuning knob"
 - Provable guarantee on detection error (false alarm rate)
 - Flexible tradeoff between overhead and accuracy

5

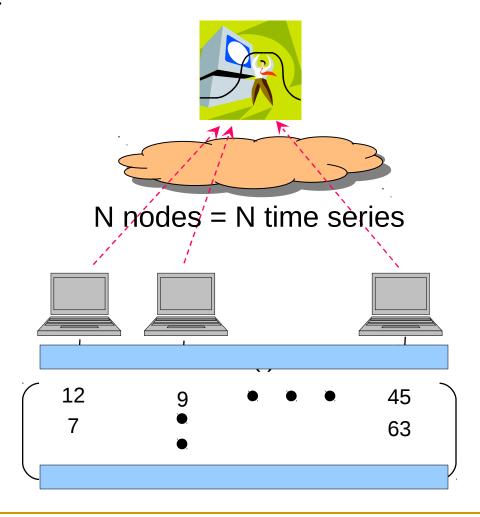
Detection of Network-wide Anomalies

- A volume anomaly is a sudden change in an Origin-Destination flow (i.e., point to point traffic)
- Given link traffic measurements, detect the volume anomalies



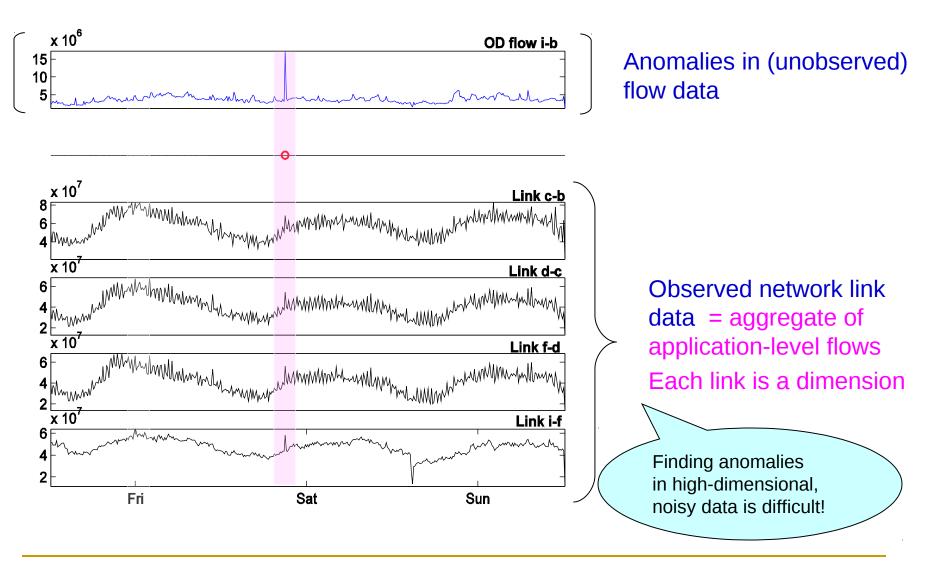
The Data Collected by Monitors

- Routers: volume traffic per second per link.
- Firewalls: number TCP connect request per second.
- Servers: number of DNS transactions per minute.

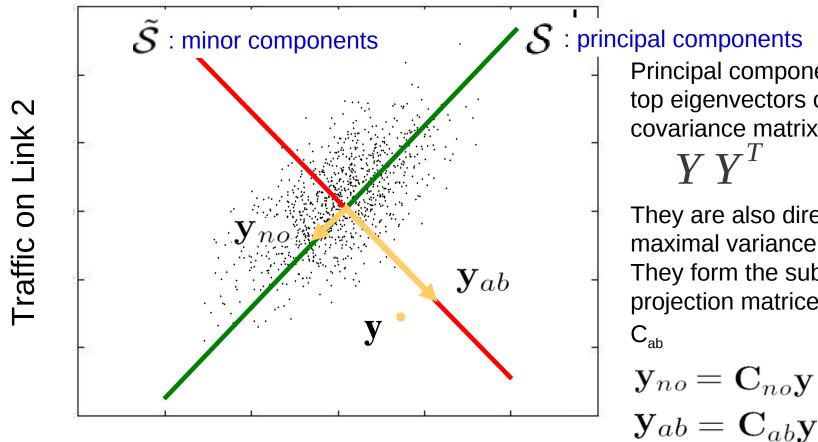


Y= M timesteps

Flow vs. Link (Lakhina et al.)



