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Abstract

A model of learning by distancesis presented. In this model a concept is a point in
a metric space. At each step of the learning process the student guesses a hypothesis
and receives from the teacher an approximation of its distance to the target.

A notion of a distance, measuring the proximity of a hypothesis to the correct
answer, is common to many models of learnability. By focusing on this fundamental
aspect we discover some general and simple tools for the analysis of learnability tasks.

As a corollary we present new learning algorithms for Valiant’s PAC scenario with
any given distribution. These algorithms can learn any PAC-learnable class and, in
some cases, settle for significantly less information than the usual labeled examples.

Insight gained by the new model is applied to show that every class of subsets C that
has a finite VC'—dimension is PAC-learnable with respect to any fixed distribution.
Previously known results of this nature were subject to complicated measurability
constraints.



1 Introduction

The notion of a metric, quantifying the proximity between objects, plays a role whenever
approximations are considered. Most models of computational learnability involve a process
in which some “target” is approximated by “hypotheses”. Furthermore, in many cases the
information supplied by the “teacher” gives some indication of the degree of the “student’s”
success and can, therefore, be interpreted as approximating the distance between a current
hypothesis and the target. We focus on this basic aspect by presenting a model of learnability
in a metric space. Qur model disregards all the attributes of concepts except the distances
between them. We establish a close connection between the metric structure of a concept
class and its learnability features.

Consider the following example: A police investigator is trying to come up with a draw-
ing of a criminal. After getting some basic information from a witness (who has seen the
criminal), the investigator presents the witness with sketches. The witness indicates to what
degree the pictures resemble the criminal. This process can be regarded as a learning process
where the investigator (the student) offers guesses, and the witness (the teacher) responds
with approximations of their distances to the target. Two basic parameters of such a process
are the precision of the teacher (how elaborate and faithful the witness is) and the accuracy
required from the student (how exact should the drawing get to guarantee the police does
not suspect an innocent citizen). We call such a process learning by distances (LBD).

We characterize learnability by distances of concept classes in terms of Kolmogorov’s
e-entropy of a metric space [18]. We present several learning algorithms, and consider their
complexity both in terms of the number of queries they require, and in terms of their com-
putational complexity.

Apart from its significance in modeling some important aspects of “real” learning pro-
cesses, the notion of L B D-learnability sheds new light on the more familiar models of learn-
ability. It identifies some basic motifs that re-appear in various learning problems. We relate
previously discussed models of learnability (P AC-learnability model [21], and variants of An-
gluin’s equivalence queries model [2]) to the L BD-model.

We show that the learnability of a concept class in the PAC sense is tightly related
to the learnability-by-distances of that class in the metric spaces induced by probability
distributions. Given a concept class C over a sample space ), every probability distribution P
induces a natural (pseudo) metric on C - the distance between two concepts is the probability
of their symmetric difference. Any LB D-student for the induced metric problem provides a
heuristic for PAC-learning with respect to the distribution P: The examples presented by
a PAC-teacher may be used to approximate the distance between the hypothesis and the
target. The LB D-student may use these estimates to produce a hypothesis which is close to
the target in the pseudo-metric and therefore is an approximation in the PAC sense.

Our model emphasizes the distinction between the “probably” and the “approximately”
in the “Probably Approximately Correct” (PAC) scenario; The probability of success is
determined by the precision of our estimates of the distances and is, therefore, controlled
by the size of sample we request at each stage. Independently, the quality of approximation
obtained by our final hypothesis is determined by the accuracy parameter of the LBD
student.

As a matter of fact, the algorithm of [19] for learning AC? functions under the (fixed)



uniform distribution is an LBD based algorithm. They approximate the target function
by estimating its Fourier coefficients (relative to some basis for the space of real functions
on {0,1}"). Each such coefficient can be viewed as a distance between the target function
and the appropriate basis function. Their main lemma shows that AC® functions can be
approximated on the basis of “few” (quasi-polynomial) such distances. To approximate these
distances they consider random examples as described above.

An insightful consequence of our analysis concerns the amount of information required
by a student for successful learning. A PAC student that follows the steps of an LBD
student, as described above, needs very little information. Rather than requiring a teacher’s
example < y,b > (where y € Y and b tells if y € ¢) he can settle for just one bit b°
indicating whether the y drawn by the teacher is in ¢At — the symmetric difference between
the student’s current hypothesis ¢ and the target ¢. (The learning protocol involved is a
variant on the usual PAC model and involves messages from the student to the teacher (on
top of the teacher’s messages). This model is presented and discussed further in subsection
5.1.) We show that for any distribution P, any concept class that can be learnt on the
basis of P-random labeled examples (as in the PAC model) can be learnt on the basis of
0-1 information as above. In many cases “real life” learning is indeed based on this type
of limited information. As an example, consider a biologist who is trying to identify the
best vaccine for some disease of mice. He keeps coming up with candidate variations and
tries them on random samples of sick mice. It is most likely that he cares about the rate of
recovery of his mice rather than the exact identity of each recovered mouse.

