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Probabilistic automata (Rabin 1961)

A vector α = (α1, . . . , αr) ∈ Rr is stochastic if each αi ≥ 0 and
∑

i αi = 1.

A matrix µ ∈ Rr×r is row-stochastic (column-stochasttic) if each row-vector
(column-vector) is stochastic. µ is doubly stochastic if it is both row- and
column-stochastic.

A Probabilistic Automaton (PA) A of size r is given by:

• A set {µσ : σ ∈ Σ} of r × r doubly stochastic matrices;

• Two stochastic vectors λ, γ ∈ Fr.

• A defines a function fA : Σ? → R

fA(w) = fA(σ1 ◦ σ2 ◦ . . . ◦ σn) = λµσ1µσ2 · . . . · µσnγt

• A function f : Σ? → R is PA-recognizable if f = fA for some PA A.
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Intuition behind probabilistic automata

• The automaton has r states.

• λ gives the probability λi that the automaton is in state i when reading
the empty word.

• µσ is the transition matrix for the transition when reading σ..

• γ gives the probability γi that state i is an accepting state.
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Multiplicity automata (Schutzenberger, 1961)

A Multiplicity Automaton (MA) A of size r over a field F is given by:

• A set {µσ : σ ∈ Σ} of r × r matrices over F;

• Two vectors λ, γ ∈ Fr.

• A defines a function fA : Σ? → F

fA(w) = fA(σ1 ◦ σ2 ◦ . . . ◦ σn) = λµσ1µσ2 · . . . · µσnγt

• A function f : Σ? → F is MA-recognizable if f = fA for some MA A.

Probabilistic automata (PA) and Multiplicity automata (MA) where intro-

duced independently, generalizing the developments described in the famous

paper by M. Rabin and D. Scott (1959).
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Word functions and power series

Let F be a field (or semi-ring) and Σ an alphabet.

We can view Σ as a set of non-commutative indeterminates and Σ? is its set
of monomials.

A function f : Σ? → F the defines a power series

Sf(w) =
∑
w∈Σ?

f(w)w

A power series is rational if it can be obtained from polynomials by addition,

multiplication, external products and the star-operation.
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Regular languages and power series

We define a language L(f) = {w ∈ Σ? : f(w) 6= 0}.

L(f) is FA-recognizable if there is a determinsitic finite automaton A which
accepts L(f).

Theorem: (Kleene-Schützenberger)

In the case of F = Z2 the following are equivalent:

(i) L(f) is FA-recognizable;

(ii) L(f) is regular;

(iii) Sf(w) is rational.
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MA-Recognizable word functions

A function f : Σ? → F is MA-recognizable if there exists an MA A such that
fA = f .

Theorem: (Schützenberger 1961)

For arbitrary semi-rings F the following are equivalent:

(i) f MA-recognizable

(ii) Sf(w) is rational

Is there an analogue for regular expressions for MA over F?
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Hankel matrices in classical mathematics

(over a field F)

Let f : F → F be a function.

A finite or infinite matrix H(f) = hi,j over a field F is a Hankel matrix for f
if hi,j = f(i+ j).

Hankel matrices have many applications in:
numeric analysis, probability theory and combinatorics.

• Padé approximations

• Orthogonal polynomials

• Probability theory (theory of moments)

• Coding theory (BCH codes, Berlekamp-Massey algorithm)

• Combinatorial enumerations
(Lattice paths, Young tableaux, matching theory)
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Hankel matrices over words

Let Σ be a finite alphabet and F be a field and let f : Σ? → F be a function
on words.

A finite or infinite matrix H(f) = hu,v indexed over the words u, v ∈ Σ? is a
Hankel matrix for f if hu,v = f(u ◦ v). Here ◦ denotes concatenation.

Hankel matrices over words have applications in

• Formal language theory and stochastic automata,
J. Carlyle and A. Paz 1971

• Learning theory (exact learning of queries).
A.Beimel, F. Bergadano, N. Bshouty, E. Kushilevitz, S. Varricchio 1998
J. Oncina 2008

• Definability of picture languages.
O. Matz 1998, and D. Giammarresi and A. Restivo 2008

File:ma-hankel



Computability and Definability (236331) , December 2015 Weighted Automata

Hankel matrices for graphs

If we want to define Hankel matrices for (labeled) graphs,

what plays the role of concatenation?

• Disjoint union
Used by Freedman, Lovász and Schrijver, 2007, for characterizing multi-
plicative graph parameters over the real numbers

• k-unions (connections, connection matrices)
Used by Freedman, Lovász, Schrijver and Szegedy, 2007ff, for character-
izing various forms and partition functions.

