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ABSTRACT 
Generic categories of aspects are described, and their potential value is explained. For 

some categories, broad classes of syntactically identifiable temporal properties, such as 

safety, liveness, or existence properties, are guaranteed to hold for a system with any 

aspect of the category woven into it, if the property was true in the system without the 

aspect. Thus classes of properties preserved by the aspect are defined. Moreover, 

relatively simple verification techniques are shown to hold for some classes of temporal 

properties over systems augmented with some other categories of aspects. Verification of 

new properties added by the aspects is also considered.  

Each category is defined in terms of the semantic transformation it makes to the state 

graphs of underlying systems. A generic procedure to identify syntactically when an 

aspect belongs to a category is described and related to existing code analysis systems 

that use static code analysis and dataflow techniques. The definitions of categories, 

identification procedures, and lemmas about property classes provide the needed 

foundations that justify and motivate automatic code analysis modules to identify aspect 

categories. The categories enable simpler proofs of correctness than would otherwise be 

possible, and exploiting their characteristics can aid in software development.  

 

Categories and Subject Descriptors  

D.3.3 [Programming Languages]: Language Constructs and Features – control structures. 

General Terms 

 Languages, Verification. 

Keywords 

Aspect specification, spectative, regulative, invasive, aspect categories, dataflow analysis, 

aspect verification. 

  

1 INTRODUCTION 

Aspect-oriented programming seeks to isolate cross-cutting concerns in aspect modules 

that are then woven with other aspects or with more standard object-oriented classes. 

Already in the earliest examples of aspects, it was clear that some are more complicated 

than others as far as the relation to the underlying program with which they are woven. 

The classic examples of logging or adding performance monitoring influence the 

underlying program less than aspects treating overflow of integer computations, or 

restricting access to some methods to favored users. In turn, those are less closely tied to 

the computations of the underlying program than aspects that compute and apply discount 
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prices to an underlying on-line bookshop or that change the designs of buildings in an 

architecture support program in order to enforce handicapped access regulations.  

 

In [27] and in some earlier works on superimpositions, spectative, regulative, and 

invasive types of aspects were suggested to describe categories of aspects such as those 

above. The spectative aspects only gather information about the system to which they are 

woven, usually by adding fields and methods, but do not otherwise influence the possible 

underlying computations. On the other hand, regulative aspects change the flow of 

control (e.g., which methods are activated in which conditions) but do not change the 

computation done to existing fields, while invasive aspects do change values of existing 

fields (but still should not invalidate desirable properties). 

 

 In this paper these categories of aspects are extended and made more precise. An 

analysis is given of how properties are affected by aspects in each category. The classes 

of properties are described as those satisfying generic temporal logic formulae, and have 

previously been used for purposes related to refinement and proof techniques. Both the 

influence of the aspect on classes of properties that already were true in the underlying 

system, and the difficulty of verifying new properties added by the aspect are considered. 

The categories and lemmas enable establishing some properties automatically without 

expensive proofs using model checkers. For some other properties and categories the 

verification is not immediate, but simpler proofs of correctness can be used than would 

otherwise be possible. Aspect categories can aid in software development by encouraging 

the modularity that is identified in the categories presented here. 

 

The view taken in this paper is of a main existing system to which one or more aspects 

can be applied, as in AspectJ [18]. When the entire system is considered to be a 

composition of aspects, as in the HyperJ approach [24], similar considerations can be 

applied.  The implications of our results for interference among aspects is considered in 

Section 8, but otherwise the relations between a given system and a single aspect are 

treated. In the continuation, the system before an aspect is woven into it is termed the 

original or the  underlying system. After an aspect has been woven into it, the result is 

referred to as the augmented system. The aspect categories are defined in terms of 

restrictions on the semantic changes between the state graphs of the underlying and the 

augmented system. These are then used to justify claims about classes of temporal logic 

properties. A particular aspect generally cannot be directly checked for the semantic 

restrictions. Instead, for most aspect languages, static analysis with dataflow techniques 

or a rich type system can be used to identify subsets of the categories. Here, generic 

dataflow techniques for identification are presented for each category, and shown to 

guarantee the semantic definitions. In Section 9, related approaches and analysis 

techniques are surveyed, and their connections to the categories defined here are 

explained. As new techniques are developed, they can be shown to identify the 

appropriate semantic categories, so that the associated lemmas on classes of properties 

will automatically hold. Thus this paper can be seen as providing a semantic foundation 

and implications for temporal logic properties over static analysis for aspects. 
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Figure 1.  Outline of an online exam system 

 

In this paper a running example is used of aspects over an underlying system that 

manipulates fractions, and generates and checks online exams for students with simple 

arithmetic exercises for fractions. In Figure 1, the outline of this system is given, as a 

minimal basis on which to add aspects. The RationalExam class initiates exams, 

generates questions, accepts answers, and checks whether an answer is correct, all using 

the Rational class. The doExam method is activated externally. In later sections aspects 

are added to compile the results, restrict use of the system, and reduce the fractions.  

 

In order to investigate the properties of a system and categorize aspects applied to it, the 

systems to which aspects are woven as well as the aspects themselves will be assumed to  

have specifications. These are descriptions of the desirable properties of the system.  

Often the exact nature of the specifications will not need to be available, but rather the 

class of property described will be sufficient, e.g., safety or invariant properties. Note that 

specifications do not describe all properties of the system, only those seen as important 

and positive. Such properties should be maintained (perhaps in a modified form) even if 

the system is augmented with aspects, or even if an aspect is combined with other 

aspects. For example, if a system has been shown to properly complete each request 

submitted externally, and an aspect is added to monitor performance, we do not want the 

combined system with the aspect to occasionally crash in midtreatment of a request. In 

the system with fractions, a desirable invariant property might  be that the denominator of 

every fraction is positive, and any aspects added might be expected to maintain that 

invariant. What can change completely are the properties of the system not seen in the 

specification. The form of such specifications using syntactic forms of temporal logic 

assertions is described in Section 2. 

 

In general, once an aspect has been shown to belong to one of the categories described, 

there are various semantic implications for the properties of a system augmented with 

such an aspect. In the best case, classes of properties true of the underlying system can be 

public class Rational{ 

 private int numerator = 0; 

 private int denominator = 1; 

 public int getNumerator() {...} 

 public void setNumerator(int numerator) {...} 

 public int getDenominator() {...} 

 public void setDenominator(int denominator) {...} 

 public Rational add(Rational r) {...} 

} 

public class RationalExam{… 

 private static String getInput() {...} 

 private static Rational randomRational() {...} 

 private Rational getAnswerToAddQuest(Rational r1, Rational r2) {...} 

 private boolean checkAnswer(Rational answer, Rational correctresult) {...} 

 public void doExam() {...} 

} 
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shown to be maintained automatically in the augmented one, without further proof. In 

other situations, properties can be established by analyzing only the aspect code. In the 

worst case, the entire system must be considered, but for certain properties easier proof 

methods can be used. The lemmas about aspect categories and types of temporal 

properties are justified using a semantic view of object systems and aspects based on state 

graphs. In Section 3, this view is presented and related to other definitions of the 

semantics of aspects. Section 4 explains that realtime and next-state properties are not 

covered by the analysis framework in this paper. In Sections 5-7, spectative, regulative, 

weakly invasive, and invasive categories of aspects are defined in terms of the semantic 

transformations of the graphs, syntactic checks are shown to guarantee aspects of the 

desired category, and classes of temporal properties are shown to be preserved or to be 

easier to prove for the category. In Section 8 interactions among multiple aspects are 

considered, Section 9 discusses related work, while Section 10 summarizes the results. 

2 TEMPORAL LOGICS AND CLASSES OF PROPERTIES   

2.1  Specifications of aspects 

Specifications of aspects need to describe both what is assumed  true of the underlying 

system at each joinpoint identified by the aspect (often, any object or method in the basic 

system to which the aspect may be applied), and, on the other hand, what is required to be 

true after the advice is applied, if the needed assumption indeed holds at the joinpoint. 

For each joinpoint and advice segment of code, the advice assumes some property of the 

system, and guarantees some property when it finishes (as well as possibly some 

properties during the aspect execution). Such an assume-guarantee structure for aspects 

has already been recognized in [9], [27], and [28], and is essential for describing the 

added value of an aspect. The overall properties added by the aspect can also be globally 

described.  