Blumer et. al. [10] characterize the concept classes that are learnable by every consistent
student (a student that always picks hypothesis consistent with the examples it has seen). Let
us call such classes consistently learnable. They show that if some complicated measure the-
oretic constraints hold, then a class is consistently learnable iff it has a finite V C-dimension.
Under these constraints learnability (by any student) implies consistent learnability. Al-
though we do not know of any “natural” concept class for which these constraints are not
met, [7, 10] show examples of classes of Borel subsets of the interval [0, 1] that have VC-
dimension 1 but still are not consistently learnable (even in the uniform distribution on
[0,1]). The algorithms we derive for PAC-learnability imply that the finite V C-dimension
criteria does characterize P AC-learnability relative to any fixed distribution without any
measurability constraints. In particular, these algorithms learn the classes mentioned above
and thus strictly exceed the learning capability of some consistent students.

The paper is roughly divided into two parts. In the next three sections we define and
investigate the basic properties of the L BD-model and the learning heuristics it offers. In
the second part of the paper (section 5) we discuss the connections between our model and
Valiant’s PAC-model and we apply the insight gained by the L B D-model to get new results
in the theory of PAC-learnability.

2 Preliminaries

In this section we give the formal definition of the learning by distances (LBD) model. As
mentioned in the introduction, we wish to focus our attantion on one aspect of the general
learning problem - the proximity relation among concepts (and hypotheses). Towards this



end, we represent each concept (be it a set as in the PAC model, a p-concept, a pattern to
be recognized - whatever one wishes to learn) by a single point in a metric space.

Let (X,d) be a pseudo-metric space. Le., d is a function from X? to non-negative reals
satisfying (for every z,y,z € X):

o d(z,x)=0.
o d(z,y) = d(y,z).
o d(z,z) < d(z,y)+dy,z).

A concept class C is a subset of X'. Note that we depart from the common terminology; here
a concept is just a point in the space X while in the common scenario concepts are subsets
of an underlying domain.

Definition 1: Let ¢,y be positive reals and let ¢ be a member of a pseudo-metric space

(X, d).

e r ¢ RTU{SUCCESSY} is an (¢,v)-approzimation of the distance between x and t if,
for r = SUCCESS then d(z,t) < ¢, and if d(z,t) > ¢, then r £ d(z,1)".

e An (e,v)-learning sequence for t is a sequence

(c1,7(c1)), (e2,m(e2))y- -, (e, r(ck))

where, for all 1 <k, ¢; € X and r(¢;) is an (€,7y)-approximation of the distance (of ¢;)
to .

In our model, learning sequences are generated by an interaction between a student and a
teacher, the ¢;’s are the student’s queries (or hypotheses) and the r(¢;)’s are the teacher’s
responses.

Formally, a student is a function S from learning sequences to C.
S produces (¢1,7(c1)), (e2,r(c2))y .., (ck,r(ck)) if for all 4 < k

S(C,e,v, (e1,r(cr1))y. .oy (ciyr(e))) = Cigr-

Namely, S is the strategy of the student for choosing his hypotheses.

A finite learning sequence is successful if r(cg) = SUCCESS, where ¢y is the last hypothesis
in the sequence.

As can be seen from the definitions above, v is a precision parameter for the teacher’s answers
and ¢ defines the accuracy required from the student.

A concept class C is (e,v)-learnable if there exists a student S and a function £ : C — N
such that for every target ¢t € C, every (e, v)-learning sequence for ¢,

(e1,7(c1)), (ca,7(e2)), -+ -, (o), (o))

La £ b denotes |a —b| < .



produced by S, is successful. Note that #(¢,e,v) determines the number of queries the
student is allowed to ask before reaching a conclusion.

A concept class C is e-learnable if it is (¢,+)-learnable for all y < £.

A concept class C is learnable if it is e-learnable for all € > 0.
Each of these learnability notions is called uniform if the number of queries ¢ does not depend
on t (it may depend on ¢,v and C).

Note that this notion of learnability is purely qualitative and is not concerned with the
resources required by the learning process. We postpone the quantitative consideration
(sample and computational complexity) to Section 4.

3 A Characterization of Learnable Concept Classes

In this section we give a complete characterization of L B D learnable concept classes in terms
of their metric entropy. We also present a game theoretic characterization of learnability by
{-many queries.

