
Science of Computer Programming 56 (2005) 5–21

www.elsevier.com/locate/scico

Use-case components for interactive information
systems

Eliezer Kantorowitz∗, Alexander Lyakas

Computer Science Department, Technion—Israel Institute of Technology, Haifa 32000, Israel

Received 28 November 2003; received in revised form 31 August 2004; accepted 6 September 2004

Abstract

Specification-oriented components (SOC’s) are designed to facilitate the implementation of a
system directly from its specifications. An earlier study has shown cases in which SOC’s enabled
information systems to be implemented with considerably less code than when implemented with
components designed by a typical object-oriented approach. This study goes a further step by
considering the essence of an information system to be the flow and processing of data. The
components based on this abstraction attempt to hide code that is not implementing data flow or data
processing. Based on this approach, an experimental framework calledWebSI has been developed.
WebSI components hide the code for the construction of the user interface (UI), the database
access code and the Web-related code.WebSI was designed to facilitate the manual translation
of English language use-case specifications into Java code.WebSI enabled the construction of
information systems with a modest amount of code. The similarity between theWebSI-based Java
code and the English language use-case specifications facilitated verifyingthat the code implements
the specifications correctly. The automatically produced UI’s were relatively easy to learn and to use.
The modification ofWebSI-based legacy code was facilitated by the high level of the code and its
use-case structure, but remained a labor-intensive task.
© 2004 Elsevier B.V. All rights reserved.

Keywords: Component; Specification-oriented; Specification-oriented component; Usecase; Information system;
User interface; World Wide Web; Web

∗ Corresponding author.
E-mail addresses:kantor@cs.technion.ac.il (E. Kantorowitz),lyakasal@cs.technion.ac.il (A. Lyakas).
URLs:http://www.cs.technion.ac.il/∼kantor(E. Kantorowitz),http://www.cs.technion.ac.il/∼ lyakasal

(A. Lyakas).

0167-6423/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2004.11.002

http://www.elsevier.com/locate/scico
http://www.cs.technion.ac.il/~kantor
http://www.cs.technion.ac.il/~lyakasal


6 E. Kantorowitz, A. Lyakas / Science of Computer Programming 56 (2005) 5–21

1. Introduction

A software component can be defined as a piece of software which is designed such
that it can be reused in many different systems. The design of components that meet
this requirement has proven to be a difficult task. These difficulties may be alleviated
by designing components which are limited to a particular application domain and to a
particular method of combining the components into a software system. Such a set of
components and the corresponding construction method are sometimes called a component
framework.

One of the measures of quality of a framework is the developer’s effort required to
design, implement and test a software system with the help of the framework, i.e., the
development costs. Another quality measure of a framework is the developer’s effort
required to extend the software, produced with the help of the framework, at a later
point in time, i.e., theextension costs. This quality may be expressed by theextension
complexity[10] of thesoftware produced with the framework. A further quality measure
of a framework is whether it facilitates manufacturing software systems that have a high
usability level. Usability expresses both the extent to which the system provides the
functionalities that the users need, and whether the system enables the users to accomplish
their work with a minimum of human effort and in a pleasant way. Usability is possibly the
most important system property, as it may be the determining factor for whether or not the
software will sell.

This paper focuses on designing frameworks facilitating the construction of high-
usability software systems at low development and extension costs. Other aspects of
component design, e.g., the problems of interfacing components from different sources,
are not considered in this paper.

One approach in frameworks design is to use a classical object-oriented (OO) design
methodology, i.e., to construct a component for each one of the important objects in the
application domain. An example of such a framework is the Java’s Swing package for
graphical user interfaces (GUI) construction.This package contains components for such
GUI controls as buttons, menu entries and text fields. AGUI is constructed by combining
these components in a special way. The construction involves the specification of the size
of the controls, their colors and the layout on the screen. The programmer must also code
the operations carried out by the software, when a particular GUI control is operated by
the user. Programming at this level of detail can be quite labor intensive.

Another approach in frameworks design is thespecification-orientedapproach, sug-
gested in [12], where the framework’s components are designed to enable a direct coding
of the system from its specifications. The possibility of deriving an implementation of a
system directly from its specifications was demonstrated for reactive systems, in which a
state chart specification of such a system can be executed [4]. The developer of such a
system has thus only to specify it by its state chart, and need not invest further time in
designing and implementing the system. The state chart can be executed, because it ex-
plicitly specifies all the computations in the system. Our study considers large complex
information systems, for which it is difficult to produce such complete specification of the
entire system, as done in the state chart approach. A common industrial method to manage
this high complexity is to develop such a system through a software development process



E. Kantorowitz, A. Lyakas / Science of Computer Programming 56 (2005) 5–21 7

(often shortened tosoftware process). Each phase of such a software process focuses on
one aspect of the development, so that the developers can concentrate on doing it right.