 

Since many aspects deal with so-called non-functional concerns such as availability, 

fault-tolerance, security, or persistence, explicitly providing their specifications is that 

much more difficult. Still, no such distinction is made here, and temporal logic can be 

used to specify such properties as well as functional ones. Even if some properties have 

not been formally expressed, for the purposes of property analysis described below, it is 

sufficient to identify to which well-known classes of specification properties the specific 

properties of interest belong, e.g., if they are invariant properties. 

2.2  The semantics of temporal logic 

Temporal logic provides a formal notation for describing properties of execution 

sequences, using temporal modalities to quantify over the execution sequences and the 

states in them from a reference state. In the simplest version of linear temporal logic 

(without existence properties), G stands for ‘globally’, i.e., from now on in the sequence 

of states, and F stands for ‘in the future’, i.e., eventually there is a state. Thus an assertion 

G(p => Fq) means that in every state, if p is true then eventually there will be another 

state with q. If p represents “a request has been made”, while q is “a response is given”, 

this corresponds to a specification that every request has a later response. An assertion 

pUq means that p will hold in all states from now on until a state that satisfies q (and 
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there is a state satisfying q). An assertion Xp (in words: `next’ p) is true in a state if p 

itself is true in the state immediately following. 

Formally, in terms of an execution sequence (a sequence of states)  σ, and an index in 

that sequence, i, we have 

(σ ,i)  satisfies Gp iff ∀j ≥ i. p(σ(j)) 

(σ ,i) satisfies Fp iff   ∃ j ≥ i. p(σ(j)) 

(σ ,i) satisfies pUq iff ∃ j ≥ i. q(σ(j))  ∧ ∀k. j >k≥ i. p(σ(k))  

(σ ,i) satisfies Xp iff p(σ(i+1))  

Similar past modalities are defined symmetrically. Linear temporal logic only has 

modalities defined in this format.  

 

In branching temporal logic, such as CTL [4], there are also path quantifiers over all 

possible continuations from a state (denoted A) and some possible continuation (denoted  

E). Formally, such formulas are interpreted over an execution tree, i.e., a collection of 

execution sequences organized into a tree where common prefixes are written once as 

paths from the root. 

When applied to systems, temporal logic formulae are interpreted over a Kripke structure 

semantics (see [5]) consisting of a state transition graph with nodes corresponding to the 

possible states reachable in executions of the system, and edges labeled by possible 

atomic actions of the system that transform the source state into the target. The states are 

labeled by values for every possible atomic assertion. 

 

 In Linear Temporal Logic (LTL), an assertion is true for a system iff it is true for every 

path through the Kripke structure starting at initial states, while for CTL, the formula 

must be true for the execution tree obtained by ‘unwinding’ the Kripke structure. Thus an 

LTL assertion Gp is equivalent to a branching temporal logic assertion AGp. 

2.3  Classes of temporal properties 

 Classes of temporal properties were first defined by [22] and shown to correspond to a 

simple syntactic form, to a proof method, and to a complexity hierarchy. 

Safety properties  hold in every state, and may relate to the history of states up to the 

state being considered. Such properties describe what is allowed in the system, under 

what conditions, and what states cannot occur. This class includes precedence properties 

such as “a state satisfying P is always preceded by a state satisfying Q”, as well as the 

invariant properties described below. As shown in [22], all safety properties can be 

expressed as a linear temporal logic assertion of the form Gp, where p is a predicate 

without other future modalities, relating only to the state variables or the past history 

leading to the state under consideration (a past predicate). The temporal modalities 

needed to express such past assertions are not given here since they are not needed in the 

continuation. 

 

(Global) Invariant properties are true in every state (without reference to the 

computation history), and are the most common subclass of assertion in the class of 

safety properties. A weaker safety assertion common in object-oriented systems is known 

as a class invariant, and is required to be true initially, as well as before and after each 

method call of the class (but not while method calls are ongoing). A partial correctness 
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assertion, intended to hold whenever the system terminates, is also a kind of invariant 

property. An invariant intended to be true at certain points, such as a class invariant or 

partial correctness assertion, can be transformed to a global invariant of the form 

“at(method-call) implies p” or “at(return) implies p” instead of only asserting p at the 

method-call or return point. Thus partial correctness and class invariants are merely 

special forms of global invariants.  

 

Liveness properties are guaranteed to hold eventually for every possible execution. 

Example properties in this category are the successful termination of a kind of method 

activation, an assertion that every message sent is eventually received, or an assertion that 

some crucial event (e.g., a particular method call) will occur whenever some other event 

occurs first. Such properties always can be expressed using an eventuality (F or Until) 

modality not negated. Among the common combinations are Fp (to express “eventually 

there is a state in which p is true”),  GFp (to express that p is infinitely often true in an 

infinite computation),  FGp (to express that eventually, p becomes continuously true), or 

various combinations of these forms. 

 

Both safety and liveness are categories that make assertions about every possible 

computation of a system. In a branching temporal logic, there is an A quantifier on the 

outer level, and no other path quantifiers. As noted above, there are also branching 

temporal logic Existence properties that can express assertions about possible 

computations of a system (e.g., there is a path that reaches an interrupt). Syntactically, 

these are equivalent to properties with an E path quantifier not negated, relating to the 

existence of a computation among the possible executions of the system. There are 

branching time generalizations of the safety and liveness properties above that have been 

shown to be maintained under certain types of model abstractions [7].  

Instead of writing “for every object r of a class, r.fieldname” in assertions, just the 

fieldname is used when clear from the context. So G(denominator >0) means that the 

assertion is true in every object of class Rational. 

3 THE SEMANTICS OF ASPECTS AND OBJECT SYSTEMS 

3.1  Approaches to aspect semantics 

In order to define and reason about the categories of aspects and their connections to 

classes of properties, the form of an object-oriented system, and its semantics must be 

defined. There are several formal semantic definitions of aspects and aspect systems, 

using, e.g., denotational [32], operational (or so-called small step semantics) [15], process 

calculus [3], and functional [31] approaches. In principle, any of them could be used to 

justify the claims connecting categories of aspects to the correctness of types of temporal 

properties. Most of them assume a simplified object or functional base language, in order 

to concentrate on  a semantic definition for the new aspect construct.  

3.2  State machine semantics for object systems 

Here we adopt the state graph semantic view, because it is most appropriate for 

verification of temporal properties, and is used by software model checkers such as 

Bandera [14]. This view can be seen in the UML statechart semantics, where each class is 
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accompanied by a statechart (equivalent to a hierarchical state graph) expressing the 

possible states and transitions for each instance (object) of that class.  

 

A node in the state graph of an object gives specific values to the variables, fields, and 

control state of that object, and the edges (transitions) describe the effect of executing an 

enabled step from that node. A system is then described by the cross product of the state 

graphs of the active objects, linked by potential method calls among them. Each object 

has a designated node in its state graph corresponding to the present values of the object. 

The cross product of these designated nodes defines a mapping that provides the present 

values of variables, fields, locations, and internal stacks of method activations along with 

identification of which actions are presently enabled in the system, for each object. This 

can be seen as a continuation semantics describing both the immediate values and the 

potential continuations for each point during an execution.  For simplicity, the term 

variables is used to refer to all of the state components that are given values in each state.  

 

The semantic meaning of a system (either underlying or augmented with aspects) at any 

point during its execution is defined as the expansion of the cross product of state graphs 

described above, to a single computation state graph, where the nodes are particular 

values for the existing variables at that point (what is usually called a state), and the 

arrows are transitions that correspond to the atomic actions of the system. Note that this 

does not exclude transitions that extend the state graph by adding new object occurrences, 

or shrink it by discarding objects that have been finished. Issues of inheritance and 

polymorphism can complicate the definition of the state graph, but are orthogonal to the 

question of adding aspects. The system and semantic state graph are often organized as a 

reactive system [22] where each external activation leads to a finite computation 

corresponding to a transaction. A maximal sequence of states in the graph from an 

external activation to a rest state is known as a trace. Although such a state graph may 

have an infinite number of states (if there are variables with infinite domains, such as the 

integers), abstraction techniques can be used to create finite-state versions that are used in 

model-checking. 

