Algorithm Simplification through Object
Orientation

Eliezer Kantorowitz
Computer Science Department, Technion-Israel Institute of Technology, 32000 Haifa,
Israel(email: kantor@cs.technion.ac.il)

SUMMARY

The object oriented (O-O) approach is claimed to have a number of advantages. Some support to
these claims appeared during an O-O redesign of a legacy CAD system. A surprisingly simple
and efficient solution algorithm was discovered for a change propagation problem. The analysis
of the case employs the new concepts of implementation and extension complexity, which
indicate the amount of code (software costs) required for the implementation and for later
extensions. These two complexities are functions of the problem complexity expressed by the
number N of object types employed to model the problem domain. Moving from the old system

to the new O-O system reduced the implementation complexity from O(N?) to O(N), the
extension complexity is reduced from O(NN) to O(1). The two systems have the same space and

time complexities. The CAD system is employed for designing structures composed of parts. The
0-0O analysis attempts to analyze each part type separately, which proved possible. The
corresponding N different object types can therefore be developed independently of each other.
The top down analysis employed for the old algorithm did not discover the simple architecture,
because it is not geared to look for this kind of solutions. Instead it analyzes the N * different
change propagation cases. The methodical search for independent modules is an important
reason for preferring O-O analysis.

Key words: object oriented; software architecture; complexity; implementation complexity; extension complexity

1. INTRODUCTION
Solution architectures should be simple in order to avoid high software development
and maintenance costs. At the same time these architectures should also involve low
execution costs. It is, however, a common experience in system development that
optimizing one goal often compromises other goals. In the case described in this paper,
the use of an O-O approach enabled the design of an architecture that involved
relatively low implementation costs, and has the same reasonably low execution costs
as the original top down designed system. This paper analyzes the case and explains
why and when such an advantage can be achieved with O-O. The case involves the re-
engineering of a legacy CAD (Computer Aided Design) system. Some parts of this
legacy system are about 20 years old, and it does not meet some current needs.

Extending the system to satisfy these new needs was however estimated to be very
difficult, if not impossible. The reason is that the old code is quite complicated, and
has a number of difficulties in removing bugs. It was estimated that O-O could
alleviate some of these problems. It was therefore decided to begin developing a new
O-O system, that will gradually, over a number of years, replace the old system.

2. THE CHANGE PROPAGATION PROBLEM

The purpose of the CAD system is to enable a team of engineers to design the
approximately 10° different parts of a large steel structure. During this process, the
design is sometimes changed. For example, the thickness of a particular part is
increased. This change may require changes also in the parts connected to the first
part. These changes may cause further changes and so on. This change propagation
problem proved to be very difficult. The old program was therefore very complicated.
The O-O solution developed by the author surprised everyone with its simplicity. In
order to understand what happened here, we must first learn something about the
change propagation problem.

The 3D parts employed in this industrial system are divided into 9 distinct types. Some
of these types are quite complicated. For the purposes of this paper, we consider a
highly simplified 2D case, in which all parts are rectangles whose faces are parallel to
the coordinate axes of an orthogonal coordinate system. The faces of these rectangles
are denoted by the compass directions, N, E, S, and W. A part may be rotated by any
multiple of /2 radians. It is therefore possible that the N face of one part interfaces,

1. e. touches, with the N face of another part that has been rotated through 7.

W| type S |E standard W| Eype F| |E

S S
standard fitted

Fig. 1 Parts of type S and F

The parts are manufactured from rectangles supplied by steel mills in standardized
dimensions. Parts that are used as they come from the steel mill, without any change,
belong to type S (Standard), because they have standard dimensions. An example of an
S part is shown in the left side of Fig. 1. The right side of Fig.1 shows a part of type F
(fitted), i.e. a part where the distance between the E and W faces is non standard
(fitted), while the distance between the S and N faces is a standard dimension. The E
and W faces are marked by arcs in order to indicate that they correspond to a fitted