Principal Component Analysis (PCA)



Principal components are top eigenvectors of covariance matrix.

They are also directions of maximal variance.

They form the subspace projection matrices C_{no} and

$$\mathbf{y}_{no} = \mathbf{C}_{no}\mathbf{y}$$

$$\mathbf{y}_{ab} = \mathbf{C}_{ab}\mathbf{y}$$

Traffic on Link 1

Anomalous traffic usually results in a large value of y_{ab}

The Subspace Method (Lakhina'04)

- An approach to separate normal from anomalous traffic based on Principal Component Analysis (PCA)
- Normal Subspace S: space spanned by the top k principal components
- Anomalous Subspace $\tilde{\mathcal{S}}$: space spanned by the remaining components
- Then, decompose traffic on all links by projecting onto \mathcal{S} and $\tilde{\mathcal{S}}$ to obtain:

Traffic vector of all links at a particular point in time $\mathbf{y} = \mathbf{y}_{no} + \mathbf{y}_{ab}$ Residual traffic vector

Link Traffic Variance of Principle Components

Link matrices have low dimensionality

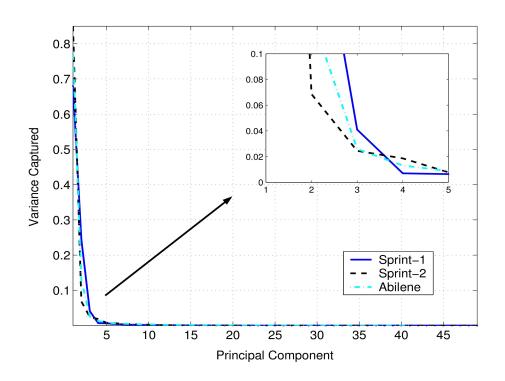


Figure 2: Fraction of total link traffic variance captured by each principal component.

Projections onto Principle Components – normal and abnormal traffic variation

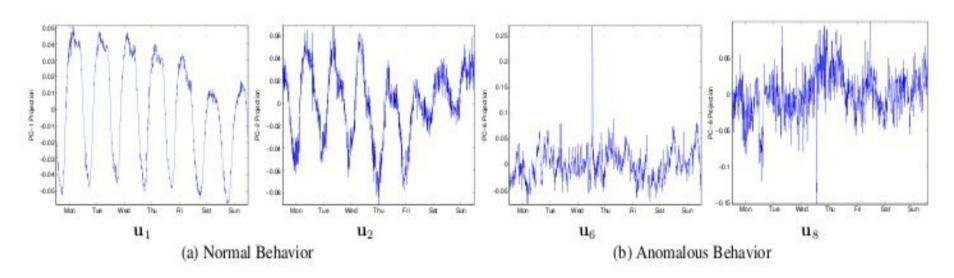
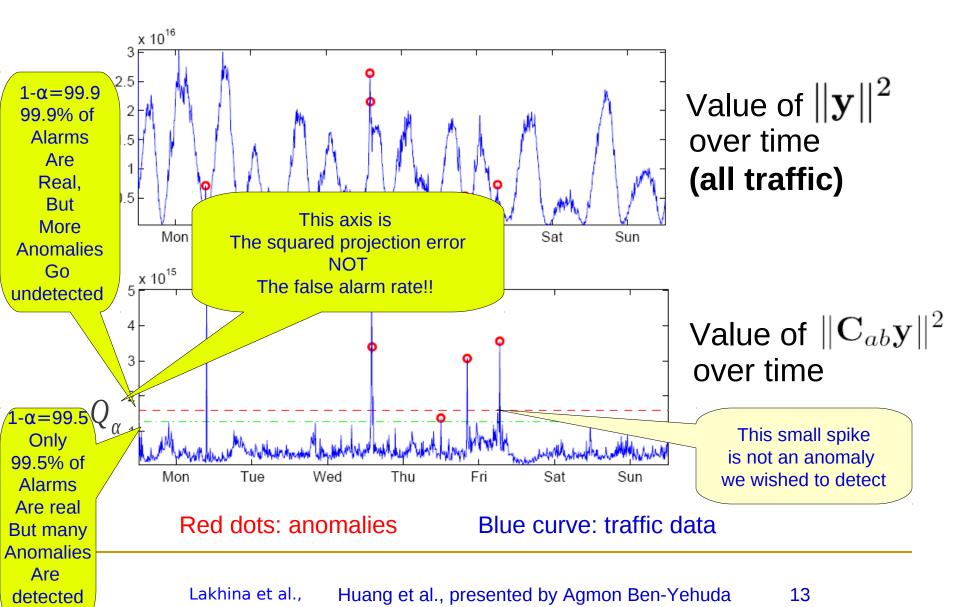