A number of different kinds of software processes have been designed over the last
decades. This research was specially influenced by [7], which introduced theuse-case
concept and its applications in software processes. The use-case concept and additional
concepts from other software processes were later elaborated into the Unified Software
Development Process (USDP) [6], which was developed in connection with the popular
standardized Unified Modeling Language (UML) [18].

The activities of a software process may be divided into two major groups. The first is
thespecification developmentgroup, which includes requirements elicitation, specification
development and validation of the developed requirements and specifications. The second
groupof activities regards theconstructionof a system that meets the specifications.

The USDP and some other software processes employ use cases to specify the
developed system. A use case is a single application of a system. Use cases are often
described in a natural language, e.g., English, and may be accompanied by drawings of the
user interfaces (UI). We consider an example of a use case in a sales management system.
The example use case specifies the addition of anew sales offer by a supplier. The detailed
formulation of this use case is:

(1) The system presents the set of items for sale, for which the supplier has not given
offers. For each item, its name and description are presented.

(2) The supplier selects a single item to give an offer for.
(3) The supplier specifies the price.
(4) The supplier approves.
(5) The system registers the new offer and presents a success message.

The above use-case specification does not tellhow the system locatesthe items, for which
the supplier hasnot given offers. The specification also provides no information on where
and how the details of the new offer are stored. So as opposed to a state chart specification, a
use-case specification does not specify how the system computes its outputs from the user’s
inputs. It is essentially only a specification of the user’s input data and the corresponding
system’s output data.

The use of natural language and UI descriptions enable domain experts and human–
computer interaction (HCI) experts, who may not be familiar with formal specification
notations, to validate the use cases. The domain experts validate the completeness
and correctness of system functionalities, while the HCI experts validate the system’s
friendliness. The purpose of this validation by both domain and HCI experts is thus
to ensure the usability of the system. The product of the specification development
activities is, therefore, a use-case specification of the system, that is validated for its
usability.

The construction activities of a software process involve an analysis of the validated
specifications. This includes developing methods for computing the system’s outputs from
the user’s inputs and database values. Based on this analysis, the developers design and
code the software. The construction stage involves also averification that the produced
code implements the use-case specificationsprecisely. Since the use-case specifications
were validated for their usability, the verified code will retain this usability.



8 E. Kantorowitz, A. Lyakas / Science of Computer Programming 56 (2005) 5–21

The construction activities are usually labor intensive, since they involve both
specifications analysis, system design, coding and verification. In order to reduce these
high construction costs, one may implement the system with the help of high-level reusable
software components. Such a set of components was suggested in [12], where the concept
of specification-oriented components (SOC’s) was introduced. One of the goals of this
approach is to facilitate the verification of the code. SOC’s are designed to enable a
manual translation of the natural language use-case specifications into a high-level code
that resembles the specifications. The equivalence between the code that resembles the
specifications and the specifications is expected to be relatively easy to establish. The use
of high-level code is also expected to save implementation costs and produce a running
system atan early stage.

The suggested approach was tested with the experimental framework, named
SI (SimpleInterfacing) [12], for construction of interactive information systems. In the
experiments, the English language use-case specifications were manually translated into
SI-based Java code. Typically, an English statement in the use-case specification was
translated into 2–3 Java statements, whichresembled the specification to a degree that
made it relatively easy to verify that the code corresponds to the specification. One
system was implemented twice, first using the Java’s GUI Swing framework and the
Java’s database connectivity package (JDBC). The second implementation employed the
components ofSI. There were 2.4 times as manylines of code in the Swing- and JDBC-
based implementation, than in theSI-based code. This suggests that using components
that model use cases, as done inSI, saves coding, as compared to using components
that model the objects of the domain in a classical OO design. The suggestion supports
the observation made by [15], that a classical OO component design does not necessarily
produce the most appropriate components. The remarkable code savings obtained with
SI were achieved mostly by hiding much of the GUI and database access code in the
components ofSI. A later design ofSI, calledSI+, is reported in [13,14].

Based on the experience withSI and SI+, we have developed an experimental
framework, calledWebSI (Web Simple Interfacing).WebSI is a set of Java components,
designed to facilitate the implementation of elementary Web-based information systems.
These information systems are assumed to be specified by use cases written in English.
The translation of the use-case specifications into Java is done manually by the developer.
WebSI may thusbeemployed for the construction activities of the software process, in
which it is required to implement a system from given use-case specifications.