3.3  Aspect semantics as state graph transformations 

An aspect declaration and its binding (known as weaving) to an underlying system define  

joinpoints or events of the underlying system where the aspect is to be activated and 

aspect code (known as advice) is to be executed. The joinpoints are described 

syntactically using pointcut declarations. Semantically, the weaving of an aspect to a 

system transforms the graph of the original system to that of the augmented one. Thus the 

semantics of an aspect is defined as a transformer of state graphs: given the graph of the 

underlying system, it yields the graph of the augmented one. Note that this semantics is 

neutral about how aspects and weaving are actually implemented in an aspect language: 

systems that in-line aspect code, those that capture events and transfer control at run time, 

as well as languages with other known implementation techniques, are all equally valid. 

 

When an aspect is woven, for each join point in the original system, a transition to the 

beginning of the state machine of the corresponding advice is added. The transitions and 

states generated by applying the aspect advice code are part of the subgraph following the 
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joinpoint transition. However, note that objects of the original system not related to the 

joinpoint continue to have enabled operations which can be interleaved with those of the 

aspect code, and that appear in the state graph of the augmented system as transitions 

from states generated by aspect operations (or as separate components that have an 

implicit cross product of local states). 

 

The semantic picture is clearly influenced by whether the aspect code is intended to 

interrupt the underlying system before, after, or around an event of that system. (Note 

that the terminology of AspectJ is used here, although other aspect languages have 

similar ideas.) If the aspect advice code is intended to execute before the event that 

defines the occurrence of a joinpoint, then the transition to the advice code is from the 

state before the transition corresponding to the joinpoint event, and the joinpoint event 

transition itself is removed at that point, to be inserted later where the aspect advice 

completes. The intention is that the code of the underlying program will be continued 

after the advice completes, but it is not at all clear that the continuation is from the local 

state that previously held before that continuation. Thus the issues raised by where to 

reconnect are discussed as the types of aspects are examined in greater detail. The 

considerations for an aspect intended to occur after an event defined by a pointcut are 

similar, with the transition to the beginning of the advice state graph added from the state 

after the event in the underlying system. When the around option is used and the proceed 

statement occurs in the advice, it is equivalent to a before advice, followed by an after 

advice. When proceed does not occur, the advice does not continue from the point in the 

code at which it was interrupted, so there is no return arrow at all. 

A fragment of a generic state graph of an underlying system is seen in Figure 2(a), where 

x represents the state of the original system, while the augmented graph after weaving an 

aspect before the P transition is seen in 2(b). As will be shown later, assuming that w is  

 

 
Figure 2. A fragment of underlying and augmented state graphs 
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local to the aspect,  the situation described is typical of a spectative aspect because the x  

component is not changed by the aspect transitions, and the P transition at the end of the 

aspect transitions reconnects to the same state as in the original, if we ignore w. Note that 

in this example, there are no independent objects that would require a cross-product in 

the augmented state graph. In the augmented fragment, w appears in the states 

corresponding to those of the underlying system, but no assertion of the underlying 

system could have referred to it, since it was not defined there. 

The influence of applying aspects from each category to an underlying system can now 

be considered in terms of the state graphs of the original and augmented systems. 

However, first the limits of this approach are described. 

4 PROPERTIES NOT INHERENTLY PRESERVED 

There are two types of properties which are not analyzed in the continuation: those not in 

the temporal logic defined earlier over the statespace of the underlying or the augmented 

system, and next-state properties. Both of these have properties that are not maintained, 

no matter which category of aspect is considered, and a more specialized analysis is 

needed which is different from the type of semantic reasoning used here. 

4.1  Realtime properties 

If an aspect or underlying system already explicitly contains clock variables, explicitly 

incremented in code, the framework here can relate to them. However, usually this is not 

the case, and realtime properties that relate to the elapsed time expected between two 

events are not expressible in the classes of temporal logic defined in Section 2, without 

special external variables. Time can be introduced either using special time or clock 

variables that automatically are increased with time values not explicitly in the code, or 

by extending temporal logic with additional operators. Thus the claims below that 

automatically extend properties of the original system to the augmented one do not apply 

to realtime properties. This is fortunate, since such properties can be influenced by 

aspects that have joinpoints between those events, and thus add the computation of the 

advice code to the previous computation of the underlying system. Clearly, some realtime 

properties true of the underlying system may not be true of the augmented one, no matter 

how loosely connected the aspect functionality is to that of the original system.  

 

4.2  Next-state properties 

Moreover, for any category of aspect, assertions about immediately following states that 

were true in the underlying system may not be true for the augmented one if an aspect 

can add advice (that generates new intermediate states). An assertion true in the 

underlying system such as AG(p => Xq) (meaning, whenever p is true, q is true in the 

immediately following state), will not necessarily remain true if in the augmented system 

an aspect joinpoint can be added immediately after a state where p is true.  

 

In general, assertions using the “next-state” temporal modality X are known to be 

sensitive to refinements or additions, and have therefore been considered problematic 

[21]. In fact, in order to achieve greater abstraction and robustness under refinements, it 
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has been suggested that a temporal logic should not be able to “detect stuttering” (i.e., 

repetitions of states). Lamport and others have shown that a temporal logic without X or 

the corresponding “immediately previous” operator cannot distinguish among sequences 

of states that only differ in the number of repetitions of states that appear. We thus have 

the following simple lemma: 

Lemma 1: any property of the underlying system relating a state and its immediate 

successor or predecessor state (a “next-state property”) is not automatically preserved in 

an augmented system when any aspect code can be applied at a joinpoint including the 

earlier state of the pair related. 

This claim is straightforward because new intermediate states are always generated by the 

advice code. 

5 SPECTATIVE ASPECTS  

A spectative aspect can change the values of variables local to the aspect, but does not 

change either the value of any variable or the flow of method calls of the underlying 

system. New fields and methods can be added to existing classes of the underlying 

system, or new classes can be added, but these will not affect either the potential or actual 

actions of the original system. Each computation path of the augmented system has 

sections of original computation interleaved with sections of new aspect computation. 

The result is always equivalent to temporarily suspending the underlying system, 

recording some information about it, computing new values not influencing the 

underlying system in any way, and then continuing as before.  

 

More precisely we have: 

Definition: An aspect is spectative if the projection of the augmented state graph onto 

the state variables of the underlying system is identical to the underlying state graph, 

except that the projection contains additional repetitions of states connected by edges that 

correspond to aspect operations. 

 

The repetitions of states in the projection represent the advice segments, which can affect 

variables local to the aspect, but not those of the underlying system. In Figure 2(b), the 

projection of the augmented system fragment onto x is identical to the original fragment 

in 2(a), except for repetitions of the x=7 state. Note that the projection of the augmented 

state graph could have several subpaths with repeated states branching from the state 

before a joinpoint state and reconnecting at the joinpoint state. This could be due to 

reading input values or branching in the aspect code. However, the set of traces (i.e., 

maximal sequences of states) of the projection is identical to the set in the original system 

except for repetitions of states, and the branching structure of the original is also 

maintained. 

  

Such a situation might be difficult to detect directly on the state graphs that represent the 

semantics, and which, of course, are usually not generated in practice. However, 

detecting that an aspect is spectative is possible on the code level in most aspect 

languages, using standard type checking and data-flow techniques. For spectative aspects 

the local fields of the aspect are the only ones computed by that aspect, and no 

assignments are made by aspect code to fields or to parameters that can be bound to 
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fields, variables, or parameters of the basic system. Care must be taken in defining what 

is “local.” A class and objects or fields declared within the aspect and only accessed there 

are clearly local. In addition, even if a class is declared globally, but objects are 

instantiated and the class methods are used only within the aspect, that class is effectively 

local to the aspect. Moreover, parameters of system methods that print values are also 

considered local to the aspect, because printing a value has no effect on other values 

printed. This means that assertions about what is not printed may be changed in the 

augmented system (although positive assertions about values printed in the original 

program are maintained, as will be shown). The aspect code cannot “redirect” the flow of 

execution, and simply adds to the previous system without skipping any of its 

computation. Moreover, the aspect code must be “wait-free”, i.e., progress of its 

execution is not dependent on a condition being achieved in the underlying system. 