Figure 3: Projections onto principal components showing normal and anomalous traffic variation.

Detection Illustration



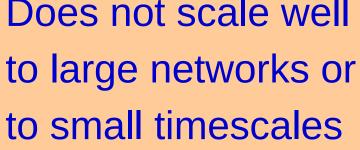
Detection Threshold

$$||C_{ab}y||^2 > Q_{\alpha}$$

- Q_{α} is a threshold on the Squared Projection Error (SPE). It guarantees a false alarm rate of less than α .
- Jackson & Mudholkar: computed threshold based on the abnormal eigenvalues of the covariance matrix.
 - No matter where the distinction is made (how many components are considered normal).
 - No matter what the mean amount of traffic is.
 - For multivariate Gaussian distribution only.
- Jensen & Solomon: In practice, holds for different distributions.
- Lakhina et al. Believe traffic is multivariate Gaussian.
 - but have not verified this.

The Centralized Algorithm

Does not scale well to small timescales

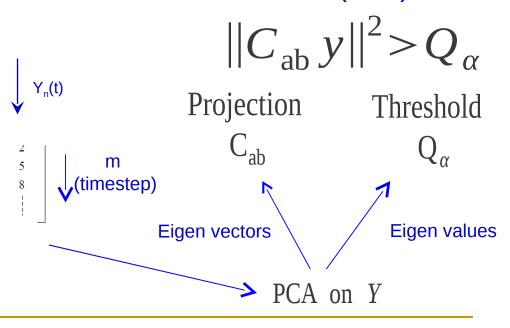


atla

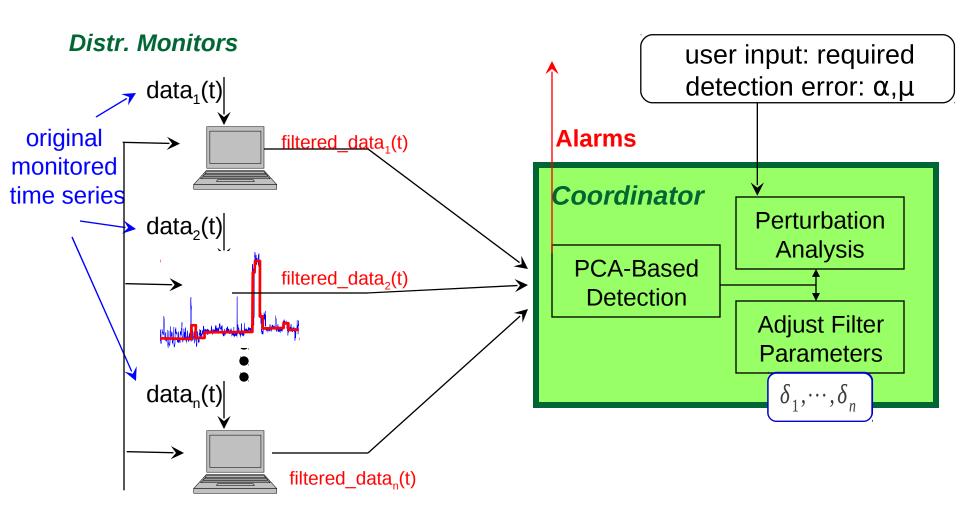
Periodically

- 1) Each link produces a column of m data over time.
- 2) n links produce a row data y at each time instance.

