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Lecture 7

Translation Schemes:
Main definitions and examples

e [ he framework of translation schemes

— The induced maps

— The fundamental lemma

— Reductions

e [ he Museum of examples
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Definition 1 (Translation Schemes o)

e Let 7 and o ={Rq,...,Rm} be two
vocabularies with p(R;) be the arity of R;.

e Let £ be a fragment of SOL, such as FOL,
MSOL, AMSOL, etc.

o Let ® = (p,91,...,Y¥m) be formulae of L(71)
such that ¢ has exactly k distinct free first
order variables and each ; has kp(R;) dis-
tinct free first order variables.

We say that & is k—feasible
(for o over 7).

o A k-feasible & = (¢p,91,...,9¥m) IS called a
k—r—o—L—translation scheme or, in short,
a translation scheme, if the parameters
are clear in the context.
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Distinctions

If £ = 1 we speak of scalar or non—vectorized
translation schemes.

If £ > 2 we speak of vectorized translation
schemes.

If ¢ is such that Vz¢(Z) is a tautology (always
true) the translation scheme is not relativized
otherwise it is relativized.

A translation scheme is simple if it iS neither
relativized nor vectorized.
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Example 2 (Twoms3 and 7,,.qph5)

Twordss CONSISts of { R«, Pg, P1, P>} for three let-
ters {0,1,2}.

Tgraphs CONSists of { £}

Put £k =1,
$1(x) = (Py(z) vV P1(2)) and
YE(z,y) = (Po(z) A P1(y))

CI>:|_ — <¢1(5E)7 QPE(ZI% y)>

IS a scalar and relativized translation scheme
in FOL.

If instead we look at ¢>(x) = (2 =~ x) then

o = (pa(2), Yp(z,y))

IS a simple translation scheme.
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Example 3 (7y0rds, aNd Ty.i45)

Twords, CONSIStS of {R«, P, P1}
Tgrids CONSists of {Eng, Epwy }

Put £ = 2,

P(z) = ((z=z) AN (y = y))
VEns (1, 22,91, ¥2) = (R<(21,22) Ay1 = y2)
VERs(T1, 72,91, Y2) = (R<(y1,92) A w1 = 22)

Py =
<¢(£E, y)7 QPENS(ZUL«’EQ; Y, y2)7 QPEEW(CUL Lo, Y1, y2)>

IS a vectorized but not relativized translation
scheme in FOL.
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Definition 4 (The induced transduction ¢%)

Given a translation scheme &

d* : Str(r) — Str(o)

is a (partial) function from r—structures to
o—structures defined by ®*(A) = Ag and

1. the universe of Ay is the set
Ap ={a € AF: A= ¢(a)};

2. the interpretation of R; in Ag iS the set
Ao (R)) = {a € A" 1 A = gi(@)}.

Ag IS a o—structure of cardinality at most
AR,

As & is k—feasible for o over 7, ®*(A) is defined
iff A= 37¢.
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Example 5 (Words and graphs)

Let is compute ®7.

For the word

1001020102001022111
we get the graph

0 1
° °
° °
° °
° °
° °
° °
° °

(1)
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Example 6 (Words and grids)

Let is compute P3.

For a word
0110101001

we get
o —>0 >0 >0 >0 —>0—>0—>0—>0—e
o —>0—>0 >0 —>0—>0—>0—>0—>0—0
>0 >0 >0 >0 —>0—>0—>0—>0—e
o —>0—>0—>0—>0—>0—>0—>0—>0—0
o —>0 >0 >0 —>0—>0—>0—>0—>0—0
o —>0 >0 >0 —>0—>0—>0—>0—>0—0
o —>0 >0 >0 —>0—>0—>0—>0—>0—0
>0 >0 >0 —>0—>0—>0—>0—>0—e
o >0 >0 —>0—>0—>0—>0—>0—>0—e
>0 >0 >0 —>0—>0—>0—>0—>0—e

This is independent of the letters €0, 1}.
8
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Definition 7 (The induced translation &)

Given a translation scheme & we define a func-
tion ®f : £(0) — £(7) from L(c)—formulae to
L(7)—formulae inductively as follows:

e For R, € 0 and 0 = R;(x1,...,xzm) let x5 h
be new variables with : <m and A < k and
denote by z; = <.CUZ'71, ce ,aﬁi’k>. We put

dH(h) = (%‘(517 ey Tm) A /\Cb(@))

e [ his also works for equality and relation
variables U instead of relation symbols R.
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Definition 7 (Continued: booleans)

For the boolean connectives, the translation
distributes, i.e.

o if 0 = (01 V6> then

Py (0) = (Py(01) Vv P4(62))

o if 6/ = —61 then

Dy(0) = Py(—01)

e Similarly for A and —.

10
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Definition 7 (Continued: quantification)

e For the existential quantifier, we use rela-
tivization to ¢:
If 0 = 3y, let y = (y1,...,yr) be new vari-
ables. We put

0o = Fy(&(y) A (01)a).