dimension. An application of an F part is shown in Fig. 2, where it is required to fit a
part P between the two existing parts called L and R. The distance 2.17 between these
two parts is nonstandard. The part P is therefore produced by cutting down a standard
3.00x1.00 part to the required 2.17x1.00. Fitting is done only by cutting down the
distance between the E and W faces of the part, and not between the N and S faces.
The locations of the E and W faces of F parts are determined by fitting and are,
therefore, denoted fitted faces. The location of the N and S faces are determined by
some standard dimension and are therefore, called standard faces. The N, E, S, and W
faces of S parts are thus all standard. It makes no sense to fit a fitted face of one part
to a fitted face of another part. It is therefore not permitted to interface the E or W
face of an F part with the E or W face of another F part.

Fig. 2 Part P of type F is fitted in the

space between parts L and R of type S.

During the design process the designer sometimes wishes to make changes. Fig. 3, for
example, shows a design composed of 5 parts of type S. The leftmost part is denoted
by 1 and has the length 7. The designer wishes for some reason to increase this length
to t+d. We assume that the W face of part 1 has a fixed location in some absolute
coordinate system. The E face of part 1 will therefore move in this coordinate system
the distance d to the right. This face is, however, welded to the W face of Part 2. As a
result, part 2 will move d to the right. Eventually, so will all the four rightmost parts
of the structure (2, 3, 4, and 5). In this example, the change propagates through the
entire structure. Let us now consider the case where the designer wishes to shorten
part 1 by d. The W face of part 2 is in this case pushed d to the left. Part 2 will
therefore move d to the left and so will all the parts to the right of it. We can now
formulate the first rule.

Rule 1. When a standard face of a part is pushed a distance d, the entire part will
move d in the push direction. The shape of the part will not change.

BEFORE :
5
1 2 3 4
t
4t
AFTER:
5
1 2 3 4
t+d
4t+d

Fig. 3 Changes propagate

troughout standard dimensions

Consider now a similar structure (Fig. 4), in which part 3 is of type F and the
remaining parts 1, 2, 4, and 5 are of type S. In this example assume that the locations
of both the W face of part 1 and the E face of part 4 are fixed in the absolute
coordinate system. Again, consider what happens when the designer increases the
length of part 1 from ¢ to t+d. The E face of part 1 moves d to the right. Part 2 will
therefore also move d to the right. The length of part 3 will now be fitted to the space
between part 2, in its new location, and part 4, whose location in the absolute
coordinate system is fixed. The result is that the length of 3 is reduced by d. It is also
noted that the propagation of the change stops at part 3. The fitted face absorbs the
change and thus stops further propagation.

BEFORE :

4t

AFTER:

Fig. 4 Change propagation
stops in a fitted dimension

We can now formulate the second rule.

Rule 2. When a fitted face, i.e. an E or W face of an F part, is pushed a distance d,
the length of the part, i.e., the distance between the W and E faces, will be reduced by
d. The part will not move and the change propagation stops.

3. TRADITIONAL TOP DOWN DESIGN
This section discusses the architecture of a solution algorithm using a traditional top-
down approach ' . This solution will be contrasted with an O-O solution developed
later.
In a general formulation of the change propagation problem, an architecture may be
modeled by a structure graph, whose nodes represent the parts and the arcs represent
the interfaces between them. Fig. 5 shows the graph that corresponds to the structure

shown in Fig. 4.

O—O—G—

Fig 5 Structure represented by a graph

The change propagation problem can now be formulated as a calculation of how a
change propagates over any given structure graph. In a traditional top down analysis
this formulation can be considered as the problem statement at the highest level of
abstraction. At the second level of abstraction, the problem is "How does any given
change propagate from any given node in the graph to any node that is connected
directly to the first one?". In order to answer this question, it is necessary to analyze
how a change propagates through any of the possible kinds of interfaces, i.e. through
graph arcs. Recall that it is permitted to rotate any part a multiple of 7/2 radians, so
that each of the N, =4 faces (N, E, S or W) of a part may interface with any of

faces
the N

faces

belong to any of the N, =2 different part types (fitted and standard). There are thus,
=N es Nyypoy =4N,,,. =8