Detection by Squared Prediction Error (SPE):



Huang et al.: In-Network Detection Framework



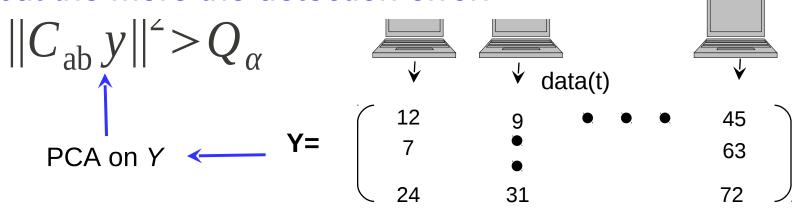
The Communication and Error Tradeoff

Approximate Info.
$$\leftarrow$$
 PCA on \hat{Y}
$$\|\hat{C}_{ab}\hat{y}\|^2 > \hat{Q}_{\alpha}$$

The bigger the filtering parameter δ_i ,

the less the communication overhead,

but the more the detection error!



:ered data(t)

The coordinator computes a set of good $\delta_1, ..., \delta_n$ to manage this difference.

The Protocol At Monitors

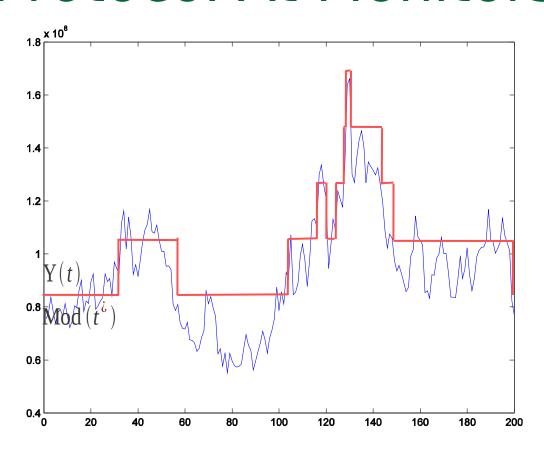
Monitor i updates information if

$$|\mathbf{Y}_{i}(t) - \mathbf{Mod}_{i}(t^{i})| > \delta_{i}$$

 $\delta_1, \dots, \delta_n$ are the *filtering parameters*

- lacksquare $\operatorname{Mod}_i(t^i)$ can be based on any prediction **mod**el built on historical data.
 - The prediction model is known to both monitor and coordinator.
 - For example, the average of last 5 communicated signal values.

The Protocol At Monitors



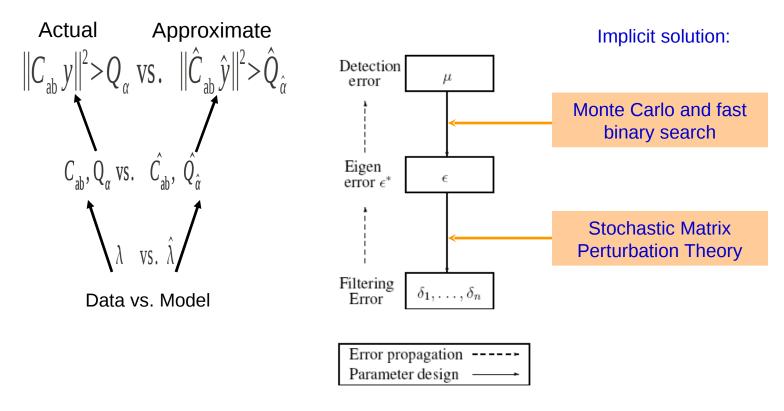
Simple but enough to achieve 10x data reduction

The Protocol at the Coordinator

- Create new time data from communication and predictions
- Update (cyclic) matrix: add new data, lose oldest
- Re-compute PCA (residual projection matrix, threshold)
- Detect anomalies, fire warnings
- Update slacks when needed (no details...)

