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Abstract. The world of cloud computing is progressing from the con-
cept of securing resources by predefined units to dynamically allocating
resources using economic mechanisms. New mechanisms offer better uti-
lization of the hardware by sharing it among multiple users. However,
they allow new types of economic attacks. We introduce two new eco-
nomic attacks performed by malicious users. These attacks harm the
aggregate utility of Resource-as-a-Service (RaaS) clouds. Our first at-
tack aims at raising bills in the system, and causing victims to pay more
for the same amount of resources. Over time the attack may cause vic-
tims to exhaust their budget, thus lowering their demand for resource
allocation, and allowing the attacker to acquire the freed resources at
a negligible cost. Our second attack is designed to hinder the victim’s
performance at specific points in time by outbidding them for a single
round. For resources of high regaining costs or that their full utilization
takes time (e.g., RAM), even a single round without the resource may
significantly hinder the performance. In this work we demonstrate on a
simple representative example how the first attack reduces the victim’s
profit sevenfold and the second attack causes damage of $290− $630 for
every dollar spent on the attack.

Keywords: VCG · Resource Allocation · RaaS · Economic Attacks.

1 Introduction

The Resource-as-a-Service (RaaS) cloud [3] is an economic model of cloud com-
puting that allows providers to sell adjustable quantities of individual resources
(such as CPU, RAM, and I/O resources) for short intervals—even at a sub-
second granularity. In the RaaS cloud, clients can purchase exactly the resources
they need when they need them. As price wars drive cloud providers towards this
model [5], they start offering plans for dealing with resource requirement bursts:
CloudSigma offered time-varying burst prices in 2010 [11], Amazon EC2 offered
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burstable performance instances in 2014 [14], Google Cloud offered Pay-as-you-
go in 2016 [17], and Microsoft introduced the burstable Azure cloud Instance
in 2017 [8]. When resources are dynamically rented, e-commerce requires calcu-
lating online economic decisions. Such decisions can only be made in real time
by automated agents. E-commerce also requires efficient and computationally
simple allocation mechanisms. These mechanisms may be centralized (as in an
auction) or decentralized (as in a marketplace [37] or by negotiations [2]).

We see that horizontal scaling (adding more machines) has already matured
to the point of incorporating advanced economic mechanisms such as auctions
(e.g., AWS Spot Instances [4], Packet [31], and Alibaba Cloud Spot Instances [7]).
Nevertheless, in the case of vertical scaling (increasing an existing machine’s
resources) we are only now seeing signs of early adoption of such mechanisms
(e.g., Amazon EC2 T2 Instances, Google Cloud Platform, CloudSigma).

In the past few years, numerous studies have been published regarding differ-
ent attack methods relevant to clouds, e.g., side channel [30], Resource Freeing
Attack (RFA) [33], co-location attacks [34], and Economic Denial of Sustainabil-
ity (EDoS) [20]. Most of the studied attacks are aimed at penetrating the security
of the system and not at the economic mechanism that drives the resource allo-
cation in the system. EDoS attacks are an exception: they cause victims to scale
their resources beyond their economic means. In this work we take this line of
vulnerabilities further, presenting combined economic-computer-science attacks.

Our contribution is the design of two low-cost economic attacks aimed at
auction based clouds. The implementation and evaluation of the attacks were
done on a simple representative example using Ginseng [6], a market driven
cloud system for efficient RAM allocation. The first attack is the Price Rais-
ing attack. This attack raises prices in the system, thus reducing the victim’s
profit and forcing it to free resources. This enables the attacker to rent the freed
resources at a negligible cost. The second attack is the Elbowing attack. This
attack hinders the victim’s performance by outbidding it for a single round at
specific points in time. Due to the nature of RAM usage, the victim suffers from
reduced performance even after the attack round ends, and it re-acquires the
RAM. We demonstrate how the Price Raising attack reduces the victim’s profit
sevenfold and the Elbowing attack causes damage of $290− $630 for every dollar
spent on the attack.