Consider the discrete metric space (X,,d,) in which for every « # y € &), the distance
dy(z,y) is 1. It is quite evident that for £ < 1, a concept class in such a metric space cannot
be learnt unless the student exhaustively searches for the target. On the other hand, let
C=4&={[a,a+0.1] C[0,1]} and the distance between two intervals [ and .J is defined by

d(1,J) def p(IAJT), where A denotes the symmetric difference and p is the usual Lesbegue
measure. To learn this concept class the student can guess one by one the elements in
A= {[a,a—l— 01]€Cla=%-¢, ke ]N} Note that, although A is finite (|A] < %), and C is
uncountable, for any target ¢ € C, there exists an element of A which is e-close to ¢.

The following notion of capacity is therefore essential for analyzing learnability.

Definition 2: A set A C X is an e—approzimation of a set B C C if for every b € B there
exists a € A such that d(a,b) < e. The e—capacity of a set B C C is defined as the size of a
minimal e—approximation for B. l.e.,

CAP(B,e) = min{|A| : A is an e-approximation of B }.
(Note that CAP(B,¢) may be an infinite cardinal).

Kolmogorov and Tihomirov [18] discuss this notion and define the e—entropy of a set B in
a metric space as log, CAP(B,¢). If one regards B as, say, a family of typographical symbols
and d is a measure of their distinctness, then, the e—entropy of B measures the amount of
information that can be unambiguously represented by B when there is an ¢ amount of
"noise” in the system. In the context of learning, the analogous notion is usually referred to
as an e-net [22]

Example 1: Let B be the unit cube in R", then CAP(B,¢) < (@)” On the other hand
in the discrete metric space (X,,d,) for every set B and every ¢ < 1, CAP(B,¢) = |B],
where | B| denotes the cardinality of B.

The following lemma is a simple property of capacities:



Lemma 1: Let B = UY | B; then CAP(B,¢) < %, CAP(B;,e).

Proof: The claim follows from the fact that if for every ¢ the set A; is an e—approximation
of B;, then U%_| A; is an e-approximation of UL, B;. L]

Definition 3: A (pseudo-)metric space, X, is called bounded if there exists b such that
d(z,y) < b for every z,y € X.

Note that if for some ¢, CAP(X,¢) < oo, then X is bounded.

The following lemma provides an information theoretic lower-bound on the number of rounds
needed for successful learning, in terms of the capacity of the concept class and the number
of different possible teacher responses. We formulate the lemma in terms of our LB D model
but it is applicable to any deterministic learning scenario.

Lemma 2: For every ¢ > 0 and every g > 0, if, for some 7, a concept class C in a metric
space (X,d) is uniformly (e,7)-learnable in at most ¢ rounds and a teacher that gives at
most ¢ many possible responses (excluding SUCCESS) in each round, then

1. ¢ =1 implies ¢ = CAP(C,¢);

4

2. ¢ > 2 implies CAP(C,e) < =1,

qg—1
Proof:
1. If ¢ = 1 then we have a discrete space and the student has to query the entire space.

2. Let S be a student that (e,7)-learns C in / steps. Let Ty be the tree of all possible
query sequences of length at most /, producible by the student S on the basis of the
teacher responses. By the assumption, the number of nodes in T} is at most

defqz_l
ne — ——.
qg—1

The fact that S is a successful student implies that for any target ¢ € C there exists
a node in this tree which is e—close to t. Thus the nodes of the tree form an e—
approximation for C of size ny.

]

The following theorem relates the learnability of a concept class to its capacity.

Theorem 1: For every ¢ > 0 and every v > 0, a concept class C in a bounded metric space
(X,d) is uniformly (e, v)-learnable if and only if

CAP(C,¢) < .

(Note that the condition is independent of ~).



Proof: Assume that CAP(C,e) = n. We prove that C is uniformly (e, ~)-learnable by
presenting the STUDENT algorithm which learns this concept class within n queries. This
algorithm works in an oblivious way: It chooses a set A = {ay,as,...,a,} which is an e-
approximation of C (such an A exists by the definition of CAP) and exhaustively searches
through A. l.e, it presents the elements of A as queries to the teacher until it receives the
answer SUCCESS. (Note that for this direction the restriction that v > 0 is irrelevant.)

For the reverse implication, the first observation to note is that a successful student should
be able to learn with any legal teacher. There exists a legal teacher which always answers
with r;’s in {SUCCESS,e +v,¢ 4+ 2v,e + 3v,...,b}. Let ¢ be the size of this set (¢ = b;—s)
Applying Lemma 2 we get that

]

Corollary 1: If a concept class C in a bounded metric space (X, d) is uniformly (e, v)-
learnable, for some v > 0, then CAP(C, ¢) is finite and C is learnable using at most CAP(C, ¢)
many queries.

Proof:  Follows from the proof of theorem 1. (]

It is worthwhile to note that STUDENT is very succinct in terms of the information
it requires from the teacher. It operates upon the binary responses SUCCESS/OTHER.
STUDENT is also efficient in the following sense: Its queries do not depend on the responses
it gets, and therefore they can all be calculated a-priori, on the basis of knowing just the
space (X, d), the concept class C, and the parameters ¢ and ~.