N face _types faces = " types types
kinds of faces that may interface with each other. This gives

=4 faces of an interfacing part. The two interfacing parts may, however,

interface_types N ;ace_type.v =4N tipe.v =64
different interface types. Table 1 shows how a change propagates through any of these
64 different kinds of interfaces. The table was calculated with the help of
rules 1 and 2. The leftmost column and the uppermost row in the table show all the
kinds of faces that exist in the system. "S-N", for example, means "face N of a part of
type S". Every internal cell in the table contains a letter (m, s, or e) that tells what
happens when a part with a face of the kind indicated by the row name pushes another
part on a face of the kind indicated by the column name. The letter m (move) means
that the part moves. An example is shown in Fig. 4, in which the E face of part 1
pushes the W face of part 2, which therefore moves to the right. This case is shown in
Table 1, by the letter m at the intersection of the row S-E and the column S-W. The

letter s (shorten the part and stop propagation) is employed when a fitted dimension is
changed. The letter e (error) is for an illegal interface between two fitted faces.

9,
1

N

9,
1

E

9,
1

S

@
=
Z
o
5
=

S-N

S-E

S-S

S-W

F-N

F-E

F-S

“B7EBEBEBIEBIE|T

“B”EBIEBEBIEBIE|T

cB|”BIBIBIBIB
cB|”BIBIBIBIB
cB|”BIBIBIBIB
cB|”BIBIBIEBIB
o »n|o ©»n v »n »n| e
o »n|o ©»n v »n »n| e

F-W

Table 1. Change propagation throughout all possible interfaces.

In the industrial system there are N, , =9 types of 3D parts, and each has N, =6
faces, 1.e.
N face _types = N faces N types = 6 X N types = 54
The number of entries in the equivalent of Table 1 in the industrial system is
N int erface_types = N]%ace_t_vpe.v = 36 X N tipe.v = 2916
Each one of these 36 x N tf,m = 2916 interface types was managed in the old industrial

system by a separate piece of code. The amount of code that implements the old
change propagation algorithm is thus a function of N} ., and may therefore be

types
represented by an implementation complexity of
O(N;

types 7 *
The implementation complexity concept suggested in this paper is an indication of
code size as a function of the problem complexity, which in this case is represented by

the number of different part types N, , . This complexity measure, which will be

discussed later in the paper, is analogous to the well known time and space
complexities, which are employed as indicators for computing time and memory as
function of the amount of data involved.

The 2916 pieces of code that implemented the old code were poorly documented and
its designers were no longer available. It is, therefore, not surprising that even a
continual debugging effort could not remove some damaging bugs. Typically, the
repair of one bug caused new ones to appear. Another problem with the old system
was that a needed extension with new part types was judged to be nearly impossible.
To understand why such an extension is difficult, we calculate the number of code
pieces that must be added when the number of part types is increased by 1 * (from 9 to
10):
36 X(N, . +1)*=36XN. =T72xN, +36=684

types types types

which involves a considerable effort. The above formula shows that the number of

code pieces grows linearly as N, , increases. This may be expressed by an extension

complexity of
O(N types)

This complexity measure, which is suggested in this paper, is an indication of the
amount of code to be added when the complexity of the problem is increased.