In Section 2 we describe the auction protocol we attack. In Section 3 we
discuss the vulnerabilities in repeated auctions, and the motivations behind at-
tacking such auctions. In Section 4 we describe the experimental setup. In Sec-
tion 5 we present and analyze our first attack—the Price Raising attack, and in
Section 6 we present and analyze our second attack—the Elbowing attack. We
review related work in Section 7, and conclude in Section 8.
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2 Background: An Auction Mechanism for Vertical
Scaling in the Cloud

In resource auctions, guests have private valuations for each resource (e.g., RAM
or bandwidth) that reflect how much additional resources are worth to them.
In a full Vickrey–Clarke–Groves (VCG) auction [12, 18, 35], guests bid with a
full valuation function. The auctioneer chooses the allocation which maximizes
the aggregate valuation of the allocated resources (the social welfare). The so-
cial welfare is defined as the sum of all of the guests’ valuation for resources in
a specific allocation. The guests pay according to the exclusion compensation
principle: they pay the difference to the other guests’ social welfare, incurred by
their participation in the auction. We note that in the full VCG auction, guests
are truthful—it is rational for them to bid with their true valuations. The Face-
book’s ad auction [28] and the Ginseng cache auction [16] are implementations
of a full VCG resource auction.

VCG is computationally intensive, limiting its use in repeated auctions.
Therefore, companies offering Spot Instances (e.g., Amazon EC2, Alibaba Cloud,
and Packet), which require a repeated auction, approximate VCG using a uni-
form price auction. Likewise, auctioning resources in a fine granularity requires
VCG approximations, which are only approximately truthful. Lazar and Sem-
ret allocate bandwidth using the Progressive-Second-Price (PSP) auction [25].
Ginseng RAM auctions RAM to guests repeatedly and frequently using the
Memory-Progressive-Second-Price (MPSP) auction [6]. In this work we analyze
the Simplified Memory-Progressive-Second-Price (SMPSP) auction, which re-
sembles both these auctions. The SMPSP auction is identical to repeating the
auction proposed by Maillé and Tuffin [26] when the valuation function is ap-
proximated using a single point. The SMPSP auction is also used by Agmon et
al. [2]. We present the auction in detail in Section 2.1.

2.1 The Simplified Memory-Progressive-Second-Price (SMPSP)
auction

In a RAM auctioning system the host auctions RAM to guests. Each guest rents
a permanent amount of base RAM on a constant hourly fee. In addition, the
guest may participate in the re-occurring auctions to rent additional RAM.1 The
price paid in the auction for additional RAM does not affect the cost of the base
RAM. The host represents the provider, and is in charge of running the auction.
In order to attract more guests, the host allocates the additional RAM between
the guests, using a repeated auction mechanisms, in a manner that optimizes
their social welfare. Each auction round is composed of several stages:

1. Auction Announcement—The host announces Q, the amount of spare
RAM that is auctioned in that round.

1 Most of the provider’s revenue comes from the constant hourly fee the guests pay for
their base RAM. This allows the provider to use an auction to optimize the social
welfare of the guests without worrying about its own revenue.
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Fig. 1: Allocation Plot

2. Bidding—Interested guests bid for a desired amount of RAM. Guest i’s bid
is a tuple (pi,qi). pi is the maximal unit price that guest i is willing to pay for
RAM (in terms of cents per Mb per hour), and qi is the maximal quantity
it is willing to accept.

3. Allocation and Payments—The host computes the allocation and pay-
ment according to VCG’s exclusion compensation principle.

4. Informing Guests—The host informs each guest i of its personal results
(p′i,q

′
i). The host also announces the unit price of borderline bids: the lowest

accepted unit price (denoted Pmin in) and the highest rejected unit-price
(denoted Pmax out). If any guest received a partial allocation, Pmin in is
equal to Pmax out.

The host informs the guests about the borderline bids for three reasons. First,
benign guests use this information to plan their next bids. They can use it to
learn the minimal price they can bid with and still win some RAM. Second,
guests can trivially learn this information over time through the rejection or
acceptance of their bids, so it is futile to try and hide it. Third, without this
information guests may bid iteratively for a few rounds to find the lowest price
they can offer, thus disturbing the system’s stabilization.