This concludes the inductive definition for
first order logic FOL.

e For second order quantification of variables
U of arity ¢ and a a vector of length ¢ of first
order variables or constants, we translate
U(a) by treating U as a relation symbol
above and put

b = IV(VO(V (D) —
(p(v1) Ao () A (01)0)))

11
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Example 8 (Computing <I>§)

Recall

1 = {d1(2), vE(z,y))
with £ =1,
¢1(x) = (Po(z) vV P1(z)) and
YE(z,y) = (Po(z) A P1(y))

Let Oconn De the formula which says the graph
IS connected:

= (3U (Fz—-U(x) AV2Vy(U(x) N E(x,y) — U(y))))

12
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Example 8 (Continued)

e U(x) is replaced by
(p1(z) ANU(z)) = ((Po(z) vV P1(z)) AU(2))

e FE(x,vy) is replaced by

(p1(z) Adp1(y) AN E(z,y)) =
((Po(z) vV Pr(2)) A (Po(y) vV Pr(y)) A E(z,y))

e (z =~ y) is replaced by

(p1(z) A1 (y) A (2 = y)) =
((Po(z) vV Pr(z)) A (Po(y) vV Pr(y)) Az = y))

e [ hen we proceed inductively.

(z ~ y) does not occur in Oconn.
13
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Proposition 9
(Preservation of tautologies I)

Let £ be First Order Logic FOL.

b = <¢7¢17°”7¢m>

be a k—(7 — o)—L—translation scheme, which
is not relativizing, i.e. Vz¢(z) is a tautology.
Let 6 a o-formula.

e If § is a tautology (not satisfiable), so is
d(9).

e If ¢ is not a tautology, this is not true.

e T here are formulas 8 which are not tau-
tologies (are satsifiable), such that $#(9)
is a tautology (is not satisfiable).

14
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Proof of proposition 9

Proof:

For FOL, the first two parts are by straight in-
duction using the completeness theorem. What
we observe is that proof sequences translate
properly using ot

Generalizing to other logics needs regularity
conditions.

If ¢ is not a tautology, Jx(x = x) is a tautol-
ogy, but ®¥(3z(z = z)) = Jzp(z) Az = z is not
a tautology.

Now let ® = (YR, 1g) be defined by

Yr(z) = P(z) and ¢g(z) = ~P(x).

Jxf1 be R(x) A S(x) and Jxb> be R(x) VvV S(x)
are both satisfiable but not tautolgies. But
®¥(61) is not satisfiable and

®(65) is a tautology. Q.E.D.

15
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Theorem 10 (Fundamental Property)

Let ® = (p,¢¥1,...,%¥m) be a k—(7—o)—translation
scheme in a logic £. Then the transduction ®*
and the translation @f are in linked in L.

In other words, given

e A be a 7-structure and

e § be a L(o)—formula.

Then

A = () iff d*(A) =6

16
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Lecture 7

Translation Scheme and

its induced maps

in the Fundamental Property of

theorem 10

Translation scheme

P
cb*

T-Structure — o-Structure

A d*(A)

7-formulae o o-formulae

oy
di(H) 0
A = df(6) iff D*(A) = 6

17
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Definition 11 (£L—Reductions)

Let £ be a regular logic and ® be a (71 — ™)
translation scheme. We are given

e two classes K1, K> of 71(7)-structures closed
under isomorphism

We say

1. ®* is a weak reduction of K1 to K- if for
every tq-structure A with A € K7 we have
P*(A) € K».

2. ®* is a reduction of K1 to K- if for every
T1-Structure 2, A € Ky iff ®*(A) € K.

18
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Definition 11(Continued)

3. &* of K; to K, is onto if (additionally)
for every B8 € K> there is an 2 € K7 with
d*(2) isomorphic to 8.

4. By abuse of language we say ®* is a trans-
lation of K1 onto K- also if ®* is not a
weak reduction but only Ks C ®*(K7).

5. We say that & induces a reduction (a weak
reduction) of K1 to K», if ®* is a reduc-
tion (a weak reduction) of K; to K». For
simplicity, we also say & is a reduction (a
weak reduction) instead of saying that ¢
induces a reduction (a weak reduction).

19
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K1 e
N
/\\ ﬂ / / ------------ -
N L
________ AN

K
T1-Structures JTQ—StrUCtU res

Weak reduction

P* (K1)
p

K
T1-Structures —Qé—structu res

ONTO

20
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Definition 12 (£L—Reducibility)

1. Let kK € N.
We say that K, is L£L-k-reducible to K»
(K1 <4,_ Kp), if there is a L-k-translation
scheme & for 7 over 71, such that ®* is a
reduction of K1 to Ko.

2. We say that K, is L-reducible to K»
(K1« K»), if K4 dp_p. Ko for some k € N.

3. We say that K4 is £-bi-reducible to K, and
write K4 X, Ko, if K4 dr_1 Ko and
Ko<y K1 for some k € N.

Clearly, bi-reducibility is a symmetric
relation.

