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Lecture 2 (part I):

Non-Definability in First Order Logic

and

Monadic Second Order Logic

Ehrenfeucht-Fräıssé Games and Hintikka formulas
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Tools to Show Non-Definability

• Compactness of First Order Logic

• Ehrenfeucht-Fräıssé Games

• Translation Schemes and transductions

• Feferman-Vaught Theorem for sums

• 0− 1 Laws

File:nondef-1.tex 3



236331-2015/6, Computability and Definability Lecture 2: Non-definability

Proving non-definability

The class of τ-structures of finite even cardinality, EV EN(τ), is not definable
in First Order Logic, (not even in Monadic Second Order Logic):

• For FOL: use compactness. Every formula true in all finite even struc-
tures has an infinite model.

• For FOL (restricted to finite structures): use Pebble Games
(Ehrenfeucht-Fräıssé Games)

• For MSOL: use Pebble Games adapted to MSOL.

Similarly, DisPath(n) is not FOL-definable even for n = 1.
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Compactness of FOL

Recall:
Σ is satisfiable if there is a τ-structure A such that A |= Σ.

Theorem:[Gödel-Mal’cev]

Let Σ be an infinite set of FOL(τ)-sentences.

Σ is satisfiable iff every finite subset Σ0 ⊆ Σ is satisfiable.

This theorem was stated and proved in Logic for CS for Propositional Logic.

This theorem was stated, but probably not proved in Logic for CS for First Order Logic.

The proof for FOL is very similar to the one for Propositional Logic.
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Using Compactness

Let φn be the sentence which says that the universe contains
at least n elements.

Let Σeven consist of

{(φ2n+1 → φ2n+2) : n ∈ N}
All finite models of Σeven are of even cardinality.

Assume there is ψeven such that

A |= ψeven iff | A |= 2n

Define

Σ1 = {ψeven} ∪ {φn : n ∈ N}∪
Every finite subset Σ0 ⊆ Σ1 is satisfiable (by a finite model of even cardinality).

But Σ1 has no model, contradicting compactness.
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MSOL is not compact

Let τa,b = τgraph ∪ {a, b} be the vocabulary of graphs with two constants.

In MSOL(τa,b) we have a formula φconn which says that the graph is connected.

Let ψn(a, b) say that the shortest path between a, b is of length n.

This is in FOL(τa,b).

Now every finite subset of

Σ = {φconn ∪ {ψn(a, b) : n ∈ N}
is satisfiable, but Σ is not.
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Quantifier rank of a formula, I

We write a formula φ as a tree:

∃X1∀x2 (x2 ∈ X1 → ∃x3E(x2, x3))

∃X1

|
∀x2

|
→

/ \
x2 ∈ X1 ∃x3

|
E(x2, x3)

The quantifier rank is biggest number of quantifiers one can find along a path
in this tree.

Here it is 3.
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Quantifier rank of a formula, II

• For formulas in prenex normal form
the quantifier rank equals the number of quantifiers.

• If we reuse variables, the quantifier rank can be smaller than the number
of quantifiers used in prenex normal form.

∀x1 (∃x2E(x1, x2) ∧ ∃x2¬E(x1, x2))

Quantifier rank 2

∀x1∃x2∃x3 (E(x1, x2) ∧ ¬E(x1, x3))

Quantifier rank 3

File:nondef-1.tex 9



236331-2015/6, Computability and Definability Lecture 2: Non-definability

Ehrenfeucht-Fräıssé Games, I

Given two τ-structures A0 and A1 and their powersets P (A0) and P (A1).

Two players I (spoiler), II (duplicator)

k numbered pebbles for each structure

Two kind of moves: Set- and point-moves

Play for n moves

i-th move:
I chooses α ∈ {0,1} and put pebble on an
element in P (Aα) (Set-move) or
in Aα (point move).
II puts corresponding pebble on set or point.
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Ehrenfeucht-Fräıssé Games, II

After n moves we have from A0

A0
1, a

0
2, A

0
3, . . . , a

0
n−1, A

0
n

and from A1

A1
1, a

1
2, A

1
3, . . . , a

1
n−1, A

1
n

These two sequences are locally isomorphic if for all j, k

a0
k ∈ A0

j iff a1
k ∈ A1

j

and for each m-ary R ∈ τ and j1, j2, . . . jm

RA0(a0
j1
, a0

j2
, . . . , a0

jm) iff RA1(a1
j1
, a1

j2
, . . . , a1

jm)
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Lemma: Two sequences in A0 and A1

respectively

A0
1, a

0
2, A

0
3, . . . , a

0
n−1, A

0
n

and

A1
1, a

1
2, A

1
3, . . . , a

1
n−1, A

1
n

are locally isomorphic iff for all quantifierfree formulas B we have

A0 |= B(A0
1, a

0
2, A

0
3, . . . , a

0
n−1, A

0
n)

iff

A1 |= B(A1
1, a

1
2, A

1
3, . . . , a

1
n−1, A

1
n)

Proof:
Use induction over the construction of B.
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Ehrenfeucht-Fräıssé Games, III

Winning the game:

II wins if the correspondence on the pebbles induces a local isomorphism
(including the sets).