 

This situation is easiest to detect if all bindings between fields or variables of the aspect 

and the basic system are made through parameters of the aspect. On the other hand, when 

arbitrary binding is possible, for example by using the same name in both code segments, 

then only when a specific binding has been made can the augmented system be analyzed 

to determine which elements are bound, and whether the aspect is spectative. In either 

case, dataflow techniques such as the uses and the defined-use pairs of standard code 

optimization  can be employed to determine whether there is any influence of fields in an 

aspect on those of the basic system (the other direction is, of course, not a problem). The 

possibility of analyzing just the aspect is one argument in favor of clearly identifying 

parameters for weaving, rather than allowing free bindings that force global analysis. The 

generic detection procedure to identify a spectative aspect is: 

 

1. Identify which variables (including parameter names) of the aspect code are bound to 

variables in the underlying system (either by identifying actual-formal parameter pairs 

from an aspect instance using its declaration, or by identifying the same name in the 

aspect code and the underlying code, if that is sufficient to bind the variables). The set C 

denotes the aspect variables bound to an underlying system variable. 

2. Check that no variable of C is assigned a value by the aspect (appears on the left-hand 

side of an assignment in advice of the aspect, or is an actual parameter that is assigned a 

value in an internal method call of the advice code). 

3. Check that each aspect code segment (advice) terminates. Although generally an 

undecidable problem, syntactic special cases often hold, such as identifying straightline 

code (a basic block, in dataflow terms),  or loop-free segments. 

4. Check that the aspect code does not disable independent underlying operations and is 

wait-free. 

5. Check that the code of the underlying system is resumed at each join-point identified 

and the enabling conditions for the underlying operations have not been affected. Thus 

there cannot be exceptions thrown in the aspect code that lead to abnormal termination or 

do not resume the underlying execution at the joinpoint from which it was interrupted, 

and around advice without a proceed is not allowed. 

 

First we show that if the generic syntactic checks are made successfully, then the aspect 

is spectative. An aspect can be spectative if bound with before, after, or around including 
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a proceed. Here we treat only the before case, since the others are similar. Recall that 

here, as in all subsequent lemmas until Section 8, an augmented system is treated where a 

single aspect is woven to an underlying system. 

 

Lemma 2: If the detection procedure above has been applied successfully to an aspect 

and underlying code, the aspect is spectative. 

Proof: From steps 1 and 2 it follows that the advice does not change the variables of the 

underlying system. Thus in the projection of the augmented system to the variables of the 

underlying one, each transition corresponding to operations of the advice code leaves the 

values of those variables unchanged. From step 3 it follows that the subsequences 

corresponding to aspect operations are finite. From step 4 it follows that the enabledness 

of transitions from objects independent of the joinpoint in the underlying system is not 

affected by the aspect operations. Finally, from step 5 it follows that after the last state 

resulting from an advice code operation, the location in the code of the program counter 

is at the operation that identified the joinpoint. Since the values of the variables of the 

underlying program are  also unchanged, that operation will have the same effect as in the 

underlying system, so the reconnection arrow is to the same state as previously (see 

Figure 2). It thus follows that the projection of the augmented graph satisfies the 

conditions in the definition of a spectative aspect. □ 

 
Figure 3. Aspect for computing scores 

 public aspect ScoringAspect { 

 // Inter-type declarations 

 private int RationalExam.correct = 0; 

 private int RationalExam.wrong = 0; 

 // Pointcuts 

 pointcut checkingAnswer(RationalExam exam) : 

  call(void RationalExam.checkAnswer(Rational, Rational)) 

  && target(exam) ; 

 pointcut doingExam(RationalExam exam) : 

  call (void RationalExam.doExam()) && target(exam); 

 

 // Advice 

 after(RationalExam exam) returning (boolean ok):  

  checkingAnswer(exam) { 

  if (ok) 

   exam.correct++; 

  else 

   exam.wrong++; 

 } 

 after(RationalExam exam) : doingExam(exam) { 

 System.out.println("You answered " + exam.correct +" correct answers"); 

 System.out.println("You answered " + exam.wrong +" wrong answers"); 

 } 

} 
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Consider the aspect given in Figure 3. This aspect counts the correct and incorrect 

answers given to questions about fractions in locally declared fields correct and wrong. 

This aspect satisfies all of the conditions above, since it uses the parameters bound to the 

Exam object, but only changes the local fields, or prints values, and the advice code does 

not wait for any condition to hold. This aspect is therefore spectative. Note that even 

though the termination requirement in item 3 is undecidable in general, in this example 

there are no loops, and only simple system methods, so the termination is trivial. 

 

As another example, an aspect that treats the display of a shape manipulation program is 

often used as a case study for modularization using aspects, as opposed to a version 

without aspects that scatters the display updates in the object code. The aspect simply 

gathers information on the shapes, including join points that occur as shapes are changed 

or moved, and displays them using classes that are effectively local to the aspect. Since 

all of the display updating is now done in the aspect using the effectively local display 

class, the aspect is spectative relative to the underlying system performing shape 

manipulations. Even if the display object is used by other parts of the system, if an aspect 

only locally introduces and maintains a new field in the display, it is spectative. 

 

As will be discussed in Section 9, in practical analysis systems for identifying spectative 

aspects, aliasing, inheritance, and polymorphism can significantly complicate the 

analysis. Dataflow and type-safety techniques such as those used in static analysis are 

always conservative, in that if successful, the spectative nature of the aspect is 

guaranteed. If the analysis does not establish that the aspect is spectative, but has not 

revealed a clear violation of the semantic definition, perhaps only a deeper semantic 

analysis is needed. 

 

Now a key lemma about spectative aspects can be stated and proven, in terms of the 

classes of properties defined earlier and the underlying and augmented state graphs. 

Lemma 3: If an aspect is spectative, all safety, liveness, and existence properties of the 

underlying system that are not next-state properties and involve assertions only about 

variables, fields, and methods of the underlying system will not be influenced by the 

aspect, and will also hold in the augmented system. Moreover, every such property true 

of the augmented system was already true of the underlying one. 

 

Proof: By the definition of a spectative aspect, in terms of the variables of the underlying 

system, the projections to those variables of the new states due to the advice code of a 

spectative aspect are identical to the state before the joinpoint transition. The 

subsequences corresponding to states and transitions of the advice are finite and 

reconnect back to the state in the underlying program after the operation that activated the 

joinpoint transition (since a before advice is being considered). Because the assertions 

have no next-state properties, they are insensitive to repetitions of states, and thus any 

such linear or existence assertion true of the underlying system and involving only its 

variables is also true of the projection of the augmented graph. Since only variables in the 

projection appear in the assertions, they also hold in the augmented state graph itself. 
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 No new properties involving only the variables of the underlying system can be added by 

the augmented one because, again, the projection of the state graph of the augmented 

system to the variables of the underlying one differs from the original underlying state 

graph only in the number of finite repetitions of states that already exist, and such 

differences cannot be distinguished without including a next-state property (i.e., a 

temporal formula with an X or the corresponding “previous” temporal operator). □ 

 

In the example, the underlying system could have invariant properties such as 

G(denominator>0) (i.e., in every state, the denominator is greater than 0). This will 

automatically hold for the augmented system with ScoringAspect, because it is 

spectative. A liveness property such as G(at(setNumerator) => F(at(setDenominator)) 

(i.e., setNumerator is always eventually followed by setDenominator) will also be 

automatically extended to the augmented system, if it was already true of the underlying 

system without the aspect. 

 

However, it should be noted that implicitly scoped visibility properties such as “the value 

of a field is not visible outside the class” can be violated by spectative aspects, even when 

the properties were previously true of the underlying system. The problem is that the 

assertion of “not visible outside the class” when applied to the augmented system 

involves both the original variables, fields, and methods and new ones added by the 

aspect, and thus is different from the original assertion. Therefore Lemma 3 does not 

guarantee that such a property will be preserved in the augmented system. For example, 

within the aspect code, the value of a (hidden) field X of the underlying system could be 

“made visible” by examining another field Y (added by the aspect) that is given the value 

of X, or by adding public methods, both possible in a spectative aspect.  

