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Network-Wide Anomalies

 Are bad:
 Router mis-configurations
 Border Gateway Protocol (BGP) policy modifications
 Device failures

 Or even malicious:
 DDOS attacks
 Viruses, spam sending
 Port scanning

 But also just unpredictable
 Flash Crowds (mob) supercomputing

Lakhina et al.,
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Detection Problems in Enterprise 
Network

Do machines in my 
network participate 
in a Botnet to attack 

other machines?

victim

command
& control

Send at rate 
0.9*allowed
 to victim V

V

Operation 
Center

Coordinated Detection!

Data: Byte rate 
on a network 

link.

CAN’T AFFORD TO DO THE DETECTION CONTINUOUSLY !
For efficient and scalable detection, push data processing to the 

edge of network!

Approximate but 
accurate detection!
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We shall talk about:

 Lakhina et al.'s centralized algorithm
 Decentralized anomaly detection
 Slack determination
 Evaluation
 Open Discussion
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Towards Decentralized Detection

5

 Lakhina et al.: Distributed Monitoring & Centralized 
Computation
 Stream-based data collection
 Periodically evaluate detection function over collected data
 Doesn’t scale well in network size, timescale, detection 

delay

 Huang et al.: Decentralized Detection
 Continuously evaluate detection function in a decentr. way
 Low-overhead, rapid response, accurate and scalable
 Detection accuracy controllable by a “tuning knob”

 Provable guarantee on detection error (false alarm rate)
 Flexible tradeoff between overhead and accuracy
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Detection of Network-wide Anomalies

 A volume anomaly is a sudden change in 
an Origin-Destination flow (i.e., point to point 
traffic)

 Given link traffic measurements, detect the 
volume anomalies

                  H1

H2

The backbone network

Regional network 1
Regional network 2
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The Data Collected by Monitors

data(t)

12 9 45
7

24 31

63

72

Y=

M timesteps

N nodes = N time series

 Routers: volume traffic per 
second per link.

 Firewalls: number TCP 
connect request per 
second.

 Servers: number of DNS 
transactions per minute.
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Flow vs. Link (Lakhina et al.)

Observed network link 
data  = aggregate of 
application-level flows

Each link is a dimension

Anomalies in (unobserved) 
flow data

Finding anomalies 
in high-dimensional, 
noisy data is difficult!

Lakhina et al.,
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Traffic on Link 1

T
ra

ff
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 o
n 

Li
nk

 2
Principal Component Analysis (PCA)

y

Anomalous traffic usually results in a large value of 

: principal components: minor components
Principal components are 
top eigenvectors of 
covariance matrix.

 
They are also directions of 
maximal variance.
They form the subspace 
projection matrices Cno and 
Cab 

Y Y T
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The Subspace Method (Lakhina’04)

 An approach to separate normal from anomalous 
traffic based on Principal Component Analysis (PCA)

 Normal Subspace     :  space spanned by the top  k 
principal components

 Anomalous Subspace    :  space spanned by the 
remaining components

 Then, decompose traffic on all links by projecting 
onto     and      to obtain:

Traffic vector of all 
links at a particular 
point in time

Normal traffic
vector

Residual traffic
vector



Huang et al., presented by Agmon Ben-Yehuda 11Lakhina et al.,

Link Traffic Variance of Principle Components

 Link matrices have low dimensionality
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Projections onto Principle 
Components – 
normal and abnormal traffic variation

Lakhina et al.,
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Detection Illustration

Value of
over time 
(all traffic)

over time
Value of

Qα

Red dots: anomalies            Blue curve: traffic data

Lakhina et al.,

1-α=99.9
99.9% of 

Alarms
Are

Real,
But

More
Anomalies

Go 
undetected 

1-α=99.5
Only

99.5% of
Alarms
Are real

But many
Anomalies

Are 
detected

This small spike
is not an anomaly 

we wished to detect

This axis is 
The squared projection error

NOT
The false alarm rate!! 
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Detection Threshold

          is a threshold on the Squared Projection Error (SPE). It 
guarantees a false alarm rate of less than α.

 Jackson & Mudholkar: computed threshold based on the 
abnormal eigenvalues of the covariance matrix.
 No matter where the distinction is made (how many components 

are considered normal).
 No matter what the mean amount of traffic is.
 For multivariate Gaussian distribution only.

 Jensen & Solomon: In practice, holds for different 
distributions.

 Lakhina et al. Believe traffic is multivariate Gaussian.
 but have not verified this.