The results of an auction can be visually represented by a plot, as shown
in Fig. 1. Each guest, in the order they were allocated RAM and sorted by the
allocation algorithm, is represented by a rectangle: the width is the amount of
RAM won by the guest, the height is the unit price of the guest’s bid, and
the rectangle’s area reflects the guest’s valuation for the given allocation. The
guest’s bill is reflected by the sum of the rectangle areas calculated from Q to q′i.
Therefore, the social welfare is given by the sum of areas that belong to guests
who were allocated RAM (those in the interval [0, Q]).
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3 Vulnerabilities in Repeated Auctions

VCG is truthful as a single round game. The best strategy for a participant is to
declare its true type (e.g., its true valuation of the resources). Even a VCG-like
auction (e.g., PSP or SMPSP) is usually truthful when participants consider
only a single round [6]. In the case of repeated auctions, a guest can choose a
more beneficial strategy on the basis of information learned from previous bid
results [9].

In the SMPSP auction protocol presented in Section 2.1, if a guest wants a
more accurate estimation of its next bill, it can try to create a model containing
the information regarding the bids of other guests in the system. This model
can be created by keeping track of the data released by the host—Pmin in and
Pmax out, and fusing it with the results from previous rounds—the bill paid by
the guest, and the allocation it received. Given Pmin in, the guest knows the
minimal bid that was allocated a positive quantity of RAM. At the same time,
given Pmax out and its bill, the guest knows the maximum rejected bid price,
and the average unit price in the interval [Q,Q + q′]. The guest does not know
how many bids were rejected nor their values. By changing its bid price, and
following the results of each round, the guest can learn information about the
rejected bids.

In Section 5 and Section 6 we will show how a guest can use the data collected
in order to attack the system and gain resources for a negligible price.

3.1 Attacking a Repeated Auction Mechanism

A system based on a repeated auction is vulnerable to attacks by both adver-
sarial guests and selfish guests wishing to improve their resource allocation. In
a repeated auction, data about the system can constantly be collected. Hence,
the attacker can afford sporadic non-beneficial attack rounds, as the following
rounds balance out its utility.

When attacking the system, the attacker can have different direct goals driv-
ing the attack:

1. Hindering performance—The attacker prevents the victim from utilizing
physical resources.
(a) Resource deprivation—The attacker causes the victim to rent less re-

sources.
(b) Inefficient resource rental—The attacker harms the victim by making it

suffer the overhead of re-acquiring the resource. This attack is specific for
resources that have a high acquisition overhead (e.g., RAM, disk space).
Even if the victim obtains access to the resource again, it would need to
recover or reproduce the data. Until then, its performance is likely to be
hindered.

2. Reducing profits—The attacker raises the price of resources, thus causing
the victim to spend more money than planned. The immediate result is
increasing the victim’s expense rate, thus lowering its profit rate.
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3. Reducing resource pressure (freeing resources)—If the victim’s budget is
drained (e.g., due to a long term cost increase), it is forced to free resources.
The freed resources can then be obtained by the attacker at a lower price
because the demand for the resources is lower. Even if the victim’s budget is
not completely depleted, it may request less resources in an effort to avoid
a complete budget depletion. This reaction immediately frees resources.

An important aspect of an attack is the monetary resources required for its
deployment. A high budget attack is less likely to be deployed than an attack that
can be performed using a strict budget. Our proposed attacks, the Price Raising
attack and the Elbowing attack, are indeed low-cost attacks. The Price Raising
attack costs nothing, and the Elbowing attack causes damage of $290− $630 for
every dollar spent by the attacker.

4 Experimental Setup

Our experiments, which verified the attacks we performed, were run on a 24-
core server with 16GB of RAM. The RAM was auctioned and allocated using
Ginseng [6] over Ubunto Linux 4.4.0-72-generic. Ginseng auctions RAM to guests
and then changes their physical RAM allocation accordingly. It is implemented
on the KVM hypervisor [23] with Litke’s memory overcommit manager MOM [1].
It controls the exact amount of allocated RAM to each guest via libvirt using
ballon drivers [36]. Ginseng has a host component and a guest component. The
host component includes the Auctioneer that runs the MPSP protocol that is an
extension of the SMPSP protocol described in Section 2.1. The guest component
is suitable for virtual machines (VM’s).