The above theorem shows that as far as the question of learnability is concerned, any class
that is learnable — is learnable by a non-adaptive algorithm receiving only FAIL/SUCCESS
teacher responses (rather than approximated distances). In particular, as far as the question
of learnability is discussed, the parameter + is irrelevant. On the other hand, with respect to
quantitative complexity measures, such as the number of needed queries or the computational
complexity, other algorithms that exploit the metric structure of the space X can do better
(see section 4 and [§]).

Definition 4: A set B C X is totally bounded if CAP(B,¢) is finite for every ¢ > 0.

Corollary 2: A concept class C in a bounded metric space (X, d) is uniformly learnable if
and only if it is totally bounded.

The following theorem characterizes non-uniformly learnable concept classes. Recall that
a concept class C is non-uniformly learnable if for some function ¢ : C — N there exists a
student that for any ¢ € C will produce a successful learning sequence of length at most £(¢).

Theorem 2: For every ¢ and every v > 0, a concept class C in a metric space (X, d) is
(non-uniformly) (e,+)-learnable if and only if CAP(C,¢) is countable (possibly finite).

9



Proof: If A CC is a countable e-approximation then algorithm STUDFENT has just to
enumerate the elements of A = {a;}, [y and present them to the teacher in that order, until
the teacher responses with SUCCESS. On the other hand, assume C is (e, y)-learnable for
some function ¢ : C —+ IN. We can now proceed as in the proof of theorem 1. Without loss
of generality the teacher’s responses are in the countable set {k-~v|k € N} U{SUCCESS}.
Let T' be the tree of all finite sequences generated by S on the basis of such responses. T' is
a countable e—approximation of C. L]

Definition 5: A set B in a metric space (X,d) is separable if there exists a countable
A C X such that for every b € B and every € > 0 there exists a € A such that d(a,b) < e.

Corollary 3: A concept class C in a metric space (X, d) is learnable if and only if it is
separable.

3.1 A Game Theoretic Characterization

Let us conclude this section with a game theoretic characterization of learnability in /¢
many queries. We define a game G(C,¢e,7v) for two players. The game proceeds as fol-
lows: In each step Player I picks some ¢; € X. Player II picks r; (r; > ¢€). Let B; =
{b € C|Vj <i, d(c;,b) £ r; and d(c;,b) > 5}. We denote by G, the game that runs for /
many steps. Player II wins the game G if CAP(By,e) > 2. Otherwise, Player I wins.

Claim 1: Player I has a winning strategy in the game G¢(C, ¢, v) if and only if the concept
class C is (&,7) —learnable within £ 4+ 1 queries.

Proof: If there exists a winning strategy for Player I then the student regards the teacher
as a simulator for Player I, and picks its queries according to Player’s I strategy. The only
possible response which is not in the vocabulary of Player IT is SUCCESS, but once the
student receives such a response the learning process is over. Let (¢1,7(c1)), ..., (¢, 7(c)) be
the run produced in the game (note that for all ¢ the target belongs to B;). We know that
CAP(By,e) = 1, thus there exists a point ¢,41 which is at distance at most ¢ from any point
in By, and in particular from ¢.

For the other direction, suppose that Player I does not have a winning strategy, it follows
(see e.g. [13]) that Player II has a winning strategy. Let the teacher regard the student as a
simulator for Player I, and choose the r;’s according to the winning strategy of Player I1. Note
that, in any step, the set B; is the set of all “possible targets” consistent with the answers
given during the first ¢ steps. After £ steps the set B, satisfies CAP(By,¢) > 2. This implies
that, for any ¢,y the student may choose, there exists a point in B, which is e-far from ¢,y
and may serve as the target. In other words, a winning strategy for Player II shows how
the teacher can, by an appropriate choice of responses r(c¢;), guarantee that for any learning
sequence (c1,7(c1)), ..., (cor1,7(cop1)) produced by a student (on the basis of the teacher
responses), there exists some target ¢ such that this sequence is a learning sequence for ¢
but cp41 is not e-close to ¢. It follows that the concept class C is not (e,v)-learnable in £+ 1
steps. (]

10



4 The Complexity of The Student

Let us now turn to the quantitative aspects of the learning process. We have shown (in the
proof of theorem 1) that any learnable class (in the sense of the LBD-model) is learnable
by the naive algorithm STUDENT. We shall now see examples showing that in many
occasions other learning algorithms have superior performance.

The first question we address is the number of queries an algorithm uses. Lemma 2 and
Corollary 1 of the previous section immediately imply the following bounds:

Theorem 3: Let C be a bounded concept class and let D denote its diameter (i.e. D =
sup{d(s,t) : s,t € C}). Let £ be the number of queries needed for (¢,~)-learning the class C,
finally, let ¢ denote the minimal number of possible teacher replies (g =2 %)

log, CAP(C,e) < { < CAP(C,¢)

We shall show that these bounds are best possible in the general case. By part 1 of
Lemma 2 in the discrete space, where the possible responses are 0,1, £ = CAP(C,¢).