Theorem: (Ehrenfeucht-Fräıssé, 1953/61)
II has a winning strategy for the k-pebble n-moves game on A0 and A1 iff they
satisfy the same MSOL(τ)-sentences with k variables and quantifier depth n.

If no set-moves are played this holds for FOL(τ).

We write A0 ∼MSOL
k,n A1 iff

II has a winning strategy in the game with set moves and
A0 ∼FOLk,n A1 in the game without set moves.
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Winning strategies, I

A winning strategy is a function which takes a position of length n

A0
1, a

0
2, A

0
3, . . . , a

0
n−1, A

0
n

A1
1, a

1
2, A

1
3, . . . , a

1
n−1, A

1
n

from A0 and A1 respectively
together with a move of player I, say
Xi
n+1 ∈ {ain+1, A

i
n+1} as input and returns

X1−i
n+1 ∈ {a

1−i
n+1, A

1−i
n+1} as output such that

A0
1, a

0
2, A

0
3, . . . , a

0
n−1, A

0
n, X

0
n+1

A1
1, a

1
2, A

1
3, . . . , a

1
n−1, A

1
n, X

1
n+1

is a winning position
(if it exists, else it is undefined).
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Winning strategies, II

Proposition:

A0 ∼FOLk,n A1 and A0 ∼MSOL
k,n A1

are equivalence relations between τ-structures.
I.e., they are symmetric, reflexive and transitive.

Proof:
Reflexivity: Copy literally
Symmetry: The structures play exchangeable roles (but not the players)
Transitivity: Play on the intermediate board
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Winning EF-Games, I

τ = ∅

• • • • • • • • •

• • • • • • •

τ = {R2}, linear orders

• −→ • −→ • −→ • −→ • −→ • −→ • −→ • −→ •

• −→ • −→ • −→ • −→ • −→ • −→ •
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Winning EF-Games, II

Theorem:

Let τ = ∅.
For two sets A0 and A1

of size m0 and m1 respectively,
we have A0 ∼FOLk,n A1

(in the game without set moves)

iff

m0 = m1 or
k ≤ m0 and k ≤ m1
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Winning EF-Games, III

Theorem:

Let τ = {R2}.
For two cycle graphs G0 and G1

of size v0 and v1 respectively,
we have G0 ∼FOLk,n G1

(in the game without set moves)

provided

v0 = v1 or
2k ≤ v0 and 2k ≤ v1

Does the converse hold ?
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Ehrenfeucht-Fräıssé Games, IV

Theorem: (Feferman, Vaught, 1956)

If A0 ∼MSOL
k,n B0 and A1 ∼MSOL

k,n B1

then A0 t A1 ∼MSOL
k,n B0 t B1

Theorem: (Feferman, Vaught, 1956)

If A0 ∼FOLk,n B0 and A1 ∼FOLk,n B1

then A0 ×A1 ∼FOLk,n B0 × B1

The same holds for ”gluing” operations.
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Winning EF-Games, IV

Theorem:

Let τ = {R2}.
Let G0 consist of one cycle of size 2k

and G1 consist of two cycles of size 2k.

Then we have G0 ∼FOLk,n G1

(in the game without set moves)

Corollary:
Connectivity is not FOL-definable in the
language of graphs.
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Winning EF-Games, V

First we play the game for MSOL for τ = ∅.

A0 is a set of 2n elements A1 is a set of 2n − 1 elements

How many moves does player I need to win?

Cn is the undirected graph with n vertices which is connected and 2-regular.

A0 is the graph C2n A1 is the graph C2n−1 elements

How many moves does player I need to win?
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Winning EF-Games, VI

The rôle of the pebbles.

How long can we play (without set moves) with two pebbles?