• Joins, cartesian products, generalized sum-like operations
used by Godlin, Kotek and JAM to prove non-definability.
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Multiplicity Automata and Hankel matrices (over a field)

THEOREM: (J. Carlyle and A. Paz 1971)

For a function f : Σ? → F the following are equivalent:

(i) f is MA-recognizable;

(ii) Sf is rational

(iii) the Hankel matrix H(f) has finite rank over F.

This is an ALGEBRAIC characterization of MA-recognizability.
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Proof of the Carlyle-Paz Theorem, I

The following proof is taken from

• Beimel, A., Bergadano, F., Bshouty, N. H., Kushilevitz, E.,
and Varricchio, S.
Learning functions represented as multiplicity automata.
Journal of the ACM, 47(3), (2000), pp. 506-530.

There are some changes in notation:

• We have matrices νσ for each σ ∈ Σ.

• λ is not used.
Instead, ν(ε) = 1, and fA(w) = [ν(w)]1 ·γ with w = σ1σ2 . . . σn, and ν(w) = νσ1 ·νσ2 ·. . .·νσn,
where [ν]1(w) is the first row of ν(w).

• In our notation this would be

fA(w) = λ · µ(w) · γ = [ν(w)]1 · γ
hence

λ · µ(w) = [ν(w)]1
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Proof of the Carlyle-Paz Theorem, II

Let f : Σ∗ → F be recognized by a multiplicity automaton A with r states.

Let H(f) be the Hankel matrix of f .

Claim: The infinite matrix r(H(f) has finite rank ≤ r.

• Let R,C be matrices where rows of R (columns of C) are indexed by Σ∗

and columns of R (rows of C) are indexed by [r].

• The (v, i)-entry of R is [ν(v)]1,i = λ · ν(v)i.

• The (i, w)-entry of R is [ν(w)]i · γ.

File:cd-proof



Computability and Definability (236331) , December 2015 Weighted Automata

Proof of the Carlyle-Paz Theorem, III

Now we compute the rank of H(f).

[H(f)]v,wf(v ◦ w) = fA(v ◦ w) = [ν(v ◦ w)]1 · γ

= [ν(v) · ν(w)]1 · γ =
r∑

i=1

[ν(v)]1,i · [ν(w)]i · γ = Rv · Cw

Here Rv is the v-row of R and Cw is w-column of C.

From Linear Algebra we (should) know:

• The ranks of R and C are bounded by r.

• The rank of R · C ≤ min{rk(R), rk(C)}.

Hence, the rank of H(f) ≤ min{rk(R), rk(C)}. 2
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Proof of the Carlyle-Paz Theorem, IV

Now let f be given with H(f) = H and rk(H) = r.

We want to construct an automaton A = Af recognizing f .

• Let B = {Hv1, . . . Hvr} be a basis for the rows of H.

• γ = (f(v1), . . . , f(vr)).

• For σ ∈ Σ, let Hvi◦σ be the row of vi ◦ σ in H.

• We write Hvi◦σ as a linear combination of vectors of B:

Hvi◦σ =
r∑

j=1

bi,j ·Hvj

• Now we put [νσ]i,j = bi,j.
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Proof of the Carlyle-Paz Theorem, V

Now we prove by induction on `(w) that for all i ≤ r we have

[ν(w)]i · γ = f(vi ◦ σ
hence, for v1 = ε, fA(w) = [ν1(w) · γ = f(v1 ◦ w) = f(w).

• Induction base: w = ε.
Here ν(ε) = 1 and [ν(ε)]i · γ = γi = f(v1) = f(v1 ◦ ε).

• By definition, we have [νσ]i,j = bi,j. Hence

f(v1 ◦ σ ◦ w) = Hv1◦σ(w) =
r∑

j=1

bi,j ·Hvj(w)

• Since Hvj(w) = f(vj ◦ w), we get by induction hypothesis:

Hvj(w) =
r∑

j=1

[νσ]i,j · [ν(w)]j · γ = [ν(σ) · ν(w)]i · γ = [ν(σ ◦ w)]i · γ

2
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The Büchi-Elgot-Trakhtenbrot Theorem (around 1960)

A word w of size n over an alphabet Σ can be considered as a structure

Aw = 〈[n], <nat, Pσ, (σ ∈ Σ)〉
where Pσ : σ ∈ Σ is a partition of [n] into possibly empty sets.

THEOREM: (R. Büchi, C. Elgot and B. Trakhtenbrot)

The following are equivalent:

(i) L is FA-recognizable;

(ii) L is regular;

(iii) The class {Aw : w ∈ L} of structures is

definable in Monadic Second Order Logic.