2. The architectural principles of the WebSI framework

WebSI assumes that the essential activities of an information system are the flow
and processing of data. The design ofWebSI, therefore, attempts to hide all the code,
which is not related to these activities. This hiding enables the developer of the use-case
specification and the programmer, who translates the use cases into Java code, to focus on
the essence of the information system. In this and the following sections we discuss how
the emphasis on flow and processingof data influencedthe design ofWebSI architecture,
its UI facilities and database access facilities.



E. Kantorowitz, A. Lyakas / Science of Computer Programming 56 (2005) 5–21 9

Fig. 1. The structure ofWebSI applications.

Similarly to many information systems,WebSI employs a single relational database,
which stores thestate of the information system. WebSI represents the abstraction of
a table (relation) by the Table interface, enabling high-level manipulation of tables,
computed by SQL queries or constructed manually. The database is manipulated by
transactions, designed to retain its consistency.

Theusage modelof aWebSI-based information system is that the user initiates a use
case and then performs severalinput–output sequences. We define a single input–output
sequence as:

(1) The user inputs the data requested by the system.
(2) The system fetches the data supplied by the user.
(3) The system computes the output based on the supplied data and on the database.
(4) The system updates the database if required.
(5) The system presents the output to the user.
(6) The system requests the user to supply additional inputs, if further computations are

needed.

When employingWebSI, each use case is implemented by a separate class, called a
use-case class, which is derived from theWebSI UseCase class. Each use-case class
has a number of differentinteraction methods, that contains the translation of the English
use-case specification to Java, employingWebSI components. Each interaction method
implements one input–output sequence, and together they implement the interaction
between the user and the system, as specified in the English use-case description. Each
use-case class must implement an interaction method namedstart, which is invoked
automatically byWebSI, when the use-case execution begins. Other interaction methods
are invoked byWebSI according to the user actions and the use-case specification.

A use-case implementation may, besides theWebSI components, employ components
from other sources (seeFig. 1). For example, an externalCreditCardValidator class
may be used to validate credit card details, when processing a customer’s order in the
sales management information system mentioned above. In aWebSI-based information
system, each use case is thus implemented by a class derived from theUseCase class and
possibly a number of components from other sources.



10 E. Kantorowitz, A. Lyakas / Science of Computer Programming 56 (2005) 5–21

public void start()throws Exception {
1 Tableoffers=

DB.read(”SELECT offer.offerid, item.name, item.description, offer.price ”+
”FROM offer, item ” +
”WHERE offer.itemid=item.id AND offer.supplierid=” +
UserID.getUsername());

2 String[] visibleColumns= {”name”, ”description”, ”price”};
3 Select.one(”selected_offer_id”, offers, visibleColumns, ”offerid”,null,

”Select the offer you wish to edit:”);
4 UserComposed.any(”new_price”, ”0.0”,

”Give the new price for the selected offer:”);
5 Action.action(”updateOffer”, ”Update the selected offer!”);
6 Action.action(”deleteOffer”, ”Delete the selected offer!”);
}

Fig. 2. The implementation of the beginning of ‘Edit Offer’ use case.

It is assumed that a use-case component can accomplish its computations with the data
obtained from the user, the database and possibly some external components. Such a use
case, therefore, only interfaces with the user, the database and the external components,
but not with other use cases. This architecture is illustrated inFig. 1. Thedeveloper of a
particular use case, therefore, usually need not know anything about the other use cases,
which means that a particular use case is not coupled to any other use-case components.
Therefore, the use-case developer usually needs only to be familiar with the use-case
specification and the structure of the database schema.

Since aWebSI-based application is essentially a set ofuse-case classes, we obviously
need a kind of a component, which “glues” all the use cases together into one application.
For thatpurpose,WebSI provides a ready-made internal component, called ause-case dis-
player [14]. The use-case displayer enables the user to initiate and execute the various use
cases of the information system. In addition, the use-case displayer enables the user to log
in to and log out from the various systems’security roles. In order to reduce the possibility
of user mistakes, the use-case displayer is designed to allow only the permitted actions.
For example,Fig. 3 shows a use-case displayer, after a user, identified as supplier, has al-
ready logged in. That is why a ‘Logout’ hyperlink appears in the upper-left corner of the
screen, enabling the supplier to log out. A logged-in supplier is only permitted to execute
use cases, relevant to her security role, whichare the ‘Add Offer’, the ‘Contractor’s Info’,
the ‘Edit Offer’ and the ‘Sales Statistics’ use cases. The execution of a use case is initiated
by activating one of the hyperlinks on the left side of the screen. The currently executing
use case is ‘Edit Offer’; its GUI is presented to the user on the right side of the screen.