Example 2: Let C be a discrete space, where the possible response are FAIL/SUCCESS.
By part 1 of Lemma 2, { = CAP(C,¢).

The following example shows that also the lower bound is tight.

Example 3: For ¢ > 1 and arbitrary n, let C = {1, ...,¢}". For v € C let v[i] denote the
1th component of v. Also, define ¢; € C

ils] :{ L oeli]=1

g otherwise.

Consider the following distance function

7 N

0 T=y
d(z,y) = g+k z=¢;, y&{e,...,e,} and y[i] =k
’ gt+k y=e;, v &{e,...,e,} and z[i] = k

2q otherwise.

By querying e;, the student can deduce the i-th component of ¢. Thus for ¢ < 1, £ = n. For
each query there are ¢ responses (¢ + 1,...,2¢) that are not SUCCESS. CAP(C,¢) = ¢".
Thus £ = log, CAP(C,¢).

The lower bound of Theorem 3 indicates that the query-complexity is affected by the type
of replies supplied by the teacher. The next pair of examples demonstrates this phenomenon:
We show concept classes for which any algorithm based upon binary responses, the number
of needed queries necessarily grows to infinity as € goes to 0, whereas for more informative
responses, a smart learner can exploit approximated distances responses to guarantee success
within a constant number of queries.

Example 4: Let C be the unit ball in R". By part 1 of Lemma 2, any student receiving
only FAIL/SUCCESS responses will require CAP(C,e) = Q(e™") queries to learn C.

11



Example 5: Let C be a concept class in a Euclidean space (i.e. C C R"). If C is unbounded
then, for every €, CAP(C,€) = oo. Nevertheless, such a class is learnable through a finite
number of queries. For simplicity assume ¢ > 4v,/n.

The student’s first goal is to find a cube containing ¢. Let cube(z, ) denote the cube of
edge length « parallel to the axes and centered at z. The student’s first query is the origin,
0 to which he receives the response a. If a = SUCCESS we are done. Otherwise, ¢ is
contained in ¢ = cube(0,2(a + 7)). zo = (—(a +7),...,—(a+ 7)) is ¢’s “lower-left” corner.
Let 1, ..., x, denote the corners adjacent to xg, namely

;= (—(a+7),.,—(at+7),a+v,—(a+7),....,—(a+7))

i—1

Let rg, ...,7, be the responses to the queries zq, ..., z,. (Again if any of them is SUCCESS
we are done.) Fix ¢ and consider the triangle (zo,x;,t). Its edges satisfy

Tot; = 2(a+7)
l’ot % To
l’it % ;.
Let z = (z1, ..., 2,), where
2 .2
re — 1
= + (a +

The projection of t on axis ¢ satisfies ¢; ! zi. Thus, t € cube(z,87) and the distance between
t and z is at most 4vy/n < e.

Next, we address the question of the computational complexity of the algorithms. We
call a student consistent if it has the property that its i-th hypothesis behaves like the target
with respect to all previous queries. Formally, for all 7 < ¢ < k its learning sequence

(c1,7(c1)), (e2,m(e2))y .-, (e, r(ck))

satisfies

d(ciycj) —v < rj < d(ei,c5) + 7.
In each step a consistent student decreases the set of consistent hypotheses. The target
belongs to all these sets, and the i-th hypothesis belongs to the consistent set of step z.

Although such an algorithm is very natural, the following example shows that it may be
intractable:

Example 6: In order to prove lower bounds on the computational complexity we consider
an infinite family of finite metric spaces {(Xg, d)}q, where A is the set of all simple paths
(and cycles) of the graph G = (V, F).

The distance between two paths ¢, ¢ C E is

d(Cl, CQ) = |ClACQ|.

12



It is easy to verify that this is indeed a metric.

Finding a hypothesis at the same distance from ¢; as the target may be NP-hard. Let
¢ = = 1/3 and G a Hamiltonian graph with n vertices and m edges. If the target is a
Hamiltonian cycle of G and ¢; is the empty cycle, then n —1/3 < r(¢;) < n+1/3. Since, all
subsequent hypotheses of a consistent student must be at distance ~ n from ¢;, they must
also be Hamiltonian cycles. However finding a Hamiltonian cycle in a Hamiltonian graph is
NP-hard in the sense that the existence of a polynomial algorithm implies P=NP. (The fact
that a Hamiltonian cycle is known to exist doesn’t make the task of finding one easy: Had
there been an n* time algorithm we could have run it on any graph, and if after n* steps it
did not output a cycle we would have known that the graph was not Hamiltonian.)