Is there an analogue for MA-recognizability ?
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MSOLEVALF

MSOLEVALF consists of those functions mapping relational structures into
F which are definable in Monadic Second Order Logic MSOL.

The functions in MSOLEVALF are represented as terms associating with each
τ-structure A a polynomial p(A, X̄) ∈ F[X̄].

Similarily, CMSOLEVALF is obtained by replacing MSOL by Monadic Second Order Logic
with modular counting CMSOL.

MSOLEVALF is defined inductively:

(i) monomials are products of constants in F and indeterminates in X̄ and
the product ranges over elements a of A which satisfy an MSOL-formula
φ(a).

(ii) polynomials are then defined as sums of monomials where the sum ranges
over unary relations U ⊂ A satisfying an MSOL-formula ψ(U).

MSOLEVALF was first studied in a sequence of papers on graph polynomials by J.A.M.
variably co-authored with B. Courcelle, B. Godlin, T. Kotek, U. Rotics, B. Zilber.

We procced now by examples of word functions in MSOLEVAL.
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Examples of word functions in MSOLEVAL, I

Let Σ = {0,1} and w ∈ Σ∗ be represented by the structure

Aw = 〈[`(w)], <, P0, P1〉.

Counting occurrences:

(i) The function ]1(w) counts the number of occurences of 1 in a word w
can be written as

]1(w) =
∑

i∈[n]:P1(i)

1.

(ii) The polynomial X]1(w) can be written as

X]1(w) =
∏

i∈[n]:P1(i)

X.
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Examples of word functions in MSOLEVAL, II

Let L be a regular language defined by the MSOL-formula φL.

The polynomial

]L(w) =
∑

u∈L:∃v1,v2(w=v1◦u◦v2)

X`(u)

is the generating function of the number of (contiguous) occurences of words
u ∈ L in a word w of size i.

It can also be written as

]L(w) =
∑

U⊆[n]:ψL(U)

∏
i∈U

X,

where ψL(U) says that U is an interval and φUL , the relativization of φL to U

holds.
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Examples of word functions in MSOLEVAL, III

Let int(w) =
∑`(w)−1

i=0 2−iw[i].

int(w) considers w as a rational number in [0,1] written in binary and computes
its value.

int(w) can be written as

int(w) =
∑

U⊂[`(w)]:INIT1(U)

∏
i∈U

(2−1)

where INIT1(U) says that U is an initial segment of 〈`(w), <〉 where the last
element is in P1.

It should be clear that it is very convenient and user friendly to define word

functions as terms in MSOLEVALF.
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Examples of word functions NOTin MSOLEVAL

(i) The function sqexp(w) = 2`(w)2

=
∏

(x,y):x=x∧y=y 2 is not in MSOLEVAL
because the product is over tuples, rather than elements.

(ii) The function dexp(w) = 22`(w)

is not representable in MSOLEVALF due
to a growth argument.
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Characterizing functions defined by Multiplicity Automata

Main Theorem: (N. Labai and J.A.M., 2012)

Let F be a field, and f : Σ∗ → F.

The following are equivalent:

(i) f = fA for some Multiplicity Automaton A over F.

(ii) f ∈MSOLEVALF

(iii) f ∈ CMSOLEVALF

(iv) M(◦, f) has finite rank.

Proof: (i) ↔ (iv) is the Carlyle-Paz Theorem. (ii) ↔ (iii) follows from

CMSOL equals MSOL on words. (iii) → (iv) is the Finite Rank Theorem.

(i) → (ii) is proven using matrix algebra and logic.
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Previous attempts of characterizing MA-recognizable functions

Our Main Theorem is an analogue to the
Büchi-Elgot-Trakhtenbrot Theorem

for multiplicity automata.

There were previous attempts to prove such a theorem using a subset RMSOL
of weighted MSOL-formulas rather than MSOL-definable functions.

• M. Droste and P Gastin,
Weighted automata and weighted logic,
TCS 380 (2007), pp. 69-86.

• M. Droste, W. Kuich and H. Vogler, eds.,
Handbook of Weighted Automata,
Springer 2009
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Weighted RMSOL vs. MSOLEVAL

However, there are serious disadvantages in their approach.

(i) The definition of RMSOL is not a purely syntactic.

(ii) The formulas are hybrid objects, mixing constants from F and logical expressions. For
instance ∀x · 2 is a weighted formula (for 2 = 1 + 1 in a field) which represents the

function 2`(w), and ∀x∀y · 2 is a weighted formula which represents the function 22`(w)
.