• −→ • −→ • −→ • −→ • −→ • −→ • −→ • −→ •

• −→ • −→ • −→ • −→ • −→ • −→ •

How long can we play with three pebbles?
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Lecture 2 (part II)

Non-Definability in First Order Logic

and

Monadic Second Order Logic

Ehrenfeucht-Fräıssé Theorem

Hintikka Formulas
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Ehrenfeucht-Fräıssé Theorem, I

Theorem:(Easy part)
Assume there is a MSOL(τ)-sentence φ with k variables and quantifier depth
n in Prenex Normal Form such that A0 |= φ and A1 |= ¬φ.

Then I has a winning strategy for the k-pebble n-moves game on A0 and A1.
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Ehrenfeucht-Fräıssé Theorem, II

We first assume that there infinitely many pebbles.

We write φ and ¬φ in Prenex Normal Form:

φ = ∃X1∃x2∀X3∃x4 . . . ∃xn−1∃Xn

B(X1, x2, . . . , xn−1, Xn)

¬φ = ∀X1∀x2∃X3∀x4 . . . ∀xn−1∀Xn

¬B(X1, x2, . . . , xn−1, Xn)

where B is without quantifiers.

We can read from the quantifier prefix
a winning strategy.
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Ehrenfeucht-Fräıssé Theorem, III

Assume A0 |= φ and A1 |= ¬φ.
Player I follows the existential quantifiers.

Player I picks in A0 a set A1 such that

A0, A
0
1 |= ∃x2∀X3∃x4 . . . ∃xn−1∃Xn

B(A0
1, x2, . . . , xn−1, Xn)
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Ehrenfeucht-Fräıssé Theorem, IV

Whatever player II picks as A1
1

A1, A
1
1 |= ∀x2∃X3∀x4 . . . ∀xn−1∀Xn

¬B(A1
1, x2, . . . , xn−1, Xn)

Next player I picks an element a0
2 in A0 such that

A0, A
0
1, a

0
2 |= ∀X3∃x4 . . . ∃xn−1∃Xn

B(A0
1, a

0
2, . . . , xn−1, Xn)

Whatever player II picks as a1
2

A1, A
1
1, a

1
2 |= ∃X3∀x4 . . . ∀xn−1∀Xn

¬B(A1
1, a

1
2, . . . , xn−1, Xn)

Now player I picks in A1 a set A1
3 such that

A1, A
1
1, a

1
2, A

1
3 |= ∀x4 . . . ∀xn−1∀Xn

¬B(A1
1, a

1
2, A

1
3, . . . , xn−1, Xn)

and so on..........
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Ehrenfeucht-Fräıssé Theorem, V

Finally the outcome is from A0

A0
1, a

0
2, A

0
3, . . . , a

0
n−1, A

0
n

and from A1

A1
1, a

1
2, A

1
3, . . . , a

1
n−1, A

1
n

such that

A0 |= B(A0
1, a

0
2, A

0
3, . . . , a

0
n−1, A

0
n)

and

A1 |= ¬B(A1
1, a

1
2, A

1
3, . . . , a

1
n−1, A

1
n)

which shows that player I wins, as this cannot be a local isomorphism

(We need a Lemma on local isomorphisms and quantifierfree formulas)
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How many non-equivalent formulas?

FOL atomic case

Assume we have (first order) variables

x1, x2, . . . , xv

This gives
(
v
2

)
+
(
v
1

)
= O(v2) many instances

of xi = xj with i ≤ j.

For a r-ary relation symbol R we get rv many instances of R(xj1, xj2, . . . , xjr).

If we allow c1, c2, . . . , cv′ constants the numbers become O((v+ v′)2) and rv+v′

respectively.

Proposition:
For a fixed finite relational vocabulary τ with constants and v first order
variables, there are a finite number of atomic formulas αFOLτ,v .
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How many non-equivalent formulas?

MSOL atomic case

Assume we have first and second order variables

x1, x2, . . . , xv1, U1, U2, . . . , Uv2

This gives
O(v2

1) many instances of xi = xj with i ≤ j
and v1 · v2 many instances of xi ∈ Uj.

For a r-ary relation symbol R we get rv many instances of R(xj1, xj2, . . . , xjr).

If we allow c1, c2, . . . , cv3 constants the numbers become
(
v1+v3

2

)
, (v1 +v3)v2 and

rv1+v3 respectively.

Proposition:
For a fixed finite relational vocabulary τ with constants and v first order
variables, there are a finite number of atomic formulas αMSOL

τ,v .
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How many non-equivalent formulas?

Quantifierfree case

For quantifierfree formulas we only count
formulas in CNF.

There are 2α
FOL
τ,v , resp. 2α

MSOL
τ,v many

disjunctions

2αFOLτ,v∨
j=1

(¬)ν(j)Aj

where Aj ranges over atomic formulas.