4. OBJECT ORIENTED DESIGN

This section outlines the O-O development process that produced the new program
with the simple architecture. The O-O approach was introduced around 1967 with the
SIMULA programming language™ , and became quite popular after the introduction
of SMALLTALK" around 1980. Later several books on O-O software development
appeared, for example >*"*°. We consider the approach of Jacobson °, where a
program is composed of entity, control, and interface objects. Entity objects are
program modules that model the problem domain. Each worthy real world object in
this domain is represented in the software by an entity object. Interface objects are the
program modules used to communicate with human users or with other programs.
When a user or another program communicates a request for a service to an interface
object, the latter will call a control object to do the job. In order to accomplish this, the
control object will typically employ a number of entity objects. One of the important
stages in the O-O software development process is to identify the problem domain
objects to be modeled by entity objects. In our simplified change propagation problem,
the entity object types are the two part types, fitted and standard (Fig. 1). In a later
refinement step of the O-O process, the methods, and attributes of these two object
types are specified. The attributes are the types of the four faces of the part. The
methods required correspond to the messages that a part may receive from other
parts. The messages relevant to the change propagation problem are "you are being
pushed a distance d on face i (i = N, E, S, or W); do what is required". In the
design of the method that processed this message we followed the O-O approach, i.e
attempting to process the message solely by the means of the object that received it.
This attempt succeeded, and as a result the rules 1 and 2, presented earlier in this
paper, were produced. When a standard face is pushed, rule 1 is applied. That is, the
part moves, and if it interfaces with other parts it will push them. Pushing is coded as
sending messages to these parts saying that they are also being pushed. How these
parts handle these messages is not known to the part. If, on the other hand, a fitted
face is pushed, rule 2 is employed. This means that the length of the part is shortened,
and the propagation stops, i.e. the part sends no messages to other interfacing parts.
The software that manages the change propagation thus comprises of one method for
each face of each object type. The industrial system has 9 part types each having 6
faces that is

N

methods face_types = faces ~ " types types
which is dramatically less than the 2916 pieces of code employed in the old legacy
system. Moving to O-O technology thus reduced the number of cases to be managed

by the code from N to N The implementation complexity of the O-O

face_types facee_types *

architecture is thus

O(N types)
) in the old non O-O system. The simplicity of the O-O

2
types

architecture is due to the fact that the object being considered need not know anything
about the object that pushes it. The analysis is solely based on the type of the face,
which is being pushed. Only one method per face type is therefore required giving a
total of N, .., methods. The old system, on the other hand, analyses the way in

which a change propagates through the interface between the pushing and the pushed
faces, i.e. all possible pair of face types must be considered. The number of different
analyses in the old program is therefore N

face_types *

to be compared with O(N

Adding a new part type to the O-O system requires a new software object type for this
part with 6 methods for the 6 faces. This is also a dramatic reduction from the 684
code pieces required in the old system. Note that the amount of code required for each
new part type (6 methods) is independent of the value of N . The extension

types

complexity of the new O-O system may therefore be expressed as
o)

compared with O(N, .) in the old system. True to its goal the new system is thus

types
considerably easier to extend than the old one. In retrospect, after having followed the
O-O approach, it is possible to see a different initial abstraction that would allow a top
down development of a code with the same architecture, implementation complexity
and extension complexity, as the O-O solution. The advantage of the O-O analysis is
that it led directly to the simple solution.

S. WHEN CAN 0-O ANALYSIS PRODUCE A SIMPLE ARCHITECTURE

A part of the explanation for why O-O analysis can lead to simple architectures is that
one of its goals is to divide the responsibilities of the program among its objects. A
further goal is that, when possible, an object should process the messages it receives
solely without using other objects. O-O analysis thus strives at reducing the amount of
coupling between the different program modules (the objects), which brings down the
complexity of the architecture. The ideal O-O design is a program composed of a
number of cooperating objects, each of which takes sole care of its responsibilities.
This kind of program has typically a distributed control of flow. To illustrate this, let
us consider the example shown in Fig. 4. When part 1 is extended from ¢ to 7+d, it will
send a message to part 2 saying "you are being pushed ". Part 2 reckons that it has to
move to the right, and sends a message to part 3 that it is being pushed, and so on. The
decisions on where to go next are made by the different objects. This distributed
control of flow contrasts with the tree structured control with a main function in the
root, which is typical for programs designed by traditional top-down methods.