(iii) Seemingly equivalent formulas can represent different functions: ∃xP1(x) represents the
function ]1(w) but ∃(P (x) ∨ P (x)) represents the function 2 · ]1(w).

(iv) Some of these disadvantages have been corrected in very recent papers by
M. Droste and P. Gastin in the Handbook and
B. Bollig, P. Gastin , B. Monmege and M. Zeitoun presented at ICALP 2010.

In contrast to these disadvantages, MSOLEVALF has the following advantages:

(i) The expressions are natural and intuitive.

(ii) The expressions are defined for all formulas of MSOL without any restrictions.

(iii) If we replace formulas occurring in an expression by equivalent formulas, the word
function it represents remains the same.
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What else is in the paper?

• If the field F is replace by a semiring S a similar result holds.

Instead of the finite rank condition of the Hankel matrix we have to re-
quire that the word function is in a finitely generated, stable semimodule.

• We also give a direct translation between RMSOL and MSOLEVAL which
uses the syntactic restriction imposed in RMSOL.
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More Details and Proofs

If time permits we now discuss the following:

• We discuss the Bilinear Decomposition Theorem for word functions in
MSOLEVAL.

• We show how to derive the finite rank of the Hankel matrix using the
Bilinear Decomposition Theorem.

• We show how to convert a word function f recognizable by a weighted
automaton into an equivalent expression in MSOLEVAL representing f .
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The Bilinear Decomposition Theorem

Let f ∈MSOLEVALF be a word function Σ∗ → F.

We would like to compute f(u ◦ v) from f(u) and f(v) only.

Let us discuss two examples with Σ = {0,1} and u, v, w ∈ Σ∗.

• ]1(w) counts the number of 1’s in w and is in MSOLEVALF.

• b1(w) counts the number of blocks of 1’s in w. A block of 1’s in w is a
maximal set of consecutive positions i ∈ [`(w)] in the word w with P1(i).
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Computing ]1(u ◦ v)

Clearly we have

]1(u ◦ v) = ]1(u) + ]1(v).
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Computing b1(u ◦ v), I

b1(u ◦ v) =

{
b1(u) + b1(v)− 1 P1(u[`(u)]) and P1(v[1])

b1(u) + b1(v) else

To compute b1(u ◦ v) we introduce auxiliary functions from MSOLEVALF.

(i) f1(w) counts the number of blocks of 1’s in w which
include the first position.

(ii) `1(w) counts the number of blocks of 1’s in w which
include the last position.

(iii) i1(w) counts the number of blocks of 1’s in w which
exclude the first and last position.

(iv) fl1(w) counts the number of blocks of 1’s in w which
contain both the first and last position.

(v) c(w) = 1, the constant function with value 1.

It is easily verified that they are really in MSOLEVALF.
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Computing b1(u ◦ v), II

Clearly, we have

b1(w) = f1(w) + l1(w) + i1(w) + fl1(w)− fl1(w) · f1(w)− fl1(w) · l1(w) (1)

Furthermore, we have f1(w), `1(w) ∈ {0,1} and

f1(u ◦ v) = f1(u) (2)

`1(u ◦ v) = `1(v) (3)

i1(u ◦ v) = i1(u) + i1(v) + `1(u) + f1(v)− `1(u)f1(v)− fl1(u)fl1(v) (4)

fl1(uv) = fl1(u) · fl1(v) (5)

c(u ◦ v) = 1 (6)

Let B(w) = (f1(w), `1(w), i1(w), f l1(w), c(w)).
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Computing b1(u ◦ v), III

Proposition

There are matrices Mf ,M l,M i,Mfl,M c ∈ F5×5 such that

f1(u ◦ v) = B(u) ·Mf ·B(v)tr (7)

`1(u ◦ v) = B(u) ·M l ·B(v)tr (8)

i1(u ◦ v) = B(u) ·M i ·B(v)tr (9)

fl1(u ◦ v) = B(u) ·Mfl ·B(v)tr (10)

c(u ◦ v) = B(u) ·M c ·B(v)tr (11)
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Computing b1(u ◦ v), IV

Using the equations (1) - (6) one easily verifies that

Mf =


0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , M l =


0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (12)

M i =


0 0 0 0 0
−1 0 0 0 1
0 0 0 0 1
0 0 0 −1 0
1 0 1 0 0

 , Mfl =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

 (13)

M c =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

 (14)
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Conclusion

(i) The Hankel matrix H(]1) of ]1 has rank 2 due to equation ()

(ii) The Hankel matrices H(b1), H(f1), H(`1) and H(i1) of b1, f1, `1, i1

have rank at most 5.
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Bilinear Decomposition Theorem (BDT) for Word Functions

The two examples are typical in the following sense:

Theorem:

Let f ∈ MSOLEVALF be a word function Σ∗ → F of quantifier rank q(f).
There is a finite sequence F = (g1, . . . , gα(f)) of functions in MSOLEVALF of

size α(f) and for each gi there is a matrix M (i) ∈ Fq(f)×q(f) such that

(i) f ∈ F and

(ii) gi(u ◦ v) = F (u) ·M (i)F (v)tr.