21
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Theorem 13 (Definability and Reducibility)

Let &* be an L-reduction of K1 to K>.
If Ko is L£L-definable then K, is -definable.

Recall that a class of 7-structures K» is L-definable if

there is a L(7)-sentence 0 such that Ko = Mod(0).
Proof.
We use the Fundamental Property of &.

If K5 is defined by 6, so K7 is defined by ®#(6).

22
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Proposition 14

Hamiltonian graphs are not M SOL-definable
(both in 7y.qphs; @Nd Tyraphs,)-

Proof:
We use 5 from example 2.

®% is a reduction from words 0™1™ over {0, 1}
to complete bipartite graphs Ky m, which are
M SO L-defined by Hco—bi-

Knm 1S Hamiltonian iff n = m.

So, if 0y,4.,,, defined all Hamiltonian graphs,

cbﬁQ(Hhamil A Hco—bz')
defined the language {0™1™}.

But {0"1™} is not regular, and hence, by Biichi’s
theorem, not M SO L-definable.

Q.E.D.
23
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Proposition 15

Eulerian graphs are not M SO L-definable
(both in Tgraphsq and TgraphSQ)-

Proof: Let SET be the class of finite sets and
ODD C SET those of odd cardinality.

Let CLIQUE be the class of complete graphs.
CLIQUE is FOL-definable by some 0.;4ye-

Let the simple FOL translation scheme & be
given by

P(z) = (z = z) and Yp(z,y) = (~z = y).
®* is a reduction from SET to CLIQUE.

Now assume that there is 6_,., € MSOL,
with EULER = Mod(6oyer)-

Put 6 = (Hcl'ique A Ocuier)-

®¥(9) is equivalent to 6,,; € MSOL .

But this contradicts the fact that ODD (EV EB)
IS not MSOL-definable.

Q.E.D.
24
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Proof of theorem 10

We use induction over the construction of 6.

e If all the formulas ¢,y; of & and 6 are
atomic,

both ®*(2) =2 and
dH(9) = 9.

e Next we keep 6 atomic and assume
® = (p(Z),%5,(Z), .. Ys,,(Z))
O*(RA) = S;(a) iff A = yg.(a)
by definition of &*.

e Now the induction on 6 uses that ®f com-
mutes with the logical constructs.

Q.E.D.
25
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Proposition 16
(Preservation of tautologies II)

Let £ be First Order Logic FOL.
b = <¢>¢17---7¢m>

be a k—(7 — 0)—L—translation scheme. Let 6
a o-formula.

Assume that o* is onto all o-structures, i.e.
for every o-structure *B there is a 7-structure
2A such that &*(A) = cong'B

e If 0 is a tautology, so is ®F(h).

e If additionally Ixz¢(x) is a tautology and
dH(6) is a tautology then 6 is a tautology.

Proof:
Use the fundamental property. Q.E.D.
Note that here the proof is semantical.

26
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Example 17 (Renaming)

One of the simplest translations encountered
in logic is the renaming of basic relations.

Let 11 = {R; : i <k} and m» =45, : i < k},
where R; and S; are of the same arity,
respectively.

Let ® be the (71, ) translation scheme given

Such a translation scheme and as well as its
induced maps ®* and ®? are called renaming.

27



CS 236 331:2001 Lecture 7

Example 18 (Cartesian Product)

et us consider one example of vectorized trans-
lation scheme that defines Cartesian Product.

For simplicity, we assume that k£ = 2.

Let 71 = {Rl(:vl,xQ)} with R, binary
and 7 = {Rg(azl,xg)} with Ro binary.

® = ((z1 =21 V2o = 22),
(R1(z1,22) A Ro(23,24)))

It is easy to see that ®*(A) is isomorphic to
the Cartesian product A2,

The n-hold Cartesian product is defined in the
same way.

28
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Example 19 (Graphs)

Graphs1 1S the class of structures of the form
(V, E) where E is a binary irreflexiv relation on
the set of vertices V.

Graphso 1S the class of structures of the form
(VUE; Src(v,e), Tgt(v,e)) with the universe
consisting of disjoint sets of vertices and edges
and Src(v,e) (T'gt(v,e)) indicates that v is the
source (target) of the directed edge e.

For a graph G we denote its representations by
G; for G; € Graphs; respectively.

We define a scalar translation scheme
b = (), YE) from Graphso to Graphs, by

d(v) = (Fe(Srce(v,e) VeTgt(v,e))V
(v =v A —-3Jx(Src(x,v) VTgt(x,v))
¢p(z,y) = Je ((Src(z, e) ATgt(y, e))
Clearly, for every graph G we have
*(Go) & Gy

29
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Theorem 20 (Complexity of transductions)

If & isin FOL (or AHornSOL)
then ®* is computable in polynomial time.

Proof.

We test all k-tuples a in L of size n for

A= ¢(a)
This takes nk - TIME(, ¢) time.

But we know that TIME(&, ¢) is a polynomial
in n.

For the ¢g. this is the same.
Q.E.D.

By a theorem of Gradel, this also holds for
HornSOL, cf. the project page.
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