It should be noted, however, that the learning problem is not difficult: There exists a simple

algorithm to learn any cycle in |F| + 1 queries, each requiring constant computation: If
1

E = {ey,...,en} then let ¢; = {e;}. If e; ¢ t then r(¢;) = |t| + 1, otherwise, ¢; € ¢ and
1
r(¢;) = [t| — 1. Thus, it is easy to find ¢ypy = ¢.

5 The Relation to PAC Learnability

As discussed in the introduction, a notion of a metric space, reflecting the proximity relation
among concepts, is common to many models of computational learnability. In this section
we apply our metric approach by demonstrating how various learnability problems can be
formulated in the L BD model. We concentrate on Valiant’s PAC learnability and show how
the metric view point yields some improvements to basic results concerning that model, we
conclude with a sketched representation of some ‘Membership Queries’ models in the new
framework.

Let Y be some universe set. Let X' be a o-algebra of subsets of Y (i.e., X C 2¥), and let
C C X. Every probability measure P over ), under which all members of X’ are measurable,
induces a natural pseudo-metric on X': For every a,b € X' let dp(a,b) be P(a/Ab). In our
analysis we assume that the metric is known to the student. This corresponds to learnability
with respect to fixed distributions in the PAC-model. 2

The (distribution-free) P AC-learnability of a class C depends upon its Vapnik-Chervonenkis
dimension (VC—dimension) [23, 10]. The following result of Dudley [11, Theorem 9.3.1] re-
lates the VC'—dimension of a class C with the capacity CAP (as defined in Section 3) in such
induced pseudo-metrics dp.

Theorem 4: (Dudley) For a family of sets C let

s(C) = inf {w | 3K,V probability distribution P,Ve > 0, CAP,;,(C,¢) < K - (é) } .

For every such C

ZAn appealing aspect of the PAC—model is its “distribution freeness” — the ability to learn even when
the underlying distribution is not known. The LBD-model can be adapted to such a scenario by adding
an initial segment of queries to each learning session. The new segment is meant to provide the student
with enough (approximated) information about the metric. We can prove the existence of such metric-free
learning processes for, e.g., concept classes that are well-behaved (see [7]).

13



1. s(C) <VCDim(C).
2. s(C) = oo if and only if VCDim(C) = .

The theorem relates the rate of growth of CAP;,(C,¢), to the VC—dimension of C. If
C has a finite VC—dimension, v, then CAP;,(C,¢) is bounded by K - (%)U, for all P. The

V(C—dimension is oo if and only if no such polynomial bound exists.
As an immediate corollary of the above theorem we get:

Theorem 5: IfC is a class of sets that has a finite V('—dimension then for every distribution
P, the concept class C is uniformly (e,v)-learnable-by-distances in the metric dp, for any

Lo 1\ VCDim(C)
e >0 and v > 0. Furthermore, the needed number of queries is O ((;) )

Proof: Theorem 4 guarantees that for such C, CAP,;.(C,¢) is finite for all € (more
precisely, O ((%)U)), and now Theorem 1 ensures the learnability by distances of C using

O ((%)U) many queries. L]

Corollary 4: IfC is a class of sets that is (distribution-free) P AC-learnable then for every
distribution P, the concept class C is uniformly learnable-by-distances in the metric dp.

Proof: By [10], if C is (distribution-free) PAC-learnable then it has a finite VC-

dimension. []

Benedek and Itai [9] have studied P AC-learnability for fixed distributions. They show

the following characterization of such learnability:

Theorem 6: (Benedek-Itai) A concept class C C 2¥ is PAC-learnable relative to a
distribution P on Y if and only if for every ¢ > 0 there exists a finite set A C 2 that
g-approximates C.

Theorem 7: (C C 2Y is PAC-learnable relative to a distribution P if and only if it is
uniformly learnable by distances in the metric dp.

Proof:  Apply Theorems 1 and 6. ]

We now turn to a closer examination of these two types of learning processes. The PAC
and the LB D models have some evident common features. In both learning procedures there
is a concept class C known to the student, a target ¢t € C known to the teacher, and the
student is trying to come up with a hypothesis A that is a sufficiently good approximation
to t. The difference between the models lie in the nature of the communication between the
teacher and the student. In the PAC model, the student receives from the teacher pairs
< y,b >, where y is drawn at random according to the probability distribution P on ), and
b is a bit indicating whether y € £. In the L BD model, the student presents a hypothesis h
and receives from the teacher an approximation of the distance between h and the target ¢.

It turns out that these differences can be easily bridged. In Theorems 5 and 6 we have
seen that the PAC-learnability of C in (), P) implies its L BD-learnability in (X', dp). The
reverse direction is true as well (for every fixed distribution). We prove it by showing how

any LB D-student for C in (X,dp) can be transformed into a PAC-student for C in (Y, P).