 

New properties of the augmented system that do involve both variables of the aspect and 

those of the underlying system are also easier to verify if the aspect is spectative: 

Lemma 4: Invariant properties true of the variables of a spectative aspect, or connecting 

the aspect and underlying variables, can be established for the augmented system by 

separately analyzing the aspect variables not bound to variables of the underlying system 

in the aspect code and the other variables in the underlying code. 

 

Proof: By the definition of a spectative aspect, variables of the underlying system and 

variables of the aspect bound to those of the underlying system are only changed in the 

underlying system. Moreover, variables of the aspect not bound to those of the 

underlying system are clearly changed only by the aspect advice code. 

 

If variables of both the aspect and the underlying system are in the assertion, it is 

sufficient to consider separately whether the underlying variables and the aspect variables 

bound to them (which are only changed in the underlying system) maintain the invariant, 

and whether the `local’ aspect variables (changed only in the aspect code) also maintain 

the invariant. □ 

 

Lemma 4 can allow decomposing the verification task for the augmented system to two 

smaller problems, especially if model-checking abstraction techniques are used. For the 
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visibility property mentioned earlier, for spectative aspects it is sufficient to check only 

the aspect code in order to extend the property to the augmented system. Liveness 

properties added by the aspect, on the other hand, are closely connected to the liveness 

properties of the underlying system, because aspect advice is only executed when 

joinpoints of the underlying system are reached. Thus, in general, to establish new 

liveness properties involving the aspect, the augmented system as a whole must be 

considered.  A simple exception is liveness properties involving only the aspect code 

segments, such as an assertion that each advice segment that is initiated will properly 

terminate without throwing exceptions. 

6 REGULATIVE ASPECTS 

Regulative aspects can affect the flow of control of the underlying system by restricting 

operations, delaying some operations, or preventing the continuation of a computation.  

 

Definition: An aspect is regulative if the projection of the augmented state graph on the 

variables of the underlying system is identical to the state graph of the underlying system, 

except that some states are repeated (with new edges from aspect operations) and some 

edges are removed. States are ignored that become disconnected (unreachable) from the 

augmented state graph with entrance points (external method calls). 

 

Note that, as for spectative aspects, a repeated state and added edge can branch off from 

an existing state. In a regulative aspect, that branch might lead to the repeated state, but 

with no continuation from there because edges have been removed. For example, in a 

regulative variant of Figure 2(b), there could be an additional edge from the (x=7, w=0) 

state after the join, to an identical state, but with no continuation edge. This would 

correspond to a branch in the aspect code that prevents the continuation. For regulative 

aspects, each trace of the projection is either a prefix of or the same as a trace in the 

original, except for repetitions of states. As before, the branching structure of the original 

is maintained, except for removed edges. 

 

 In terms of code, regulative aspects prevent, restrict, or delay some of the actions that 

were possible in the underlying system. However, they cannot simply skip some steps in 

a transaction of the underlying program while continuing to other steps. Then a weakly 

invasive aspect (see Section  7) is needed. In a simple case, a regulative aspect might 

make fields or methods private that were previously publicly available. Then an external 

message activating the method would be denied in the augmented system, while an 

internal one would continue to execute as before. If requirements arise to restrict access 

to method calls that were originally unrestricted, a regulative aspect might add a 

parameter with a password or authorization key, along with aspect code that continues 

with the original method only if the password is authorized. When the restrictions are 

only to external method calls, as in the password authorization example above, the aspect 

belongs to the special category of an externally regulative aspect.  

 

In general, regulative aspects enforce additional checks before allowing the activation of 

methods or actions that were not restricted in the underlying system. Thus, an aspect 

might terminate a system if overflow of an integer variable occurs, preventing 
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continuations that were previously possible when overflow was ignored. In Figure 4 an 

aspect is given that restricts initiating an exam (by the method doExam, called only 

externally) to children over the age of 7. Note that the (age < MIN_AGE) test 

corresponds to a branch that terminates with no continuation, while the negation 

continues the original computation. The projection to the variables of the original system 

has a trace with  repetitions of the initial state that has no continuation, and another one 

that is as in the original system, with repeated states. Thus it satisfies the conditions for a 

restrictive aspect. 
 

Other examples include synchronization or scheduling aspects, such as one that enforces 

mutual exclusion among methods in different objects that were independent and could 

overlap without the aspect. In this case some actions are delayed until new 

synchronization or mutual exclusion conditions are satisfied An aspect that enforces 

mutual exclusion among instances of exams when they wish to print out summaries on 

the same printer (so the printer will be used exclusively by one or the other) is regulative 

in that one of the summaries is delayed until the other completes. The edges leading to 

states where the two printing tasks overlap are removed. 

 

To detect that an aspect is regulative, we proceed as for a spectative aspect as far as 

determining that variables are independent of assignments in the underlying system, but 

are more liberal about the reconnection properties of the advice code and waiting for 

conditions during the advice. The generic detection procedure for a regulative aspect is:  

1. Determine the set C of variables in the aspect that are bound to variables of the 

underlying system. 

2. Check that no variable of C is assigned a value by the aspect. 

 

 

public aspect AgeRestrictionAspect { 

 private static final int MIN_AGE = 7; 

 // Pointcuts 

 pointcut doingExam(RationalExam exam) : 

  call (void RationalExam.doExam()) && target(exam); 

 // Advice 

 void around(RationalExam exam) : doingExam(exam) { 

  System.out.print("Hello, how old are you? "); 

  int age = Integer.parseInt(getInput()); 

  if (age < MIN_AGE) { 

   System.out.println("You're too young for fractions"); 

   return; //returns without doing the exam 

  } 

  proceed(exam); //proceeds with the exam when old enough 

 } 

 

Figure 4. An aspect restricting method activation 
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3. The aspect code may contain wait conditions and restrict execution of previously 

independent operations of the underlying system, but each advice should be shown to 

terminate if the wait conditions hold.  

4. Check whether one of the following reconnection conditions hold:  

• resume computation of the underlying system at the joinpoint,  

• throw an exception that terminates the execution or directly terminate the 

execution of the entire system or of the present transaction 

The possibility of preventing external calls to methods of the underlying system (e.g., by 

adding parameters and checks on them or making methods or fields private) is included 

in the above, as it is viewed as terminating a transaction before it can even begin.  

 

Lemma 5:  If the detection procedure above succeeds, the aspect is regulative. 

Proof: For rules 1 and 2, the reasoning is as for spectative aspects. The liberal termination 

policy in rule 3 means that the sections of the graph resulting from aspect advice 

operations should be finite, but might deadlock or terminate, corresponding to removing 

edges to the continuation. The reconnection conditions ensure that no code of the 

underlying system is skipped unless the system terminates or at least completes its 

reaction to the most recent input (in a transaction view). Together these guarantee that the 

projection of the augmented state graph satisfies the conditions in the definition of a 

regulative aspect, and only removes edges or adds repetitions of states, including possible 

branching to repeated states with no continuation. □ 

 

In principle, the syntactic conditions above are too strong, and regulative aspects could be 

allowed to change some variables bound to those of the underlying system, but only 

under conditions that are hard to check statically. The elements of C  that are given 

values by the aspects may be bound only to  variables of the underlying system that are 

exclusively used in conditional statements, and the aspect assignments must lead to 

strengthening the condition under which a method is activated. That is, the aspect leads to 

choosing a method in fewer cases than previously (and never to choosing one more 

often). Some of the static analysis or type systems for aspects discussed in Section 9 also 

identify special cases of regulative aspects. 

  

Lemma 6: If an aspect is regulative, all safety properties of the underlying system that 

are not next-state properties and involve assertions only about variables, fields, and 

methods of the underlying system will not be influenced by the aspect, and will also hold 

in the augmented system. Liveness and existence properties are not automatically 

preserved. 