3. WebSI UI facilities

From theWebSI perspective, the essence of the UI is the data that the user inputs
to the system, and the data that the systemoutputs to the user. In contrast to traditional



E. Kantorowitz, A. Lyakas / Science of Computer Programming 56 (2005) 5–21 11

Fig. 3. The beginning of ‘Edit Offer’ use case.

UI specifications that involve specific UI controls, their layout, colors and so on,WebSI
employssemantic UI specifications. This means that the programmer specifieswhat the
UI enables the user to do, i.e., the desired UI functionality. The programmer, however, does
not specifyhow this functionality should be implemented, e.g., which specific UI controls
should be employed—this is thesyntax. An exampleof a semantic UI specification is
enabling the user to select a single item out of a set of items. The implementation of this
semantics, i.e., the syntax, may involve, for example, a pull-down menu, a single-selection
listboxor a set of radio buttons.

The UI that will implement the semantic specifications is determined by aWebSI
component, calledinteraction style[11]. This component specifies all the UI properties,
such as which controls should be employed, their colors, fonts and the layout on the screen.
WebSI offers a set of ready-made interaction styles. Additional interaction styles can be
developed and integrated intoWebSI. The interaction style to be employed is selected at
deployment time, and no changes or recompilations of the use cases implementations are
required.

To illustrate these techniques we consider again the sales management information
system. The database of this system has the tables “Item”, “Supplier” and “Offer”. The
domains (columns) of these tables are listed below:

• Item (id, name, description)



12 E. Kantorowitz, A. Lyakas / Science of Computer Programming 56 (2005) 5–21

• Supplier (id, name, city, address, description, password)
• Offer (offerid, itemid, supplierid, price)

The columns, whose names are underlined, are the primary keys of the tables.
The information system has a use case called ‘Edit Offer’, which enables a supplier to

change the price of an offer or to delete an offer. Below is a part of the English language
specification of this use case:

• The system presents the set of all the currently valid offers of the supplier that executes
the use case. For each offer, item name, item description and price are displayed to the
supplier.

• The supplier selects one offer from the set.
· The supplier specifies a new price for the selected offer.
· The supplier approves.
· The system updates the price of the selected offer and presents a success message.
OR
· The supplier instructs the system to delete the selected offer.
· The system deletes the selected offerfrom the database and presents a success

message.

Note that the above description contains no UI details; they will be determined
automatically byWebSI.

The programmer translates the above English specification into code of theEditOffer
use-case class, whosestart method is shown onFig. 2. The UIproduced by this code is
shown inFig. 3. Let us explain the code of this method in brief.

Line 1 issues an SQL SELECT query, which obtains all the offers of the logged-
in supplier that is executing the use case (as determined by theUserID.getUsername
method provided byWebSI ). The query returns a four-column table into a local variable,
called offers. The type of this variable is Table, which is aWebSI interface that
represents tabular data. TheDB.read method is also provided byWebSI and will be
discussed inSection 4.

In lines 2–3 theSelect.one method is invoked. This method produces a UI that
enables the user to select exactly one row out of theoffers table, produced by the
SQL query in line 1. Note, that the method only specifies the input semantics, but not
the UI controls to be employed. In line 2, the programmer specifies that the “name”,
“description” and “price” columns of theoffers table will bevisible to the user.
In the fourth argument to theSelect.one method, the programmer specifies that the
“offerid” column of theoffers table will serve as thereturnvalues column. That is, for
example, if the user selects the third row of theoffers table, the programmer will later
fetch thethird value of its “offerid” column. The “selected_offer_id” string serves
as a textual ID, which will be used by the programmer later, i.e., in the next input–output
sequence, to obtain the user’s selection, like this:

. . .
int selectedOfferID= Fetch.Int(”selected_offer_id”);
. . .



E. Kantorowitz, A. Lyakas / Science of Computer Programming 56 (2005) 5–21 13

This statement obtains the user’s selection, by fetching the value in the “offerid” column
of the offers table, in the row that has been selected by the user. TheFetch.Int
method employed here is provided byWebSI for obtaining the user’s input in the integer
form.

The fifth argument to theSelect.one method defines which row should be selected
by default. Here, the programmer leaves it unspecified, andWebSI will select one of the
rows.

Additional input methods, used by the programmer onFig. 2, are:UserComposed.any,
which enables the user to supply a user-composed value, andAction.action, which
enables the user to initiate an action in the system. The second argument of the
UserComposed.any method defines a default input value. TheAction.action method
receives as an argument the name of the interaction method, which will be invoked
by WebSI, when the user initiates this action. Again, it should be noticed that the
programmer does not specify concrete UI controls; they will be determined automatically
by the interaction style component.