We note that although this Ginseng implementation is based on VMs, the
principals behind the attacks are also relevant to other implementation (e.g.,
containers).

In our experiments the victim guest machine ran an elastic version of mem-
cached [27], a key value storage application commonly used in clouds. Elastic
memcached can release the least recently used RAM, thus allowing memory us-
age elasticity. The performance of elastic memcached is a concave monotonically
rising function of its RAM [6]. In this case, MPSP guests bid using the reduced
bidding language supported by the SMPSP. Under these circumstances, the pro-
tocols are equivalent. The attacker guest machine ran MemoryConsumer [6], a
synthetic application which performs linearly with its RAM consumption.

5 Price Raising Attack

In the Price Raising attack, the attacker uses the first rounds of the auction
to collect data about the borderline bids. In analogy to Dolgikh et al. [13], it
learns information for free by bidding a price that is likely to be rejected. After
analyzing the collected data, the attacker uses it to situate itself as the highest
rejected bidder, thus setting the unit price Pmax out. In every auction round, the
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(a) Initial bids. The attacker situates it-
self as the guest setting Pmax out. Bill
rate of $7.7/hour for 1.5GB that the vic-
tim rents.

(b) The attacker raises Pmax out, in-
creasing the victim’s bill rate to
$11.16/hour for the same 1.5GB.

(c) The victim responds by reducing its
bid quantity, and raising its bid price.
The attacker gains free access to re-
sources. The victim’s bill rate is now
$10.73/hour for only 1.14GB it rents.

Fig. 2: Price raising attack. RAM allocation plot

attacker requests Q—the full amount of RAM. By bidding Pmax out for Q, the
attacker directly affects the bill paid by the winning guests (see Fig. 2). Each
winner i pays Pmax out × q′i. In every attack round the attacker raises Pmax out.
This causes the winning guests to pay more for the RAM resources they receive,
thus reducing their profits. The profit reduction may cause the victim to reduce
its requested quantity and raise its bid price, in an effort to distance its bid from
the borderline unit price, or to remain within its budget limits. Either way, the
victim may free resources.

To keep the attack at a low budget, the attacker compares rejected guests’
bids with its own valuation. If the attacker’s true valuation for RAM is lower
than that of any other rejected guest, then the attacker should decrease its bid
price to avoid winning resources that will create additional costs that it cannot
afford. Otherwise, the attacker can rent the freed RAM.
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(c) Guests bill. The attacker’s bill is 0.

Fig. 3: Price raising attack.

This attack achieved three goals: First, by slowly raising Pmax out and causing
the victim to pay more for the same quantity of RAM, the attacker reduced the
victim’s profit sevenfold (see Fig. 3a). Second, by reducing the victim’s profits
and draining its budget, the attacker forced the victim to free RAM (see Fig. 3b),
thus enabling the attacker to rent it at a lower cost (see Fig. 3c). Finally, by
forcing the victim to rent less RAM than it ideally wanted, the attack can hinder
the victim’s performance.

6 Elbowing Attack

The Elbowing attack causes the degradation of the victim’s performance and
profit over time. This attack is designed to harm victims that fill their RAM
slowly. For such victims, losing RAM even for a very short period of time can be
badly damaging: while the victim re-acquires and re-fills the RAM, it loses the
benefits it gained from previously owning the RAM. The attacker benefits from
this attack since outbidding the victim every now and then does not cost nearly
as much as it would cost to constantly win the allocated RAM. This means that
at a relevantly low cost, the attacker can inflict severe damage to the victim.

To test this attack type we performed a parametric sweep of attacks in a
system that contained two guests—the attacker and the victim. In each attack,
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(a) No attacks on the system. (b) The victim’s performance and RAM al-
location.
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(c) Attack every 10 auction rounds. The vic-
tim’s damage is $48/hour and the attack cost
is $0.11/hour.
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(d) Attack every 35 auction rounds. The vic-
tim’s damage is $20/hour and the attack cost
is $0.03/hour.