Proof:  In terms of the state graph of an augmented system with a regulative aspect, 

relative to the state graph for the underlying system, the projection described for 

spectative aspects applies, except that some edges are removed. In particular, some 

potential entrance points (external method calls) are restricted or closed compared to the 

graph of the underlying system, and some arrows are simply removed, but no new ones 

are added except between repetitions of states in the original graph. Note that if an 

operation of the original computation were simply skipped, an arrow would be added 

from the state before the removed operation to the state now reached by doing a step in 

the continuation, which is forbidden for a regulative aspect. However, it is possible for 
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the aspect advice to delay some actions by waiting for a global condition involving 

underlying variables, as in the mutual exclusion example. The other actions that are 

meanwhile executed could have occurred by chance before the delayed one, so only some 

interleavings are eliminated, and no new traces are added relative to the underlying 

system, except for repetitions. The remaining computations maintain the partial order 

among operations that are not independent. 

 

That is, in the semantic view, the state graph of a regulative aspect  prunes edges from the 

computation graph of the underlying system (along with adding transitions and state only 

involving aspect variables, as for spectative aspects). The projection of the augmented 

graph onto the variables of the underlying system is an edge-pruned version of the 

original underlying computation graph, along with repeated states. Any safety property 

true of the original graph has the form AGp where p only relates to the history. Since the 

history of each state in the projection of the augmented system is identical to the history 

in the original system except for repetitions of states that already appear, and the 

assertion has no next-state operators, it will be true of the states in the augmented system 

if it was true of the states in the original one. 

 

 Liveness or existence properties need not be preserved by regulative aspects, since states 

previously reached may be inaccessible both in the augmented system and in the pruned 

graph with repeated states that is the projection of the augmented system. Thus a 

computation that existed in the underlying system may be interrupted in the augmented 

one, and a state that eventually occurred in the original may not appear in the pruned 

version. □ 

 

Recall that for spectative aspects, no new properties involving only the variables of the 

underlying system can be added in the augmented one. However, for regulative aspects, 

besides maintaining safety properties already true, there can be new safety properties 

even involving only the variables of the underlying system. 

Lemma 7: An augmented system with a regulative aspect can have additional safety 

properties involving only the variables, fields, and methods of the underlying system that 

were not true in the underlying system. 

Proof: As seen above, in an augmented system with a regulative aspect some system 

states of the original system can be unreachable. Thus, for example, new invariants may 

hold for all reachable states of the augmented system even if they did not hold for some 

states of the underlying one, because the problematic states become unreachable in the 

augmented system. In fact, one of the reasons for weaving a regulative aspect into an 

underlying system is to eliminate problematic states (that violate desired invariants) by 

making them unreachable in the state graph of the augmented system. □ 

 

In Figure 5(a), a fragment of an original state graph with state variables X and Y shows 

independent operations a and b, perhaps activated from different objects. The operation a 

increments X by one, while b does the same for Y. In the augmented version, a state 

component of the aspect, S, is added, to restrict which operations are allowed, yielding 

the augmented state graph in Figure 5(b). This fragment satisfies the conditions for a 

regulative aspect, because in the projection of 5(b) to X and Y, the first state of the 
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original is repeated, and the edge labeled b is removed, making the state (X=1, Y=1) 

unreachable, so it can be removed. In the augmented version, the invariant G(X > Y) is 

true, while in the original it is not. 

 

For an example of a regulative aspect that adds a mutual exclusion property by 

introducing a local mutex object, the invariant G(~(in(crit1) /\ in(crit2))) (meaning, in 

every state, we are not both in critical section 1 and in critical section 2 at the same time) 

becomes true in the augmented system even though it did not hold in the original system. 

States where it did not hold in the original system have been eliminated from the state 

graph of the augmented one by preventing the transitions that lead to a violation. 

Lemma 8: If a regulative aspect only restricts external method calls from outside the 

original system and is thus externally regulative, then existential properties may not be 

preserved, but all safety and liveness properties preserved by a spectative aspect are also 

preserved for a resultant augmented program with such a regulative aspect. 

 

Proof: In this case, only potential computations are limited, but all safety and liveness 

properties within the system (about the state graph of the original or augmented system) 

are maintained. Since the environment cannot be forced to actually make a particular 

method call even in the original system, there could not have been a liveness property 

that guaranteed its occurrence. □  
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Y=0 
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X=2 
Y=0 
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(a) Original fragment (b) After regulative aspect 

Figure 5. State graph fragments for a regulative aspect 
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For example, the aspect restricting initialization of an exam on fractions is externally 

regulative. Thus it does not influence any of the internal safety or liveness properties, but 

does mean that there will not be any computations where the age of the user is declared to 

be under 7. 

7 INVASIVE ASPECTS AND PARTIAL ANALYSIS 

7.1  Weakly invasive aspects 

Invasive aspects do change the values of variables in the underlying system. Thus in 

principle, they could completely invalidate any property that held previously in the 

underlying system. Nevertheless, in many situations invasive aspects change the 

underlying system in restricted ways suitable for detection and exploitation. The basic 

question about an invasive aspect is how it reconnects to the computation from the 

underlying system. This will influence the extent to which the aspect influences the 

continuation of the computation. Even for a before aspect, although the code of the 

underlying system continues executing after the advice, the advice may have created a 

new state that did not exist in the underlying system. Thus in the augmented system even 

the code from the underlying system can continue to create an entirely new subgraph 

whose properties are unknown. In this situation it seems difficult to avoid having to 

consider the entire augmented system at once. An interesting special case can help 

alleviate the difficulty. 

 

Definition: An aspect is weakly invasive if in the state graph of the augmented system, 

transitions that correspond to operations from the underlying system begin in states that 

already existed in the state graph of the underlying system (perhaps for different inputs 

from those in the augmented system). 

 

It follows that advice transitions end in states that were in the original state graph, at least 

whenever an underlying operation can then be executed. Although it can be difficult to 

identify when an aspect is weakly invasive only using static analysis, there are special  

cases where this is possible. Otherwise, the user can simply declare that the aspect is 

weakly invasive, for cases where this is obvious. For example, an aspect may identify 

conditions (joinpoints) at which it is necessary to reset the underlying variables to some 

fixed values that also occur in the underlying system without the aspect. In a transaction 

control system, an aspect can be used to record values and later rollback the computation 

to the earlier state with the recorded values when a transaction cannot be completed. In an 

public aspect ReductionAspect { 

 // Pointcut 

 pointcut rationalChanging(Rational r) : 

  (call (void Rational.set*(int)) || …) && target(r); 

 

  // Advice 

 after(Rational r) returning : rationalChanging(r) { reduce(r); } 

Figure 6. An aspect to reduce fractions 
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aspect to impose a discount policy for prices, the prices are changed, but the continuation 

is equivalent to one in which the price was originally set to the value now obtained 

through the discount policy. All of these can be identified as weakly invasive aspects. 

 

In Figure 6, an aspect that changes the values chosen for the arithmetic operations on 

fractions to reduced fractions is outlined. The partially specified pointcut identifies where 

new values are given to a fraction, and a method to reduce them is then activated before 

continuing. (Details of the method reduce which performs the reduction, and thus 

changes the value of the fraction, are not shown.) This aspect is weakly invasive because 

the original choice of values might already be reduced, so the state reached is a possible 

state of the original system. 

 

Lemma 9. If an aspect is weakly invasive, then an invariant true for the underlying 

system can be proven to hold for the augmented system by assuming it true at the 

beginning of each aspect advice, and showing it true for each state generated during the 

execution of the advice. 

 

Proof: By induction on the joinpoints reached in any computation of the augmented 

system. To base the induction, the invariant is true in all states until the first joinpoint is 

reached, since only states of the underlying computation are reached. For the general 

case, assume the invariant is true until a joinpoint is reached.  If the invariant then also 

holds for all states generated by the advice code until the computation reconnects to a 

state that was in the underlying one, then it will continue to hold until the next joinpoint 

because it is true in all states of the underlying state graph. □ 

 

The implications of this lemma are that to extend an invariant to an augmented system for 

a weakly invasive aspect, the original system does not have to be rechecked, and the 

entire augmented system does not have to be considered at once. It is sufficient to reason 

only about the much smaller state graphs that correspond to the advice of the aspect. 

Since the lemma holds for global invariants, it clearly also holds for class invariants, 

invariants at a location, and partial correctness assertions, since all these can be expressed 

as a global invariant. 