14



Theorem 8: Let C C X C 2V, P, and dp be as above. For every £, > 0, if there exists
an LBD-student, Spgp, that (£,%) learns C (in (X, dp)) uniformly in ¢ e 0(£,2) steps,

274 274

then there exists a PAC-student Spac that (¢,d) learns C (in (Y, P)) after seeing f—fln %
examples. (See Theorem 9 for a better bound on the number of examples.)

For the proof we need the following inequality (due to Hoeffding [16]):

Lemma 3: (Hoeffding) Let X; (1 <7 < n), be n random variables each of which equals
1 with probability p and equals 0 otherwise. Then

e

(Intuitively, this means that if you have enough samples then you are close to the expected

1 n

> Xi —p

n =1

> B <2 e,

value).

Proof: (of the theorem) Let Srpp(5,%) be a learning-by-distance student for the
concept class C. We construct a student Spac that PAC-learns C (with respect to P),
and with probability 1 — § finds an e-approximation for the target. The idea of Spsc is to
simulate Syppp. Any time Sppp asks a query, ¢;, the student Spsc will try to approximate
d(¢;,t) using the examples given by the PAC-teacher. Spc works as follows:

e Simulate Sppp for at most ¢ queries. Any time Spgp presents a query ¢;, ask the
teacher for n examples (y1,01),. .., (Yn,bn) (the value of n will be determined later).
Define X}, to be 1 if yx € tA¢;, and 0 otherwise (this can be determined using the bit
br). Use £3°7_, X as an approximation for d(c;,t). Output the first hypothesis ¢;
that yields approximated distance d(¢;, 1) < %f (if within £ queries no such ¢; is found
then output arbitrary hypothesis. E.g., the ¢; with the smallest known approximated
distance to the target).

By the assumption, Stpp (5, §) learns C uniformly in £ steps. This means that if the teacher
gives the student the distances d(c;,t) with an error smaller than § then the student, within
¢ steps, finds an hypothesis in distance at most £ of the target. Therefore, assuming that in
our simulation all the approximated distances are within § from the real distances, then one
of the £ queries is guaranteed to be at (real) distance £ from the target. This distance will
be approximated to at most :1—6. On the other hand, every query with distance more than e
will be approximated to more than :1—6. What we still have to show is how to choose n so that
this condition holds with probability at least 1 — 6. The probability that Spac fails, is not
larger than ¢ times the probability that it fails in a single approximation. Using Lemma 3
we can bound the failure probability by:

l-2- e_zn(%f.

In order to make the above term be less than ¢, it suffices to choose



]

The PAC learning strategy of applying an L B D-student, as in the proof above, provides
a clear separation between the accuracy and the confidence parameters of the PAC-model
(the accuracy parameter £ and the confidence parameter §). The success probability of Spac
is fully determined by the number of examples, n, he requests for evaluating each distance
r(¢;). Independently, the accuracy of the approximation provided by Spac, is determined
by the choice of the accuracy parameter ¢ for the L B D-strategy.

5.1 An Interactive Variant of PAC Learning

One way of viewing the above results is that they allow learnability through a protocol whose
information-exchange parameters differ from those of the usual PAC protocol.

In the usual PAC scenario the communication is one-way — from the teacher to the
student. (This is in accordance with viewing the PAC teacher as a way of modeling ‘nature’
or the ‘environment’ of an observing student). The LBD framework models a different
scenario — its learning process is inherently interactive; the teacher’s responses are a function
of the student’s queries.

The PAC protocol used in the proof of the above theorem, Spac, offers an interactive
variant of PAC learnability. In that model, the Interactive PAC model defined below, the
responsiveness of the teacher helps her save in the size of the messages she has to transmit.

For 0 < p <1, let X, denote a random variable that equals 1 with probability p and
equals 0 otherwise.

Definition 6: (Interactive PAC Model) Let ) be a set and C C 2¥. Let P be a
probability distribution over ). Given a target concept ¢t € C, the communication between
the teacher and the student is carried out in rounds. In each round the student transmits
a hypothesis query h € C and the teacher responses by a bit value of the random variable

Xphat)-

Note that for y C Y the random variable Xp(,) can be viewed as an indication of the
membership in y of a point in Y drawn randomly according to P.

Corollary 5: (to Theorem 8) For every concept class C C 2%, probability distribution P
on YV, ¢ and ¢ , if C is (¢,5) PAC-learnable (by randomly drawn labeled examples), then
C is (e, d)-learnable in the Interactive-PAC model (by binary random variables of the form

Proof: By Corollary 4, PAC learnability implies LBD. Now invoke the proof of Theorem 8.
The student Spac (in that proof) is actually an Interactive-PAC student - it does not make
use of the identity of the sampled points y, the only information it needs is the values of the
random variables Xj;. U]

In other words, by allowing a reactive teacher, the amount of information a PAC-student
has to receive can sometimes be drastically reduced (relative to the student in Valiant’s model
[21]). For example, when learning of geometric shapes in the Euclidean space [0, 1]" (relative
to the uniform distribution) the family of learnable classes loses nothing if the information
given by the teacher is obscured by erasing the real vector T in every labeled example < 7,5 >
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and replacing the bit b by a bit b° which is 1 iff T € ¢At (where ¢ is the current student’s
query and t is the target concept).