Hence we have (at most) 22αFOLτ,v many
formulas in CNF.

Proposition:
For a fixed finite relational vocabulary τ with constants and v first order
variables, there are a finite number of atomic formulas βFOLτ,v and βMSOL

τ,v ,
respectively.
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How many non-equivalent formulas?

Quantifiers I: PNF

Counting quantified formulas is a bit more tricky.
We can assume that the formulas are in

Prenex Normal Form

But then variables are NOT reused.

So for each CNF formula with v variables there are 3v · v! many quantifier
prefixes
(∃, ∀, not quantified).

This gives at most

3v · v! · βτ, vFOL

many prenex normal form formulas.

File:nondef-2.tex 32



236331-2015/6, Computability and Definability Lecture 2: Non-definability

How many formulas are there ?

Quantifiers II: quantifier rank

Theorem:
For each τ and v = v1 + v2 many variables

x1, x2, . . . , xv1, U1, U2, . . . , Uv2

there are only γMSOL
τ,v,q many formulas of quantifier rank q.

Proof: We estimate this number by induction over q for MSOL.

For q = 0 we have at most γ many formulas with γ0 = βτ, vMSOL.

Treating them as atomic formulas we have 2v many ways of adding one
quantifier, and hence at most

γMSOL
τ,v,q+1 = γq+1 = 222v·ηq

many formulas of rank q + 1.
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How many formulas are there ?

Quantifiers II: quantifier rank

How many non-equivalent formulas
are there really?

Exact estimates to the best of our knowledge unknown.
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Hintikka formulas, I

τ is a finite, relational vocabulary.

We denote by FmMSOL
k,q (τ) the set of MSOL(τ) formulas such that the variables

are among

x1, . . . , xk, U1, . . . , Uk

and each formula has quantifier rank atmost q.

Similarly with FmFOL
k,q (τ).

Definition:
φ and ψ are (finitely) equivalent if the have the same (finite) models.
Free variables are uninterpreted constants

Note: There are, up to logical equivalence infinitely many formulas in three
variables (use repeated quantification).
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The boolean algebra Fmk,q(τ), I

Proposition:
There are, up to (finite) equivalence, only finitely many formulas in Fmk,q(τ).

If φ and ψ have only infinite models, they are finitely equivalent (false).

There are fewer formulas for finite equivalence.

The number of equivalence classes is growing very fast.

Proposition:
Fmk,q(τ) is closed under conjunction ∧,
disjunction ∨ and negation ¬,
i.e. it forms a finite boolean algebra.
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The boolean algebra Fmk,q(τ), II

The formula ∃x(x 6= x) is the minimal element.

The formula ∃x(x = x) is the maximal element.

A formula φ is an atom, if

• it is not (finitely) equivalent to ∃x(x 6= x),

• but for each ψ either φ ∧ ψ is equivalent to φ or to ∃x(x 6= x).
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Hintikka formulas, II

We denote by Bk,q(τ) and Bfk,q(τ) the
finite boolean algebra of FmMSOL

k,q (τ)
up to equivalence and finite equivalence, resp.
The elements are denoted by φ̄.

The set of atoms in Bk,q(τ) and Bfk,q(τ) is denoted by Hk,q(τ) and Hf
k,q(τ).

The formulas φ with φ̄ ∈ Hk,q(τ) (φ̄ ∈ Hf
k,q(τ)) are called Hintikka formulas.
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Hintikkika formulas, III

Proposition:

(i) Every sentence φ ∈ Fmk,q(τ) is equivalent to the disjunction of a unique
set of
(k, q)- Hintikka sentences

∨
i hi(φ),

with h̄i(φ) ∈ Hk,q(τ).

Not computable from k, q, τ and φ alone.

(ii) For every k, q, τ and τ-structure A there is a unique Hintikka sentence
hk,q(A) ∈ Fmk,q(τ) such that
A |= hk,q(A).

(iii) Furthermore, if A is finite,
hk,q(A) is computable from k, q, τ and A.

But only highly ineffective algorithms are known.
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Hintikka formulas, IV

Theorem:(Ehrenfeucht-Fräıssé)

For two τ-structures A1 and A2 the following are equivalent:

(i) II has a winning strategy in the game with n moves and k point pebbles
and
k set pebbles.

(ii) A1 and A2 satisfy the same
sentences of Fmk,m(τ).

(iii) A1 and A2 satisfy the same unique
(up to equivalence) (k,m)-Hintikka sentence.

We have shown already (1)⇒ (3).

(2)⇒ (3) is trivial.

(3)⇒ (2) follows from the

properties of Hintikka formulas.