Fig. 3 presents the UI produced by the code onFig. 2, employing the defaultWebSI
interaction style. Note, that the interaction style presents tabular data as a table, employs
radio buttons to implement the single-selection semantics, a text field for supplying a user-
composed value, and hyperlinks for the action semantics.

If the programmer is unhappy with the appearance of the produced GUI, she may
exchange the employed interaction style with an alternative one. This is demonstrated in
Figs. 4and5. Both figures show the beginning of the execution of the ‘Edit Offer’ use case.
Fig. 4 demonstrates an interaction style, in which the use-case execution is initiated by
selecting the use-case name in the ‘Accessible use cases’ menu and clicking it. In addition,
this interaction style employs tables, which are sortable by clicking any column header. On
Fig. 4, theuser has sorted the table by the ‘Price’ column, in descending order. No changes
or recompilations have been required to the code inFig. 2. Fig. 5demonstrates yet another
interaction style. With this interaction style, the use-case execution is initiated by clicking
one of the four yellow buttons on the top of the screen. In addition, note that this interaction
style presents tabular data as a set of records. Finally, the interaction style employs push
buttons instead of hyperlinks. Again, no changes or recompilations have been required to
the code inFig. 2.

We now consider a further use case of our example system, called ‘Select Offers’,
which enables the customer to browse the offers of the various suppliers. The use case
begins with the customer selecting a single city, a single item and approving her choice.
Fig. 6 presents the code that implements the beginning of this use case. Passingnull for
the visible columns parameter of theSelect.one method makes all the table columns
visible.

Fig. 7 presents two different UI’s, which were produced from the same single code
of Fig. 6, by employing two different interaction styles. The interaction style on the left
employs space-economic pull-down menus and may, therefore, be employed on the small
screen of a PDA (Personal Digital Assistant). The interaction style on the right employs
single-selection listboxesand may, therefore, be employed on a large PC screen. The
example demonstrates that the same single application code may be employed on different
devices, by using an interaction style that fits to the device. It is thus not required to make



14 E. Kantorowitz, A. Lyakas / Science of Computer Programming 56 (2005) 5–21

Fig. 4. An alternative interaction style.

any change in the code of aWebSI-based system, when adapting it to a new device
kind.

Table 1lists some ofWebSI ’s input and output semantics.

4. Database access with WebSI
We have assumed that the essence of an information system is the moving and

processing of data. Moving of data to and from the database is, therefore, anticipated to be
a frequent operation, which deserves to be supported byWebSI. Moreover, it is expected
that a considerable part of the computationsin an information system may be accomplished
by the powerful SQL language.WebSI employs, therefore, SQL to manipulate database
data. The programmer needs not know the actual location of the database; it is specified
during the deployment of an information system. The various technical activities, such
as connecting and disconnecting from the database, managing database transactions



E. Kantorowitz, A. Lyakas / Science of Computer Programming 56 (2005) 5–21 15

Fig. 5. Yet another interaction style.

public void start()throws Exception {
Select.one(”selected_city”,

DB.read(”SELECT DISTINCT city FROM supplier”),null, ”city”, null,
”Select the desired city:”);

Select.one(”selected_item”,
DB.read(”SELECT DISTINCT name FROM item”),null, ”name”, null,
”Select the item you are interested in:”);

Action.action(”seeSuppliers”, ”See suppliers”);
}

Fig. 6. The implementation of the beginning of ‘Select Offers’ use case.



16 E. Kantorowitz, A. Lyakas / Science of Computer Programming 56 (2005) 5–21

Fig. 7. Different implementations of the same semantics.

Table 1
Some ofWebSI’s input and output semantics

Input/output method Semantics

Output.scalar Present a scalar value (i.e., some text) to the user.

Output.table Present aTable to the user. TheTable possibly

originatesfrom an SQL SELECT query.

All or some of the table’s columns are visible.

UserComposed.any Demand the user to supply a user-composed value.

UserComposed.anyOptional The user may optionally input a user-composed value.

UserComposed.yesNo Demand the user to answer a yes-no question.

UserComposed.yesNoOptional The user may optionally answer a yes-no question.

UserComposed.date Demand the user to supply a date value.

UserComposed.dateOptional The user may optionally input a date value.

UserComposed.time Demand the user to supply a time value.

UserComposed.timeOptional The user may optionally input a time value.

Action.action Enable the user to initiate an action in the system.

Select.one Demand the user to select a single row out of aTable.

TheTable possibly originates from an SQL SELECT query.

All or some of theTable’s columns are visible.

Select.oneOptional Same as previous, but the user may also not select a row.