 

In the weakly invasive ReductionAspect, above, if an invariant G(denominator>0) was 

true of the original system, then to extend it to the augmented system it is sufficient to 

show that it is maintained by the reduce method. 

 

Note that general safety properties do not have to be extended to augmented systems with 

weakly invasive aspects, even when the property holds within the aspect state graph, 

because the history of how a state is reached can be different in the underlying and in the 

augmented system. For example, a safety property “a state satisfying P is always 

preceded by a state in the history satisfying Q” could be true for the underlying system, 

and could hold for the state graph of the aspect itself, and yet not be true in the 

augmented system. This could be because the reconnection is to a predecessor of a state 

satisfying P, and yet Q is not true anywhere in the new history including the aspect. 

Moreover, liveness and existence properties are also not similarly extended to the 
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augmented system with weakly invasive aspects, and there does not seem to be such a 

clean separation of reasoning, because states from the underlying system can be skipped 

or made unreachable in the augmented system.  

7.2  Identifying independence for invasive aspects 

Another direction for simplifying reasoning for invasive aspects considers the degree of 

invasiveness. In other words, the aspect usually will only affect some of the variables in 

the underlying system, and identifying independent parts can allow simplifications 

similar to those for spectative and regulative aspects. A variable x of the underlying 

system is independent of an aspect if no variable that is assigned values in the aspect code 

is bound to x and all variables used in the computation of  x or that influence conditionals 

that control basic blocks with assignments to variables that influence x, are also 

independent of the aspect. As previously, standard dataflow techniques from 

optimizations in compilers can be used to detect independence in many cases. 

 

Lemma 10: An invariant property of the underlying system that does not include a next-

state property and only includes variables independent of an aspect, is maintained in an 

augmented program with that aspect woven into the underlying program. 

Proof:  Due to the definition of `independent’, even an invasive aspect does not influence 

any of the computation that affects the values of the independent variables in the 

invariant property, and does not add any new computation affecting those variables. This 

includes not influencing the control flow of assignments to the variables in the invariant. 

An invariant only relates those values within each state. Thus the invariant property is 

also true in the augmented system. □ 

 

Note that general safety properties could be affected because of changes in the history. 

Stronger notions of independence could be defined to treat such cases, but may be 

difficult to establish through syntactic analysis. 

 

7.3  Verifying inductive invariants for invasive aspects 

When an invariant of the underlying system involves variables that are changed by the 

aspect, or the invariant includes variables from both the aspect and the underlying 

system, a simplified verification is nevertheless possible for a restricted class of invariant 

properties. Consider extending an invariant that was true of an underlying system when 

the aspect applied is (strongly) invasive, i.e., changes the values of variables in the 

underlying system, redirects control, and need not resume executing the code of the 

underlying system where it was suspended. If the invariant is what is known as 

“inductive”, it can be shown to also be an invariant of the augmented system by only 

checking the advice, even without analyzing in what situations the aspect code will be 

applied and without rechecking the code of the original system.  

 

An invariant I is inductive  if {I} s {I} can be shown directly for each individual step s, 

without any knowledge of the state before the step s except that it satisfies I. In some 

sense, it means that the assertion is “self-contained” and by assuming just itself, a proof 

can be constructed to show that it is reestablished after each step. Note that even states 
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that do not occur in the system but for which I is true are sufficient preconditions to 

guarantee I after s is executed.  

 

In this situation, to establish that I is also an invariant of the augmented system, it is 

sufficient to check that each aspect action t also satisfies the same assertion {I} t {I}. 

For example, consider a situation where x>y>0 is an invariant of a system, and an aspect 

has changes of the form 

 <complex> → double (x,y), 
where <complex> is a complex condition for applicability, and double(x,y) doubles the 

values of x and of y. Then we easily have 

{x>y>0} double(x,y) {x>y>0}, 

extending the invariant to the augmented system, even though only the aspect code was 

newly analyzed, and when it is applied was ignored.  

 

Assume that the invariant G(denominator>0) was inductive for the fractions system, i.e., 

it was provable for each step of the original system only assuming itself. Then even if the 

reduce method in the above example could introduce negative fractions that were not 

treated in the original system, only the aspect advice must be newly checked. Note that 

the aspect now is strongly invasive, since states not in the original system are generated at 

the end of the advice, and the exact effect of applying code of the basic system to these 

new states is unknown. Still, the new resultant states will satisfy the invariant. On the 

other hand, if the invariant was not inductive, in the original proof the fact that the 

fractions were nonnegative may have been true before some step and used to help 

establish the invariant after the step. In that case a new proof is needed for the entire 

augmented system now that the aspect introduces new states. 

 

To summarize this discussion: 

Lemma 11: If an invariant has been shown to be inductive, and proven for an underlying 

system by only using the invariant itself as an assumption (i.e., with assertions  {I}s{I} in 

Hoare logic notation, for each statement s of the original system), then the invariant can 

be extended to hold for an  augmented system with an invasive aspect, by proving {I}t{I} 

for each statement t only of the aspect code, without reconsidering the original system. 

Proof: Since I is already known to be an invariant of the original system, it is true of the 

augmented system whenever the aspect is first applied, even without analyzing the 

joinpoints. By induction, it is easy to see that I will hold whenever some t action is taken 

from the code of the aspect, and it is proven that if I holds, then it will again hold after t, 

for any state. Thus, I is an invariant of the augmented system, even without rechecking 

the original code. □ 

 

8 INTERFERENCE AMONG ASPECTS 

So far the relation has been considered between an underlying system and an augmented 

system with a single aspect added to the underlying one. However, most augmented 

systems have multiple aspects applied to them, and the issue of whether these aspects 

interfere with each other is of obvious concern. Several compositions of aspects are 

possible, as described in [27]. In some cases, there is a clear ordering among the aspects 
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to be applied. In effect, a later aspect is actually applied to the augmented system 

obtained after applying an earlier aspect. In this case the joinpoints of the later aspect 

may include events generated by the earlier one. The treatment in earlier sections, of a 

single aspect woven to an underlying system, may be used iteratively. That is, once the 

properties of an augmented system with one aspect have been established, possibly using 

the lemmas above, it can be considered as an underlying system relative to another 

aspect. However, the syntactic analysis to determine possible interactions becomes more 

complicated. Program slicing for aspects, as seen in the following section, can be used to 

determine the category of aspect relative to an underlying system that itself has aspects. 

 

In other situations, several aspects are to be applied independently only to the underlying 

system. In this case we clearly do not want any direct binding of variables, objects, 

methods, or parameters local to one aspect to those elements of another aspect. This also 

can be enforced syntactically, and checked. Still, when pointcuts of several aspects define 

the same joinpoints, and parameters of more than one aspect are bound to the same 

underlying variable, indirect (usually unintended) connections can occur. From the 

property preservation claims seen earlier, we have: 

 

Lemma 12: If there are no direct bindings among aspects, spectative aspects can be 

applied in any order without influencing safety, liveness, or existence properties of the 

result. Spectative aspects should be applied before restrictive or invasive ones, and will 

not influence their safety,  liveness, or existence properties.  

Proof: An augmented system with a spectative aspect resumes from the state of the 

joinpoint after executing advice, since only new variables of the aspect are changed. 

Moreover, the assumptions of an aspect specification about the underlying program and 

joinpoints to which that aspect may be applied only relate to variables of the underlying 

program and local variables of that aspect. Therefore, the assumptions of any aspect B 

will not be influenced by applying a spectative aspect A first, even at joinpoints where 

both are activated. Since the aspect is presumed correct when woven over any underlying 

system satisfying its assumptions, it remains correct relative to its specification when a 

spectative aspect is applied previously.  □ 

 

For multiple regulative or invasive aspects, their order of application changes the 

semantics (i.e., the resultant computation graphs of the augmented systems may be 

different for different orderings). As previously, a finer analysis of partial independence 

can be made to determine allowable orderings. 