α(f) actually only depends on q(f) but grows very quickly.

The full proof is in B. Courcelle, J.A.M. and U. Rotics, DAM 2001.

The bilinear version was only formulated later in J.A.M., Annals of Pure and Applied Logic,
2004, but uses the same proof.

Here we merely note that F can be chosen to consist of all the functions in MSOLEVALF of
quantifier rank at most q(f).

This is a rough estimate. The examples above show that F can often be much smaller.
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Finite Rank Theorem for Word Functions

Using the BDT we get

Theorem (B. Godlin, T. Kotek and J.A.M., 2008)

Let f ∈MSOLEVALF be a word function f : Σ∗ → F with all the formulas of
quantifier rank at most q(f).

Then the Hankel matrix H(f) has rank at most α(f).
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Proof (of the Main Theorem), I

Let A be a weighted automaton of size r over F for words in Σ∗ given by

(i) Two vectors α, γ ∈ Fr, and

(ii) for each σ ∈ Σ a matrix µσ ∈ Fr×r.

For a word w = σ1σ2 . . . σ`(w) the automaton A defines the function

fA(w) = αTµσ1 · . . . · µσ`(w) · γ. (15)

We have to show that fA ∈MSOLEVALF.

To unify notation we define

M(i, j, σ) = (µσ)i,j. (16)

Furthermore, the word w is given as a function w : [`(w)]→ Σ.

File:ma-proof



Computability and Definability (236331) , December 2015 Weighted Automata

Proof, II

Using Equation 15 and matrix algebra we get

fA(w) =∑
π:[n+2]→[r]

απ(1) · [M(π(1), π(2), w(1)) · . . . ·M(π(n), π(n+ 1), w(n))] · γπ(n+2) =

∑
π:[n+2]→[r]

απ(1) ·

∏
v∈[n]

M(π(v), π(v + 1), w(v))

 · γπ(n+2) (17)
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Proof, III

To convert Equation (17) into an expression in MSOLEVAL(Σ) we use the
following lemmas:

Let S be any set and π : S → [r] be a function. π induces a partition of S
into sets Uπ

1 , . . . , U
π
r by Uπ

i = {s ∈ S;π(s) = i}. Conversely, every partition
U = (U1, . . . , Ur) of S induces a function πU by setting πU(s) = i for s ∈ Ui.

Lemma 1
Let M(π) be any function depending on
pi. ∑

π:S→[r]

M(π) =
∑
U

M(πU) =
∑

U1,...Ur:Partition(U1,...,Ur)

M(πU) (18)

where U ranges over all partition of S into r sets Ui : i ∈ [r].

Clearly, Partition(U1, . . . , Ur) can be written in MSOL.
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Proof, IV

To convert the factors απ(1) and γπ(n+2) we proceed as follows:

Lemma 2
Let αi be the unique value of the coordinate of α such that 1 ∈ Ui. Similarily,
let γi be the unique value of the coordinate of γ such that n+ 2 ∈ Ui.

απ(1) =
r∏

i=1

∏
1∈Ui

αi (19)

γπ(n+2) =
r∏

i=1

∏
n+2∈Ui

γi (20)

Proof:
First we note that, as U is the partition induced by π, the restriction of π to
Ui is constant for all i ∈ [r]. Next we note that the product ranging over the
empty set gives the value 1. Q.E.D.
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Proof, V

Similarily, to convert the factor
∏
v∈[n]M(π(v), π(v + 1), w(v)) use following

lemma:

Lemma 3
Let Mi,j,w(v) be the unique value of the (i, j)-entry of the matrix µw(v) such
that v ∈ Ui and v + 1 ∈ Uj.∏

v∈[n]

M(π(v), π(v + 1), w(v)) =
r∏

i,j=1

∏
v∈Ui,v+1∈Uj

Mi,j,w(v) (21)

By writing Ui(v) instead of v ∈ Ui it is not difficult to see that the monomials
of the Lemmas 1, 2 and 3 are indeed in MSOLEVALF.

Using that MSOLEVALF is closed under products
and using Lemmas 1, 2 and 3 we complete the proof 2
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