Select.oneOrMore Demand the user to select one or more rows out of aTable.

TheTable possibly originates from an SQL SELECT query.

All or some of theTable’s columns are visible.

Select.oneOrMoreOptional Same as previous, but the user mayalso select zero rows.

and recovering from various database-related errors, are handled automatically by
WebSI.



E. Kantorowitz, A. Lyakas / Science of Computer Programming 56 (2005) 5–21 17

4.1. Retrieving data from the database

WebSI provides aDB.read method, which performs an SQL SELECT query and
returns the resulting table. The signature of this method is:

Table read(String SQL_SELECT_query);

whereTable is an interface defined byWebSI. This interface provides a set of methods,
which inspect the individual table values. However, in many cases obtaining the individual
valuesis not required, sinceWebSI provides many input and output methods that work
with Tables directly. For example, theSelect.one method (Figs. 2and6) produces a
set of possible user selections directly from aTable, obtained, e.g., by an SQL SELECT
query. Another example is theOutput.table method, which presents aTable to the user:

void table(Table table, String[] visibleColumns, String caption);

4.2. Modifying the database

Similar to reading data, there is a single method,DB.write, for modifying the data in
the database:

int write(String SQL_query)throws DBConstraintViolationException;

The argument to this method is an SQL INSERT, UPDATE or DELETE query, and the
return value is the number of rows affected by the query.

4.3. Transactions and database constraints

As already mentioned,WebSI employs database transactions to preserve the
consistency of the database. A new transaction is started, when the code of an interaction
method issues its first SQL query. When the interaction method ends,WebSI tries to
commit the transaction, i.e., to commit all the queries the programmer has issued during
the interaction method execution. In case the transaction cannot be committed,WebSI
rolls it back and sends an explanatory error message tothe user.

Database systems are capable of checking various integrity constraints, such as
PRIMARY KEY and FOREIGN KEY constraints. When a constraint is violated,
WebSI conveys the violation to the programmer, so that an appropriate action can be
coded. The violation is delivered as aDBConstraintViolationException, or one
of it subclasses defined byWebSI, according to the specific constraint type, e.g., a
ForeignKeyViolationException.

5. Evaluation

WebSI has been employed by students for developing systems for air travel planning,
assigning faculty members to courses, scheduling and managing theater performances,
scheduling football games (teams, fields and referees), managing a Web discussion forum,
assigning referees to school basketball games, as well as for managing a Web community
of Magic card game players. The students, most of which were in the last year of their



18 E. Kantorowitz, A. Lyakas / Science of Computer Programming 56 (2005) 5–21

Computer Science studies, got brief descriptions of their projects and were told that their
grades depended on the usability of their systems. The students recorded their time usage
and filled questionnaires with their comments. Seven hours of instruction were sufficient
to enable students familiar with Java to start usingWebSI. Theprojects withthe better
usability could be specified and implemented with only 200–300 working hours. Some of
the students, who have also implemented systems with a USDP-like software process using
standard Java facilities, estimated thatWebSI enabled a saving of around 30–40% of the
total system development effort.

The reduction of the coding effort enabled investing more time in requirements
elicitation and specification development.As expected, this shift of emphasis was
beneficial for the usability of the systems; many of the produced projects were quite
realistic and correspondingly complex. A team that produced a quality system invested
86 h in requirements and specification development and only 74 h in database design,
implementation and verification. Another team that produced a relatively poor system
invested 67 h in requirements and specification and 161 h in the implementation. In general,
all teams, which developed reasonably good use-case specifications, obtained UI’s, which
were quite easy to learn and to use. Whether this useful result is true in general is a question
that requires further investigations.

The programmer that employsWebSI is not required to construct and manipulate the
UI, handle the various Web-related issues, access the database server and deal with security.
The code to be written involves by and largeonly the input and outputof data, database
queries in SQL, and the required data manipulations. The code is quite close to what may
be called pureapplication logic. When employing only SQL for the required computations,
which was sufficient in many cases, each statement of an English use-case specification is,
usually, implemented by 1–3 Java statements. This facilitates verifying by code inspection
that the code implements the specifications correctly.

The UI-free WebSI code of an application should run without any change on any
platform, for which an appropriate interaction style exists. Using the same code on all
platforms may facilitate maintenance, preparation and distribution of new application
versions. Note thatWebSI interaction style components are not application-specific;
therefore, they are not considered as a part of a code of a certain information system,
and can be reused in multiple systems.

The appearance of aWebSI-based system can be controlled by selecting one of
the interaction styles, currently available inWebSI. Figs. 3–5 and 7 illustrate what is
possible with these interaction styles. The appearance can be improved by developing
more sophisticated interaction styles. Implementing an interaction style from scratch may,
however, be quite labor intensive.