Parameter Design and Error Control

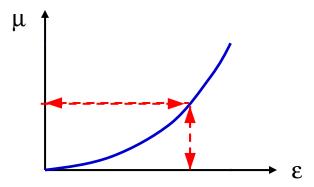
• Users specify an upper bound on false alarm rate, then we determine the filtering parameters δ 's



Eigen error: L₂ norm of the difference between

Parameter Design and Error Control (II)

- Detection Error $\mu \rightarrow$ Eigen-Error ϵ
 - \Box Monte Carlo simulation to find the mapping from ϵ to μ



 \Box For the given μ , a fast binary search to find an ϵ

From Eigen-Error to detection Deviation

$$\Pr\left[\|\mathbf{C}_{a}\mathbf{y}\|^{2} > Q_{\alpha}\right] = \Pr\left[X > c_{\alpha}\right] = \alpha,$$

$$\text{Normalized form of } \|\mathbf{C}_{ab}\mathbf{y}\|^{2} \text{ (Jensen & Solomon)}$$

$$\mu = \Pr\left[c_{\alpha} - \eta_{X} < N(0, 1) < c_{\alpha}\right]$$

$$\text{Upper bound on } \|\hat{X} - X\|$$

$$\text{Estimated using max of } \text{Monte Carlo results}$$

Parameter Design and Error Control (III) Eigen-Error $\varepsilon \rightarrow$ Filtering parameters δs

- Error Matrix: $W = Y \hat{Y}$
- Elements of column vector W_i bound by δ_i
- Assumptions:
 - $lacktriangledown W_i$ are independent, radially symmetric random vectors
 - \Box For each i, all elements of a column vector are i.i.d random variables with mean 0 and variance σ^2
- The variance σ^2 is a function of the slacks δ_i

Parameter Design and Error Control (III)

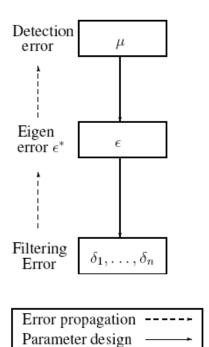
Tolerable Eigen-Error

Theorem: Setting δ_i to satisfy:

Average of Perturbed eigenvalues

$$2\sqrt{\frac{\bar{\lambda}}{m} \cdot \sum_{i=1}^{n} \sigma_i^2} + \sqrt{\left(\frac{1}{m} + \frac{1}{n}\right) \sum_{i=1}^{n} \sigma_i^4} = \epsilon^n$$

Guarantees $\epsilon^i < \epsilon$ with high probability.



Absent:
A connection between local variances and local slacks

Slack Allocation Methods

- 1. Homogeneous slack allocation: uniform distribution of errors in range $[-\delta_i, \delta_i]$ • $\sigma_i = \frac{\delta_i^2}{3}$, results in closed expression for δ 2. Homogeneous slack allocation: local variance
- estimation
 - $\bullet \sigma_i = \sigma_i(\delta)$, monitors approximate locally by fitting an (e.g., quadratic) function according to a recent window of data. Approximation sent to coordinator.
- 3. Heterogeneous slack allocation.
 - Assume uniform distribution of errors in range
 - Minimize communication; Solve using Lagrange multipliers.

Evaluation: Accuracy and Cost

- Given user-specified false alarm rate, evaluate the actual detection accuracy and communication overhead
- Experiment setup
 - Abilene backbone network data of one week:
 - 121 flows, 41 links, 1008 10 minute periods
 - Traffic matrices of size 1008 X 41
 - \square Set uniform slack $\delta_i = \delta$ for all monitors
 - Injected: 60 small "bursts" +60 large "anomalies"
 - Threshold corresponding 0.5% false alarm rate
 - How many experiments (repetitions)?