       Qα

∥Cab y∥2
Qα

Lakhina et al.,
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Y=
m 

(timestep)

n (nodeID)

Operation center

Y

The Centralized Algorithm

PCA  on  Y

The Network

Eigen values

Threshold
       Qα

Eigen vectors

Projection
      Cab

 Data matrix Dat
   1) Each link produces a column of m data 
over time.

   2) n links produce a row data y at each 
time instance.

∥Cab y∥2
Qα

Detection by Squared 
Prediction Error (SPE):

Y1(t) Y2(t) Y3(t) Yn(t)

Periodically

Does not scale well

to large networks or 

to small timescales
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PCA-Based
Detection

Huang et al.: In-Network Detection Framework

data1(t)

data2(t)

datan(t)

Perturbation
Analysis

Adjust Filter
Parameters

original 
monitored 
time series

filtered_data1(t)

filtered_data2(t)

filtered_datan(t)

Coordinator

Alarms

user input: required
detection error: α,μ

δ 1

Distr. Monitors

δ 2δn
δ 1 ,⋯, δn
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The Communication and Error Tradeoff

∥Cab y∥
2
 Qα

data(t)

12 9 45
7

24 31

63

72

Y=

filtered_data(t)

Y

PCA on Y

∥Cab y∥2
Qα

Full Info. 

PCA on YApproximate Info.

Difference?
The bigger the filtering parameter δi, 

the less the communication overhead, 

but the more the detection error!

The coordinator computes a set of good δ1, …, δn to manage this difference. 
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∣Yi t −Modi  t
¿
∣δ i

The Protocol At Monitors

 Monitor i updates information if  

                are the filtering parameters
            can be based on any prediction model 

built on historical data.
 The prediction model is known to both monitor 

and coordinator.
 For example, the average of last 5 communicated 

signal values.

δ1 ,⋯, δ n

Modi  t
¿

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The Protocol At Monitors



 Simple but enough to achieve 10x data reduction

Mod t ¿ 

Y  t 
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The Protocol at the Coordinator

 Create new time data from communication 
and predictions

 Update (cyclic) matrix: add new data, lose 
oldest

 Re-compute PCA (residual projection matrix, 
threshold)

 Detect anomalies, fire warnings
 Update slacks when needed (no details...)
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Parameter Design and Error Control

 Users specify an upper bound on false alarm rate, then 
we determine the filtering parameters δ’s

∥C ab y∥2Qα  vs .   ∥C ab y∥
2 Q α

Cab , Qα  vs .    Cab ,  Q α

Data vs. Model

Eigen error: L2 norm of the difference between 

the approximate eigenvalues and the actual ones

Actual Approximate

     vs .  

Cab , Qα  vs .    Cab ,  Q α

Implicit solution:

Monte Carlo and fast 
binary search

Stochastic Matrix 
Perturbation Theory
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Parameter Design and Error Control (II)

 Detection Error µ  Eigen-Error ε
 Monte Carlo simulation to find the mapping from ε to µ

 For the given µ,  a fast binary search to find an ε
ε

µ
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From Eigen-Error to detection Deviation

Normalized form of

(Jensen & Solomon)

           

∥C ab y∥2
(1-α)-th  percentile

           

Upper bound on 

Estimated using max of 
Monte Carlo results

           

∣ X−X∣
Centralized

False
alarms

Distributed 
false alarms

Detection
 Error

ηx

CαCα+ηx
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Parameter Design and Error Control (III)
Eigen-Error ε  Filtering parameters δs
 Error Matrix:
 Elements of column vector       bound by 
 Assumptions:

       are independent, radially symmetric random 
vectors

 For each i, all elements of a column vector are 
i.i.d random variables with mean 0 and variance 

 The variance     is a function of the slacks

W=Y− Y

W i i

W i

2

i2
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Parameter Design and Error Control (III)

Theorem: Setting     to satisfy:

 
i

     Guarantees            with high probability.

 

¿

Tolerable
Eigen-Error

           

Average of
Perturbed

eigenvalues
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Absent:
A connection between

local variances and
local slacks
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Slack Allocation Methods

1. Homogeneous slack allocation: uniform distribution of 
errors in range 
●          , results in closed expression for

2. Homogeneous slack allocation: local variance 
estimation
●               , monitors approximate locally by fitting an (e.g., 

quadratic) function according to a recent window of data. 
Approximation sent to coordinator.