The ease, by which an existing (legacy) system may be modified, is an extremely
important software engineering quality. In aWebSI-based information system, a use-
case component usually interfaces only with the user and the database, but not with
other use cases. The developer of such a use-case component, therefore, need not know
anything about the internals of other use cases; she is required to understand the use-case
specification, the database schema and be familiar withWebSI API. The effort required
for extending an information system with a new use case is thus often independent of the



E. Kantorowitz, A. Lyakas / Science of Computer Programming 56 (2005) 5–21 19

number of already existing use cases, i.e., the extension complexity [10] of the architecture
is usuallyO(1).

The achievement of thisO(1) extension complexity is based on two assumptions. The
first assumption is that thedatabase schema is not changed. This assumption is probably
often met, as observed by [7], in that the schema of a database changes much more slowly
than databaseapplications. The second assumption is that it is possible to design the
use cases such that they need not interfacewith other use cases. This assumption was
usually met in our student projects. Indirect use-case dependencies may, however, occur
between use cases, which participate in the same single work-flow, relying on common
database data. Consider, for example, a work-flow, in which a worker in a company issues a
purchase request (one use case). The request must be approved by two financial clerks, who
may work in parallel (another use case, executed twice by different users). The approved
request is executed by a purchasing clerk (an additional use case). Such use cases have to
be designed to work correctly together.

The modifiability of aWebSI-based information system was checked experimentally
in our student projects. After the air travel planning project was completed by one student
team, another student team was asked to do some major modifications of the system,
such as enabling the users to order tickets for flight routes, introducing different kinds
of flights (daily, weekly and special) and new statistics reporting.WebSI facilitated the
modification of the system in a number of ways. The students reported that having the
code of each use case in a separate use-case class facilitated the location of the places
where changes were needed. The students also reported that the high-levelWebSI-based
code of the legacy system was relatively easy to understand. Furthermore, the direct
correspondence between a use-case specification and its use-case class implementation
facilitated verifying the modified code. Still, even withWebSI ’s facilities, modifying the
legacy code was a major effort. The need to gain a sufficient understanding of a legacy
system is by its nature labor intensive.

The current version ofWebSI has no high-level support for the flow of control
between the different use cases. A limited flow of control is provided through
the UML < <include> > relationship, which is supported byWebSI. The primary
purpose of this facility in both UML andWebSI is, however, to enable the programmer
to avoid duplicating common system behavior.

Additional research is required on the applicability and limitations of theWebSI
approach in demanding, large real-life systems. It may be expected, for example, that
using the same single interaction style in a system will produce a more uniform UI
appearance than a hand-coded UI. However, there are cases, in which inconsistencies in
the UI arerequired [3]. The possibility of developing interaction styles that implement the
UI standards of particular software manufacturers is worth further investigations.

6. Related work

The “Play-In/Play-Out” [5] method was designed for capturing and directly executing
the specifications of reactive systems. Following this methodology, first a GUI of the
system is constructed. Then the developer operates the GUI as an end-user, and specifies



20 E. Kantorowitz, A. Lyakas / Science of Computer Programming 56 (2005) 5–21

the desired reactions of the system—also with the help of the GUI. In this way, the
developer specifies the system by “playing-in” various scenarios. At the “play-out” stage,
the developed specification is directly executed, again byoperating the system’s GUI.
During this stage, the specified system may betested with scenarios, which are different
from the “played-in” ones. In some cases, the “play-out” may actually serve as the final
implementation.

This work differs from ours by being targeted at reactive systems, whileWebSI is
designed for information systems construction. In addition, the “play-in” stage involves
a manual GUI construction, i.e., it is required to decide on the system’s GUI at an
early development phase. This contrasts toWebSI ’s automatic UI generation. Another
difference is that “playing-in” enables an interactive specification development, while
WebSI assumes a manually developed specification.

A novel technology for UI construction, called JavaServer Faces (JSF) [8], which
extends the popular JavaServer Pages (JSP) [9] technology, enables a more convenient
UI construction method than with basic HTML tags. JSF is similar toWebSI in
facilitating the altering of UI controls employed in an application. In JSF, however, the
UI controls specification is interwoven in the application and cannot be readily employed
in other applications. This contrasts toWebSI ’s interaction styles, which can be reused
in different applications. Using theWebSI framework, the developer of a new system
need not invest time in UI construction at all, when an acceptable interaction style already
exists.