Evaluation Metrics

- False alarm rate = false alarms/ bursts
- Missed detection rate = missed detections/anomalies
- Cost = num/(n*m) = messages per monitor per sampled time points
 - num = all exchanged messages
 - n = number of monitors
 - M = number of time series points

Evaluation Results

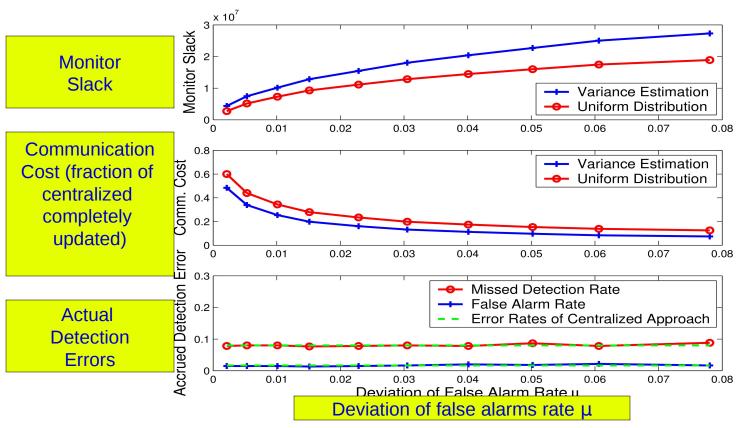
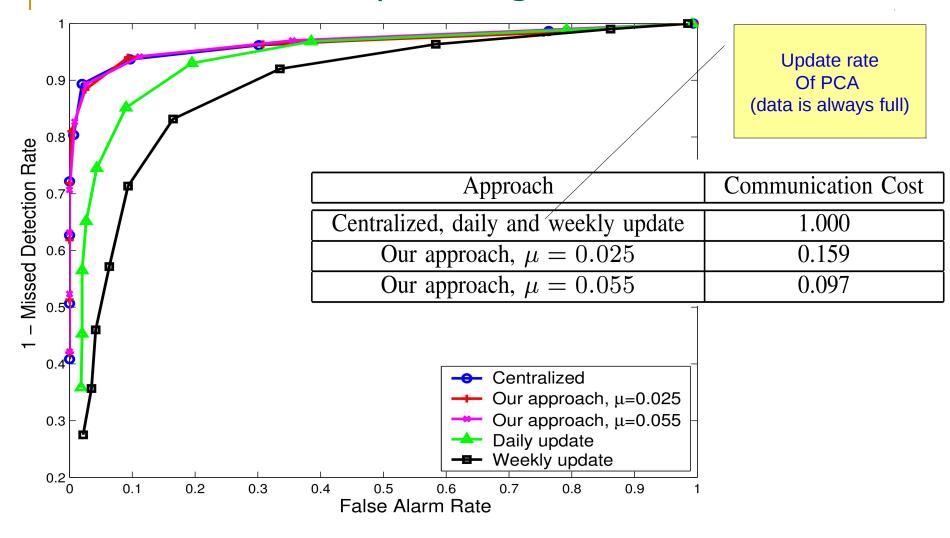


Fig. 6. Monitor slacks, communication cost and accrued detection. The dashed line is the detection error of centralized approach with complete data.

Observations

- Homogenous variance estimation outperforms Homogenous Uniform, but not by much (5%-10%).
- Homogenous Uniform method is simple.
- Homogenous Uniform might be "good enough".
- 80%-90% of the transferred data can be saved without hurting performance.

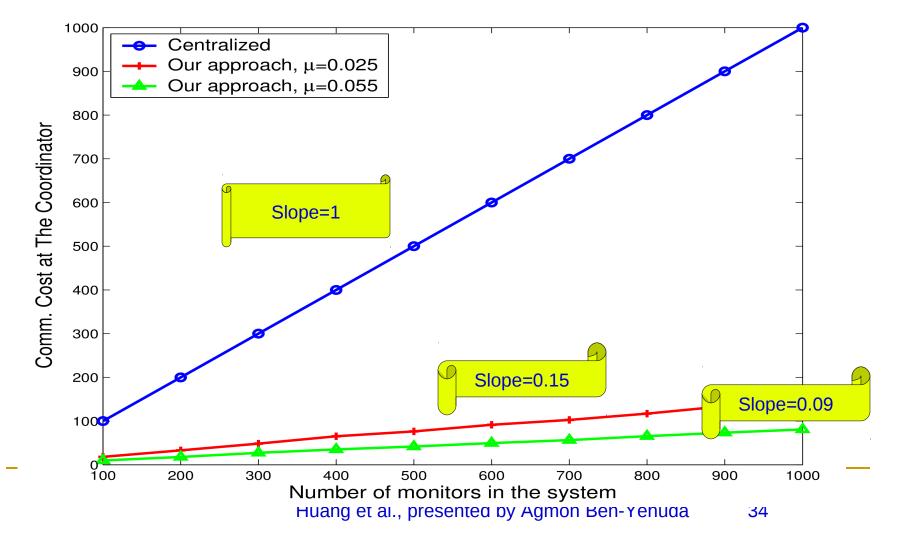
ROC - Receiver Operating Characteristic Curve