Fig. 4: Elbowing attack. The performance and RAM allocation of the victim.
The victim’s damage is computed using its valuation function, which attaches a
value of 3 cents to every hit.

the following process was repeated every N rounds. First, the attacker waited
for the system to stabilize. During the stabilization period the victim filled its
allocated RAM. Then the attacker attacked by outbidding the victim: it bid for a
single round for Q with a unit price slightly higher than Pmin in. This forced the
elastic memcached victim to lose its data (a standard, non-elastic memcached
would have swapped its data to a slower storage, suffering a higher penalty).
After the attack round, the attacker went back to bidding with a negligible bid
price, and the victim had to re-acquire the RAM, suffering a high overhead while
doing so.

We present the results of such an attack in Fig. 4. The baseline performance
of the victim (without any attack) is presented in Fig. 4a. The damage from
a single attack round is shown in Fig. 4b. In this case, it would be wasteful
to attack again before 440s, because although the attack only lasted between
340s and 352s, and the RAM was re-rented 12 second later, it was not fully
filled for another 70 seconds after that. The shaded area in Fig. 4b represents
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Fig. 5: Profit damage as a function of the attack cost.

the lingering damage of the Elbowing attack. The lingering damage is larger
as the recuperation rate of the victim is slower. The longer it takes the victim
to recuperate, the more cost-effective the Elbowing attack is, since the attacker
does not pay extra for those rounds.

The results of examples of repeating attacks are presented in Fig. 4c and
4d. The attack in Fig. 4c is performed frequently (every 10 rounds), and the
victim does not fully recuperate. The attack in Fig. 4d is less frequent (every 35
rounds), and thus causes more damage per single attack round. However, since
the attack rate is slower, it causes smaller overall damage to the victim’s profit.

The results of a parametric sweep on the attack frequency are shown in Fig. 5.
Each point in the graph represents one attack, and shows the average damage
caused to the victim’s profit as a function of the attack average cost. The cost of
the attack is determined by the frequency of the attack rounds. As shown Fig. 5
the Elbowing attack causes a damage of $290−$630 for every dollar spent on the
attack. The Elbowing attacks are not necessarily low budget attacks, but they
can be performed on a strict budget. To do this, the attacker needs to decide in
advance how much money it is willing to spend on each attack round.

7 Related Work

Vulnerabilities and attacks in clouds have been extensively researched. Subashini
et al. [32], Hashizume et al. [19], Fernandes et al. [15], and Movsowitz et al. [29]
provide extensive surveys of such attacks.

Fraudulent Resource Consumption (FRC) attacks, in which budgets are ex-
hausted, have also been researched. Idziorek et al. [21] present an FRC attack
and discuss two detection methodologies for such attacks. Kumar et al. [24] sug-
gest an in-cloud EDoS mitigation web service (called Scrubber Service) that can
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be used on-demand. This service is used to generate and verify a crypto puzzle
needed to prove the legitimacy for acquiring services.

Attacks on ad auctions were analyzed by Zhou et al. [38] and Cary et al. [10].
Jellinek et al. [22] study existing cloud billing systems, uncovering difficulties in
predicting charges and bugs that lead to free CPU time and over-charging for
storage.

8 Conclusions and Future Work

In this work, we demonstrated two low-cost economic attacks on an auction
based mechanism for vertical resource allocation in the cloud. The Price Raising
attack is a low cost attack that causes the victim to deplete its economic re-
sources, thus freeing resources for the attacker to obtain at a negligible cost. We
demonstrate how this attack reduces the victim’s profit sevenfold. The Elbowing
attack hinders the victim’s performance by outbidding it every several rounds.
We showed that an attacker can cause damage of $290 − $630 for every dollar
it spends on the attack. This attack can be applied to various economic mecha-
nisms. Future work will try to amplify the effects of the Elbowing attack, e.g., by
coupling it with an additional attack which will inform the attacker of optimal
attack times. An optimal time for an attack like this depends on the quality
and quantity of the evicted data. The RAM utilization is of high quality when
the victim values its RAM usage the most. This valuation might be deduced
from its bid price, or from side channels such as the victim’s traffic volume or
destination.
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