We are left with (3)⇒ (1).
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Constructing the Hintikka sentence, I

Assume we have more pebbles than moves.

Let A be a finite τ-structure and a1, a2, . . . , as elements A.

We define a formula φ(v1, . . . , vs)mā

such that

A, ā |= φ(v1, . . . , vs)
m
ā

and whenever

B, b̄ |= φ(v1, . . . , vs)
m
ā

then player II has a winning strategy in the game for FOL for m more moves
starting with A, ā and B, b̄.

φ(v1, . . . , vk)
q
ā (i.e. k = s, q = m) will be a

Hintikka formula for FmFOL
k,q (τ).
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Constructing the Hintikka sentence, II

φ(v1, . . . , vk)
0
ā :=

(∧
{R(vj1, . . . , vjs) : R ∈ τ,A, ā |= R(vj1, . . . , vjs)}

)
∧(∧

{¬R(vj1, . . . , vjs) : R ∈ τ,A, ā |= ¬R(vj1, . . . , vjs)}
)

∧(∧
{vj1 = vj2 : j1, j2 ≤ s and A, ā |= vj1 = vj2}

)
∧(∧

{vj1 6= vj2 : j1, j2 ≤ s and A, ā |= vj1 6= vj2}
)

The formula is finite, provided τ is.
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Homework (compulsory)

We look at the example of a linear order with s = 3 and m = 2.

Assume a2 < a1 = a3 in A.

Compute the formula!
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Constructing the Hintikka sentence, III

φ(v1, . . . , vk)
m
ā :=(∧

a∈A

∃vs+1φ(v̄, vs+1)m−1
ā·a

)
∧(

∀vs+1

∨
a∈A

φ(v̄, vs+1)m−1
ā·a

)

This is finite by the previous theorem.

We look at the example of a linear order with s = 3 and m = 2.

Assume a2 < a1 = a3 in A.

Compute the formula.
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Constructing the Hintikka sentence, IV

We have to verify:

• A, ā |= φ(v1, . . . , vs)mā

• whenever B, b̄ |= φ(v1, . . . , vs)mā
then player II has a winning strategy
in the game for FOL for m more moves
starting with A, ā and B, b̄.
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Constructing the Hintikka sentence, V

• We can do ”the same” for MSOL and even for SOLn or SOL.

• How do we have to modify the construction of there are fewer pebbles
than moves?

• What happens if play infintely long?

We shall return to these questions later.
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Dense linear orders, I

We look at linear orders such that between any two distinct elements there
is a third element. These are called dense linear orders.

Exercise:
Express this in FOL.
Show that such an order is always infinite.

There are variations:

• with/without first element.

• with/without last element.
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Dense linear orders, II

Examples are

• The real numbers R, which are uncountably infinite.

• The irrational numbers I ⊆ R, which are also uncountably infinite.

• The rationals Q, which are
countably infinite.

• The open intervals (a, b) ⊆ R.

• The open intervals (a, b) ⊆ Q.

• The corresponding closed intervals [a, b] and the intervals (a, b] and [a, b).
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Dense linear orders, III

There is a sentence φcutMSOL(τord) which is true in Q but not in R.

φcut says:

”The universe is the disjoint union
of two open intervals”

Exercise:
Write down this formula.

In Q we take (−∞,
√

2) ∪ (
√

2,∞).

In R every Cauchy sequence converges, hence such a decomposition is not
possible.
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Dense linear orders, IV

Theorem:(Cantor ca. 1870)
Let A0 and A1 be two dense linear orders with the same configuration of first
and last elements.

Then player II has one (extendible) winning strategy WS in the FOL game
for games of arbitrary finite length.

Note that this is stronger than the statement:

For every game length n player II has a winningstrategy WSn.

Corollary:
No FOL(τord) sentence φ can distinguish
Q from R, or
(a, b] ∩ Q from (a, b] ∩ R for a, b ∈ Q,
etc...
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Dense linear orders, V

Proof: (No first, no last element)

Assume we have played

a0
k1
≤ a0

k2
≤ . . . ≤ a0

km and a1
k1
≤ a1

k2
≤ . . . ≤ a1

km

and player I chooses, w.l.o.g., a0
m+1 = b.

There are three cases

• b < a0
k1

or a0
km
< b.

• b = a0
kj

for some j ≤ m.

• a0
kj−1

< b < a0
kj

for some j ≤ m.

In each case II can reply correspondingly.
In the last case we use density.
In the first case we use the absence
of first/last elements.

Exercise:
Complete the proof also for the cases with first/last elements.
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