Evaluation of Scalability

- BRITE topology generator
- 100-1000 links
- Up to 500*500 Origin-Destination flows
- 4 weeks of realistic data, based of statistical characteristics of Abilene
- In each experiment on n nodes: 5 repetitions, on n randomly picked nodes.

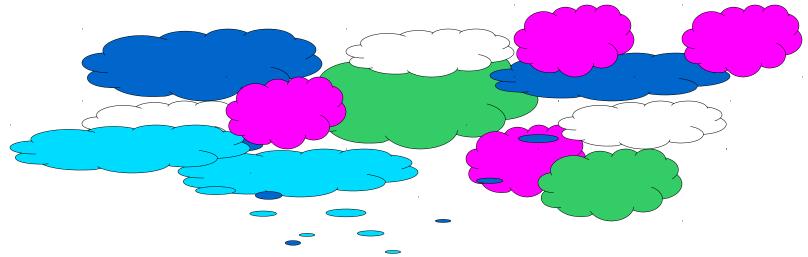
Graceful Scalability by number of monitors: coordinator communication



Summary

- A communication-efficient framework that
 - detects anomalies at desired accuracy level
 - with minimal communication cost
- A distributed protocol for data processing
 - Local monitors decide when to update data to coordinator
 - Coordinator makes global decision and feedback to monitors
- An algorithmic framework to guide the tradeoff between communication overhead and detection accuracy

Discussion



References

[Huang'07] Communication-Efficient Online Detection of Network-Wide Anomalies. L. Huang, X. Nguyen, M. Garofalakis, J. Hellerstein, M. Jordan, A. Joseph and N. Taft. To appear in INFOCOM'07.

[Lakhina'04] Diagnosing Network-Wide Traffic Anomalies. A. Lakhina, M. Crovella and C. Diot. In SIGCOMM '04.

[Jensen & Solomon] A Gaussian approximation for the distribution of definite quadratic forms. D.R. Jensen and H. Solomon, In J. Amer. Stat. Assoc., 67:898-902 (1972).

[Jackson & Mudholkar] Control Procedures for Residuals Associated with Principal Component Analysis. J. E. Jackson and G. S. Mudholkar, Technometrics, pages 341–349, 1979.

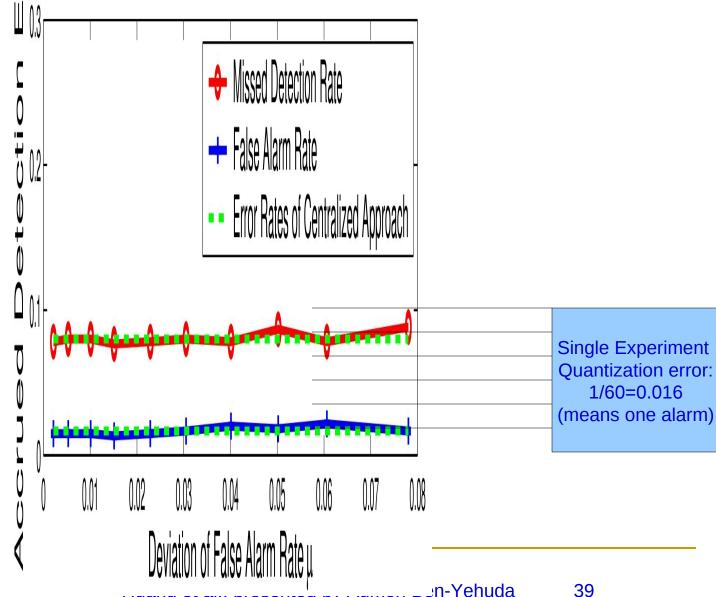
Weaknesses (My Opinion)

- Symmetry + Independence
- Experiments

symmetry + independence

- Is the symmetry + independence assumption valid?
- Correlation may result from simultaneous errors upon surprising data changes, or from (cyclic?) bursts induced by the updating algorithm.