The traditional top down analysis of the change propagation problem did not reveal
the simple architecture that was discovered later using O-O analysis. To understand
why, we recall the steps in the top-down analysis. At the highest level of abstraction,
we asked how a given change propagates over a structure represented by its structure
graph. To answer this question, we formulated the sub-question "How does a given

change propagate from any given part to any part that interfaces with it?". This led to
an analysis of how change propagates through anyone of the N;m possible interfaces.

No stage of this process focused on the faces of the parts. Thus, there was no chance
that the useful properties of the faces would be discovered and exploited. Another way
of explaining this, is that traditional top-down analysis is controlled by the functionality
of the system, while the data involved are not inherently visible. This contrasts with
O-O analysis, in which both the data elements and the functions of the objects are
explicitly analyzed. Following the O-O approach produces the question "What happens
when a face of a part is pushed". The next step according to the O-O method is to try
to solve this problem without any knowledge of the part that pushes our part, which
fortunately proved possible. The O-O approach leads, when possible, to a program
composed of modules that can function independently of each other.
6. IMPLEMENTATION AND EXTENSION COMPLEXITIES

The quality of an algorithm is traditionally characterized by its time and space
complexities, that are useful as rough indicators for the cpu and memory requirements.
They are not intended for accurate estimates, which require detailed analysis. This
paper suggests complexity indicators for the costs of software implementation and
extension. These complexities are also intended to be only rough indicators. More
accurate cost estimates require elaborate software metrics analysis, as described for
instance in '*'" . A theoretical approach to complexity analysis based on an abstract
0-O machine is found in '*. The complexities suggested in this paper are indicators for
the amount of code to be written as function of the number of different entity object
types employed by the algorithm. The reason for this approach is that solving a
problem in a more complicated problem domain, which is characterized by the number
of entity object types involved, is expected to require more code. The amount of
required code was in our change propagation problem measured by counting the
number of required methods. In other problems other units for code measurement may
be appropriate.

One problem in this case study was how to count the number of different object types
in the old non O-O program. It was done by considering the code and data
specifications that correspond to a particular part type as an implicitly defined object
type. The 9 different part types employed in this old non O-O program were therefore
considered as 9 different object types.

7. OBJECT ORGANIZATION AND PERFORMANCE
The legacy system is composed of a number of distinct parts, one of which is for the
designing of the steel parts. The first version of the O-O system corresponded to the
steel component of the legacy system, and had therefore only 9 different object types
(C++ classes) for the different kinds of steel parts. The system was later extended with
additional object types for different kinds of equipment, such as pipes and pumps, that
are attached to the steel structure. In this way, the number of entity object types
increased over a number of years from 9 to 85. This large extension was possible only
because adding a new object type proved to be relatively easy. The effort required to
define a new object type was independent of the number of object types that were
already defined, consistent with the estimated extension complexity of O(1). Class

derivation and inheritance were useful in organizing this large number of classes
systematically. All the classes are in a single derivation tree with a sub-tree for each

10

kind of class, e.g. steel parts, pipes, pumps. This structure also enabled some code
reuse through inheritance. The number of objects is around 200,000, and a commercial
database system was employed to manage these data.

Each of the 85 entity classes has a function for displaying itself on the screen. These
functions have all the same name, making use of polymorphism. A picture of a number
of different objects, which may belong to different classes, is produced by calling their
display functions. When a new class is introduced, a display function must be
implemented for it. Writing this single function is all that is required in order to extend
the graphical system to include the new class. Polymorphism was thus useful in
designing a graphical algorithm with an extension complexity of only O(1) . It is noted
that both the change propagation algorithm and the algorithm for graphical display
employ the same set of 85 entity object types, i.e. the two algorithms have the same
entity domain. Fortunately, both involve the same low extension complexity of O(1) .