Similarly to WebSI, other systems, e.g., [16,17,1,2], employ various abstract UI
specifications in order to produce UI’s for multiple platforms.WebSI differs from
these systems by enabling to the programmer to write application-specific code, which
is completely free of UI details. This code should run on any platform without change.

7. Conclusions

This study suggests the feasibility of an SOC framework for the construction of Web
information systems. The high-level abstractions of theWebSI framework enable manual
translation of English language use-case specifications to Java code. This code resembles
the specifications, making it easy to verify that it implements them precisely.

The developed framework hides the codefor UI construction and manipulation,
database access and Web programming. This enables the developers to focus on the flow
and processing of data. Those are considered to be the essence of the information system.
The framework saved in one case about 30–40% of the development effort.

The UI’s, produced automatically from good quality use-case specifications, were easy
to learn and to use. This suggests that the usability of the UI is to a considerable extent
dictated by the use-case specifications.

The modification of aWebSI-based legacy system by new programmers was facilitated
by the relative readability of theWebSI-based code and by its use-case structure.
Modifying legacy code remained, however, a labor-intensive task.

Further studies are needed for a more complete understanding of the applicability of
SOC’s.



E. Kantorowitz, A. Lyakas / Science of Computer Programming 56 (2005) 5–21 21

Acknowledgement

The assistance of Mr. Kobi Sasson in the implementation of some interaction styles is
thankfully acknowledged.

References

[1] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg,L. Bouillon, J. Vanderdonckt, A unifying reference
framework for multi-target user interfaces, Journal of Interacting With Computers 15 (3) (2003) 289–308.

[2] S. Gilroy, M. Harrison, Using interaction style to match the ubiquitous user interface to the device-to-hand,
in: EHCI-DSVIS’04, 11–13 July, Hamburg, Germany, 2004.

[3] J. Grudin, The case against user interfaceconsistency, in: CACM, October 1989, pp. 1164–1173.
[4] D. Harel, Statecharts: a visual formalism for complex systems, Science of Computer Programming 8 (1987)

231–274.
[5] D. Harel, R. Marelly, Specifying and executing behavioral requirements: the Play In/Play-Out approach,

Software and System Modeling (SoSyM) 2 (2003) 82–107.
[6] I. Jacobson, G. Booch, J. Rumbaugh, The Unified Software Development Process, Addison-Wesley, 1999.
[7] I. Jacobson, M. Christerson, P. Jonsson, G. Overgaard, Object-Oriented Software Engineering: A Use Case

Driven Approach, Addison-Wesley, 1992.
[8] JavaServer Faces Technology.http://java.sun.com/j2ee/javaserverfaces/.
[9] JavaServer Pages Technology.http://java.sun.com/products/jsp/.

[10] E. Kantorowitz, Algorithm simplification through object orientation, Software Practice and Experience 27
(2) (1997) 173–183.

[11] E. Kantorowitz, O. Sudarsky, The adaptable user interface, Communication of the ACM 32 (1989) 1352.
[12] E. Kantorowitz, S. Tadmor, A specification-oriented framework for information system user interface,

in: Workshop of Object-Oriented Information Systems 2002, OOIS’02, Springer LNCS, vol. 2426, 2002.
[13] E. Kantorowitz, A. Lyakas, A. Myasqobsky, Use case-oriented software architecture, in: ECOOP’2003,

Workshop 11, Correctness of Model-based Software Composition, 2003.
[14] E. Kantorowitz, A. Lyakas, A. Myasqobsky, A use case-oriented user interface framework, in: SwSTE’03,

IEEE International Conference on Software—Science, Technology & Engineering, November 2003,
Herzelia, Israel, 2003.

[15] D.H. Lorenz, J. Vlissides, Designing components versus objects: a transformational approach, in: ICSE
2001, 12–19 May, Toronto, Ontario, Canada, 2001, pp. 253–262.

[16] F. Paterno’, A. Leonardi, A semantics-based approach to the design and implementation of interaction
objects, Computer Graphics Forum 13 (3) (1994) 195–204.

[17] F. Paterno’, C. Santoro, A unified method for designing interactive systems adaptable to mobile and
stationary platforms, Interacting with Computers 15 (3) (2003) 347–364.

[18] J. Rumbaugh, I. Jacobson, G. Booch, The Unified Modeling Language Reference Manual, Addison-Wesley,
1999.

http://java.sun.com/j2ee/javaserverfaces/
http://java.sun.com/products/jsp/

	Use-case components for interactive information systems
	Introduction
	The architectural principles of the WebSI framework
	WebSI UI facilities
	Database access with WebSI
	Retrieving data from the database
	Modifying the database
	Transactions and database constraints

	Evaluation
	Related work
	Conclusions
	Acknowledgement
	References