Experiments



Experiments: Lack of Trend

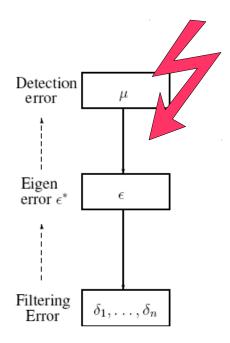
Experiments do not show a statistically significant trend (dependency) of "tolerated deviation from false alarm rate" and actual false alarm rate.

Estimations are too loose, or

Experiments are too synthetic

Between the lines: user is expected to trust

experiment results.



Error propagation -----Parameter design ------

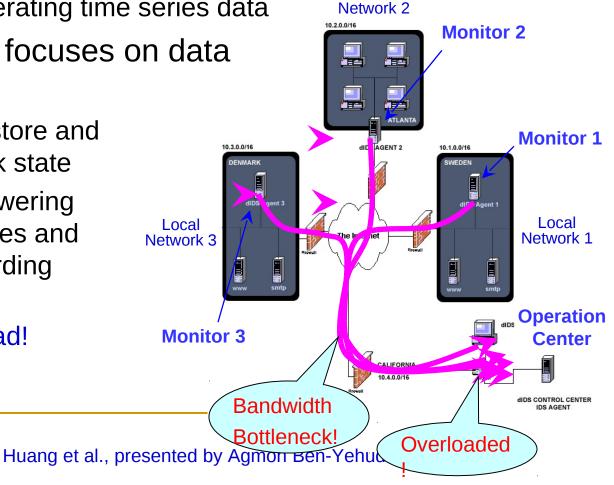
My Summary

- The decentralized algorithm works well in practice according to insufficient experiments.
- The tuning knob was not proved to work in experiments (to be connected to practical accuracy guarantees).
- Noisier experiments are needed.

Backup Slides

Traditional Distributed Monitoring

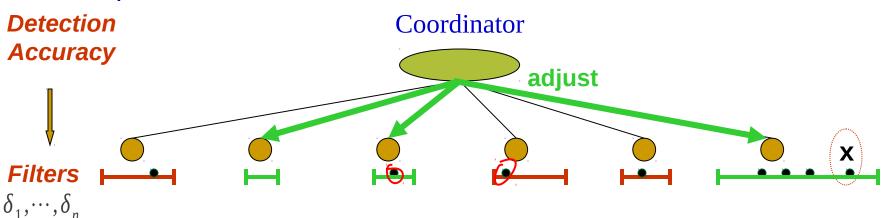
- Large-scale network monitoring and detection systems
 - Distributed and collaborative monitoring boxes
 - Continuously generating time series data
- Existing research focuses on data streaming
 - Centrally collect, store and aggregate network state
 - Well suited to answering approximate queries and continuously recording system state
 - Incur high overhead!



Local

Our Distributed Processing Approach

- A coordinator
 - Is aggregation, correlation and detection center
- A set of distributed monitors
 - Each produces a time series signals
 - Processes data locally, only sends needed info. to coordinator
 - No communication among monitors
 - Coordinator tells monitors the level of accuracy for signal updates



Performance

μ	Missed Detections		False Alarms		Data Reduction	
	Week 1	Week 2	Week 1	Week 2	Week 1	Week 2
0.01	0	0	0	0	75%	70%
0.03	0	1	1	0	82%	76%
0.06	0	1	0	0	90%	79%

→ error tolerance = upper bound on error

Data Used: Abilene traffic matrix, 2 weeks, 41 links.