3. Heterogeneous slack allocation.
●Assume uniform distribution of errors in range 

●Minimize communication; Solve using Lagrange multipliers.

i=
δ i

2

3

[−i ,i]


i=i 
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Evaluation:Accuracy and Cost
 Given user-specified false alarm rate, evaluate 

the actual detection accuracy and communication 
overhead

 Experiment setup
 Abilene backbone network data of one week: 

 121 flows, 41 links, 1008 10 minute periods

 Traffic matrices of size 1008 X 41
 Set uniform slack            for all monitors
 Injected: 60 small “bursts” +60 large “anomalies”
 Threshold corresponding 0.5% false alarm rate
 How many experiments (repetitions)?
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Evaluation Metrics

 False alarm rate = false alarms/ bursts
 Missed detection rate = missed 

detections/anomalies
 Cost = num/(n*m) = messages per monitor 

per sampled time points
 num = all exchanged messages
 n = number of monitors
 M = number of time series points
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Evaluation Results

Monitor
Slack

Communication
Cost (fraction of 

centralized 
completely 

updated)

Actual 
Detection

Errors

Deviation of false alarms rate μ
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Observations

 Homogenous variance estimation 
outperforms Homogenous Uniform, but not 
by much (5%-10%).

 Homogenous Uniform method is simple.
 Homogenous Uniform might be “good 

enough”.
 80%-90% of the transferred data can be 

saved without hurting performance.
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ROC – Receiver Operating Characteristic Curve

Update rate
Of PCA 

(data is always full)



Huang et al., presented by Agmon Ben-Yehuda 33

Evaluation of Scalability 

 BRITE topology generator
 100-1000 links
 Up to 500*500 Origin-Destination flows
 4 weeks of realistic data, based of statistical 

characteristics of Abilene
 In each experiment on n nodes: 5 repetitions, 

on n randomly picked nodes.
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Graceful Scalability by number of 
monitors: 
coordinator communication

Slope=1

Slope=0.09
Slope=0.15
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Summary
 A communication-efficient framework that

 detects anomalies at desired accuracy level
 with minimal communication cost

 A distributed protocol for data processing
 Local monitors decide when to update data to 

coordinator
 Coordinator makes global decision and feedback to 

monitors
 An algorithmic framework to guide the tradeoff 

between communication overhead and detection 
accuracy
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Weaknesses (My Opinion)

 Symmetry + Independence 
 Experiments
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symmetry + independence

 Is the symmetry + independence assumption 
valid? 

 Correlation may result from simultaneous 
errors upon surprising data changes, or from 
(cyclic?) bursts induced by the updating 
algorithm.
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Experiments

Single Experiment 
Quantization error:

1/60=0.016
(means one alarm)
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Experiments: Lack of Trend

Experiments do not show a statistically significant 
trend (dependency) of “tolerated deviation from 
false alarm rate”and actual false alarm rate.


Estimations are too loose, or 


Experiments are too synthetic


Between the lines: user is expected to trust 
experiment results.
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My Summary

 The decentralized algorithm works well in 
practice according to insufficient experiments.

 The tuning knob was not proved to work in 
experiments (to be connected to practical 
accuracy guarantees).

 Noisier experiments are needed.
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Operation 
Center

Traditional Distributed Monitoring

 Large-scale network monitoring and detection systems
 Distributed and collaborative monitoring boxes
 Continuously generating time series data

 Existing research focuses on data                      
streaming
 Centrally collect, store and                                               

aggregate network state
 Well suited to answering

approximate queries and 
continuously recording 
system state

 Incur high overhead!

Monitor 1

Monitor 2

Monitor 3

Local 
Network 2

Local 
Network 3

Local 
Network 1

Bandwidth

Bottleneck! Overloaded
!
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Our Distributed Processing Approach

 A coordinator
 Is aggregation, correlation and detection center

 A set of distributed monitors             
 Each produces a time series signals
 Processes data locally, only sends needed info. to coordinator
 No communication among monitors
 Coordinator tells monitors the level of accuracy for signal 

updates

Filters
x

“push”

Filters
x

adjust

Hosts/Monitors

CoordinatorDetection
Accuracy

δ 1 ,⋯, δn
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Performance

µ Missed Detections False Alarms Data Reduction

Week 1 Week 2 Week 1 Week 2 Week 1 Week 2

0.01 0 0 0 0 75% 70%

0.03 0 1 1 0 82% 76%

0.06 0 1 0 0 90% 79%

Data Used: Abilene traffic matrix, 2 weeks, 41 links.

error tolerance = upper bound on error
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