9 RELATED ASPECT CATEGORIES AND STATIC ANALYSIS TOOLS 

Additional categories of aspects have been defined in several works. Although in [6] a 

tool was not developed, that work defines an observer aspect (roughly similar to a 

spectative one). It also points out difficulties of aliasing that can complicate syntactic 

static analysis of code to determine whether an aspect is an observer and suggests a 

development methodology using observers. In [17], an aspect is defined to be harmful if 

it invalidates any desired properties of the system to which it is applied. As seen in the 

lemmas, one way to exploit the categories in this paper is to help determine whether 

desirable properties true of the underlying system are still true in the augmented one. 
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Clearly, the categories here can help in automatically detecting whether there is any 

danger of harmful aspects, once the specification properties are identified as belonging to 

the appropriate classes of temporal logic properties. Then a system can be unaware of, or 

oblivious [11][12] to, the particular aspects to be applied to it, but its specification can 

nevertheless restrict new aspects to those that do not violate key properties, so that the 

system specification can influence which aspects are woven. The obliviousness of the 

system is thus slightly restricted. 

 

Several works have concentrated on automatic identification of aspect categories either 

based on static code analysis for aspects using dataflow, or with transformation rules that 

allow deriving only aspects of a desired type. The code analysis system for a simplified 

aspect language seen in [26] is intended primarily for code optimization, but the 

information gathered can also be (and has been) used by the authors to identify spectative 

aspects. Similarly, in [29] an extensive interference analysis is made for real Java and 

AspectJ-like programs, emphasizing the complications introduced by inheritance and 

multiple instances. Again, the result is the effective syntactic identification of 

spectators/observers and non-overlap among aspects (which is there called interference-

freedom). 

 

In [25] finer distinctions are defined, but the basic categories resemble those already 

described. That work concentrates on determining the relations between an aspect and a 

method of the underlying system. If they are orthogonal, the two access disjoint fields, if 

they are independent  neither writes to a field that the other may read or write (but both 

may read the same field), in an observation relation the advice may read fields that the 

methods may write, actuation means that the advice may write to a field that the method 

may read, but they are otherwise independent, and interference means that both may 

write to the same field. If the aspect code segments can also be shown to always 

terminate and not redirect control, the first three correspond to spectative aspects. 

Otherwise, if basic code is not skipped, they are regulative. The later two categories are 

invasive, but could be further analyzed to identify special cases of weakly invasive 

aspects. The tool described in [25] uses standard dataflow techniques for AspectJ over 

Java, and numerous sample programs have been analyzed. 

 

There is also considerable work ([1], [2], [33]) on extending well-known programming 

slicing techniques based on dataflow to aspects. These are used to identify the extent of 

influence of an aspect on the underlying system, and to identify potential conflicts among 

aspects. In effect, any potential interactions or conflicts are identified. Such techniques 

can also be used to reduce the size of the model that must be analyzed when model-

checking techniques are to be applied. In [2] an implemented slicing system for AspectJ 

is presented to identify the influence of each aspect. Similar ideas to detect interference 

has been undertaken for Composition Filters with the Compose* analysis system [23]. 

 

Although the systems above do not explicitly deal with families of properties, they are 

usually demonstrated on spectative aspects as tests. However, many of them either ignore 

or simply assume termination of the aspect code (some assume straight-line code). 

Generally, the code of the basic system is resumed from the joinpoint after the aspect 
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advice, and thus the aspects are shown regulative. Lemma 6 is therefore applicable, 

which means that safety properties are necessarily extended to the augmented system if 

they held in the original, but liveness might not be preserved.  

 

Correctness-preserving transformation systems guaranteeing that only aspects of a 

particular type are generated are another approach to establishing aspect categories. An 

abstract transformational theory is presented in [10] to prevent interference among 

aspects (discussed in Section 8), emphasizing pointcut conflicts  for event-based aspects. 

In [8] a type system and transformation rules are presented to guarantee harmless advice. 

This is defined as advice that does not change the final values produced by the original 

system, if the augmented system still terminates normally. In the terms here, partial 

correctness properties are preserved. Since the rules are informally described in their 

papers as guaranteeing regulative aspects, it is likely that their results can be extended to 

general safety properties, again using Lemma 6. 

 

In [17] aspect-aware interfaces are suggested as a weakening of obliviousness, on the 

code level. The aspects activated in a module are explicitly identified in these interfaces 

so that the effects of method activations can be more easily understood for modularity 

and analysis purposes. Although the construct is orthogonal to the semantically defined 

categories in this paper, it can help in the syntactic identification of aspect categories by 

making the connections among aspects and objects more explicit and isolating the effect 

of advice to parts of the underlying system. In [28] and [13] crosscut programming 

interfaces are introduced to help modularize and decouple aspects from the 

implementation details of the underlying system when defining pointcuts. These also 

provide a convenient mechanism for specifying aspects through preconditions and 

postconditions, supporting the assume-guarantee specifications suggested in Section 2.  

 

In [20] aspect advice represented directly as a state transition graph is model checked to 

extend invariants proven true for the original system to the augmented one. They assume 

that the advice reconnects to the state transition graph of the original system at the 

joinpoint. However, they do not identify parts of the statespace local to the aspect. If the 

changes made by the advice are to parts of the state not used in the original system, the 

aspect would be spectative, and the model check is extraneous, since all safety properties 

are maintained. If the original state variables are changed, they must be changed back to 

the original values before ending the advice, by assumption. In that case, their aspect is 

weakly invasive, and Lemma 9 applies, justifying a model check of only the aspect state 

graph, as they also show. 

10 SUMMARY 

The categories of aspects, the procedures for their identification, and the semantic 

influence of aspects from each category on classes of properties provide the basis for a 

code-analysis module for aspects. 

  

The distinction between the semantic definitions of the categories and restrictions 

sometimes needed in order to syntactically determine to which category an aspect 

belongs can be seen by considering whether the aspects can contain “call-backs” to 



 27 

methods of classes already declared in the original system, beyond a proceed statement. 

The absence of such method calls can be easily determined by static analysis, and may 

help in determining that the aspect is, for example, spectative. However, there is no real 

semantic problem with such calls. As seen in Section 6, a class declared in the original 

system may have objects effectively local to the aspect. Moreover, even for objects 

defined and used in the original system, methods that only return values can be activated 

by spectative aspects, to obtain information not explicitly in the pointcut definition. Only 

methods that change values in the original object, or change the conditions under which 

method calls in the original program may be activated are forbidden. Similar 

considerations hold for regulative and weakly invasive aspects. 

 

The goal of full specification and verification of aspect-oriented systems is still 

important. But even when specifications of aspects are difficult to express for non-

functional concerns, and a full verification may be difficult, identifying categories of 

aspects through syntactic analysis is a valuable exercise. A significant improvement in 

code reliability and quality can be obtained at a relatively low cost, especially when 

specifications of the underlying system and the aspects are available, or at least the 

classes of properties needed to express desired features are understood.  Proper language 

design for aspects, with local variables and parameterization, can help extend the static 

analysis of only the aspect code, either for classes of properties and for every possible 

weaving, or by reanalyzing only the aspect for each weaving. Even for invasive aspects, 

partial syntactic analysis can be useful and can ease the task of establishing the properties 

of the augmented system. 

As the level of interference of the aspect increases, from spectative, to regulative, to 

weakly invasive, to strongly invasive, the classes of properties which are automatically 

extended or have modular proofs become successively smaller. Thus, for spectative 

aspects all safety, liveness, and existence properties without next-state properties are 

maintained, while for regulative ones, just safety properties are automatically maintained. 

For weakly invasive aspects, safety properties are not maintained, but any invariants of 

the underlying system can be extended to the augmented one by only checking the 

advice. Finally, for strongly invasive aspects, only the restricted class of inductive 

invariants can be modularly extended to the augmented system.  

As already noted, syntactic checks to determine the category of aspect use dataflow 

techniques also seen in code optimizations, and therefore should be incorporated into the 

compilation and optimization of aspect languages. In addition to the analysis systems 

already developed, detection of the new categories of externally regulatory and weakly 

invasive aspects seems valuable, since they both are practically widespread, and 

significantly easier reasoning about properties is possible for augmented systems with 

aspects in these categories.  

 

A tool for static analysis to determine aspect categories could connect to further analysis, 

testing, or verification tools (e.g., [16] or [20]) by determining the easiest verification 

techniques to extend properties from the underlying system, establish new properties, or 

further analyze the system when a conservative analysis indicates possible interferences 

that may not occur in practice.  
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