The legacy system and the new O-O system do exactly the same geometrical
computations when solving the same given change propagation problem. The time

complexity is in both cases O(npgrig) Where npgppg is the number parts that
participate in the change propagation. Typically, npqpg is quite small, and

computation time of up to a few seconds were observed in the O-O system. This is
acceptable for the users. Most of the time is spent for disk data storage and retrieval
and for updating the screen picture of the modified structure. The legacy system, on
the other hand, has bugs that causes a large number of superfluous manipulations.
Attempts to remove them caused worse problems. Computation times measured in
minutes are therefore quite common. The principal reason for the performance
advantage of the O-O system is its simplicity, which helped in avoiding the bugs that
produced the superfluous computations. The legacy CAD/CAM system is composed of
a large number of different programs, and only a part of it has been re-engineered.
Many tens of person years are required in order to re-engineer the rest of it. A large
investment is required also for training the users in the operation of the new system.
The process of modernizing the system will probably take several years.

8. CONCLUSIONS

The implementation and extension complexities suggested in this paper were useful
indicators for the properties of the old and new change propagation programs. The

old difficult-to-extend program has a relatively high extension complexity of O(N),

while the new easy-to-extend system has an extension complexity of only O(1). The

2
types 7 2

large and difficult-to-debug old system has an implementation complexity of O(N

while the new smaller system has a lower implementation complexity of only
O(N,,,.,) . More experience must be gained with these complexity measures in order

to assess their usefulness in general .
Brooks '* noted that one of the major source of problems with software is due to its

complexity, which in most cases increases much more than linearly with the size. This
was the case with the old legacy system with its implementation complexity of

11

o(Nj,,m) . This complicated architecture resulted from a top down analysis. The

problem of this analysis was that it considered the system as a whole with all
relationships between all the parts (the structure graph of Fig. 5). This line of thought
leads to a complex system, where the propagation of changes through all possible
types of part face combinations are considered. In the O-O approach, on the other
hand, the goal is to distribute the responsibilities of the program among a number of
independent objects, and such that each object takes care of its responsibilities without
any knowledge of other objects. In problems where this is possible, for example our
change propagation problem, the O-O analysis therefore leads to a simple architecture
with relatively low implementation and extension complexities. This observation
supports the opinion that O-O analysis should in general be preferred over traditional
top down analysis.

REFERENCES

1. N. Wirth, ‘Program Development by Stepwise Refinement’, Communication of the
ACM, 14, 221-227,(4-1971)

2. O.J. Dahl, B. Myrhaug, and K. Nygaard, ‘SIMULA Common Base ‘, Norwegian
Computing Center s-22, Oslo Norway, 1970

3. 0.J. Dahl and C.A.R. Hoare ‘Hierarchical Program Construction’ in ‘Structured
Programming’, Academic Press, New York , 1972, 174-220

4. A.Goldberg, and D. Robson, ‘SMALLTALK 80 - The Language and its
Implementation’, Addison-Wesley, Reading. Massachusetts, 1983.

5. Booch, ‘Object Oriented Analysis and Design with Applications’, Addison-Wesley,
Reading. Massachusetts, 1994.

6. D. de Champeaux, , D., Lea and, P. Faure., ‘Object-Oriented System Development’,
Addison-Wesley, Reading. Massachusetts, 1993.

7. B. Meyer, ‘Object oriented Software Construction’, Hertfordshire,England,
Prentice Hall International, 1988.

8. J.Rumbaugh, M.Blaha, W. Premerlani, F. Eddy. and W. Lorensen, ‘Object
Oriented Modeling and Design’, Prentice hall International, Englewood Cliffs, 1991

9. 1. Jacobson, M.Christerson, P. Jonsson, and G. Overgaard, ‘Object Oriented
Software Engineering’, Addison Wesley, Reading. Massachusetts, 1992

10. N.E. Fenton, ‘Software Metrics a Rigorous Approach’,
Chapman Hall, New York, 1991

11. H. Zuse, ‘Software Complexity Measures and methods’,
Walter & Gruyter, New York 1992

12

12. H. Schmidt, and W. Zimmermann, ‘A Complexity Calculus for Object Oriented
Programming’, Object Oriented Systems,1, 117-147, (2-1994)

13. F.P. Brooks,. ‘No Silver Bullet Essence and Accidents of Software Engineering’
Computer,29, 10-19, (2-1987)

13