From the communication complexity point of view, the Interactive-PAC model may, in
some cases, be more efficient than the PAC model (even when the overall communication
is considered). In the usual PAC scenario, the messages transmitted by the teacher are
pairs consisting of a point in the underlying space } and a membership (in the target) bit.
Such messages are log|Y| 4+ 1 bits long. On the other hand, an Interactive-PAC teacher
transmits just a single binary bit in every communication round. In each such round the
student transmits the identity of a hypothesis concept — log |C| many bits. Consequently,
the relative communication complexity of these models depends upon the ratio between |}
and |C].

Although for many learning problems |Y| > |C|, favoring the PAC communication pro-
tocol, this is not always the case. In particular, when the underlying space and the concept
class are both infinite, if the cardinality of the concept class is smaller than that of the un-
derlying space, (e.g. when considering a countable concept class over a Euclidean space R"),
then the Interactive-PAC approach may offer a better overall communication complexity.
ALON: Some more work!!

The above considerations can also be applied to distribution-free P AC-learnability:

Corollary 6: If C C 2Y is distribution-free PAC-learnable then, for every distribution P
over )V, (' is Interactive-PAC-learnable by a student that has access to the metric function

dp on C.

The following theorem shows that if one wishes to give up the information saving then,
allowing the student access to labeled examples (as in the PAC model), the number of
examples needed in the last theorem can be reduced.

Theorem 9: Let C C X C 2Y, P, and dp be as above. For every ¢,§ > 0, if there exists an
LBD-student, Sppp, that (3, %) learns C (in (X', dp)) uniformly in £ steps, then there exists

a PAC-student, Spac, that (,8) learns C (in (Y, P)) after seeing & In %—Z examples.

Proof:  The PAC student, Spac, operates as in the proof of Theorem 8, except for the
way he estimates distances. Rather than viewing new examples for every needed distance,
log 2¢+log %

Spac will ask for n = —5——2% many examples at the very beginning of the process. He

% loge

then uses this sample to estimate each of the ¢ many distances needed.

The same calculation as in the proof of Theorem 8 shows that this number of examples
suffices for ensuring that with probability > 1 — ¢ all distances are within § from their true
value. L]

It might be interesting to compare the number of examples needed by our student Spac,
to known lower and upper bounds on PAC-learnability. For the sake of this comparison
recall that £ (the number of steps in Theorem 8) is at most CAP(C, §). It follows that Spac
can learn with O (6% - (log CAP(C,¢) + log %)

Benedek and Itai [9] investigate the number of examples as a function of n(C,¢) which
is the size of a maximal set of concepts that are pairwise e-far. They get a lower bound of

Q (logn(C,2¢) + log(1 — §)). Note that n(C,¢) is closely related to CAP(C,¢), it is easy to

17



see that CAP(C, 5) > n(e) > CAP(C,¢e). By Theorem 4, in pseudo-metrics induced by PAC
VCODim(C)
problems CAP(C,e) = O ((1)

Ehrenfeucht et. al. [12] investigate the number of examples needed for distribution
free PAC learning as a function of the V(-dimension. They prove a lower bound of
Q (% - (d+log %)), where d denotes the VC-dimension of the concept class to be learnt.
(As a matter of fact they prove a slightly stronger result. Namely, for every concept class
there exists a distribution such that any algorithm learning the class with respect to this
fized distribution needs the above number of examples). Using Theorem 4 again, our upper
bound becomes O (6% -(d-log % + log %)) This bound holds for every fixed distribution.

One should note that, by [10], any consistent algorithm receiving labeled examples learns
within max{i—d -log 15_37 g -log %} many examples. For the cost of extra examples we gain, in
addition to the information saving discussed above, a relaxation in the needed measurability
constraints. This is the focus of the next subsection.

5.2 Relaxing the PAC Measurability Constraints

The last issue we would like to address in light of the tight connection between these models
is the measurability problem. A fundamental theorem of PAC-learnability is the following
Blumer et al. [10] characterization of distribution-free learnability in terms of the V(-
dimension.

Theorem 10: (Blumer et al.) For a well behaved concept class C the following are
equivalent:

1. C has a finite VC~dimension.

2. C is uniformly learnable by any consistent student (a student who picks any hypothesis
consistent with its input examples).

3. C is uniformly learnable (i.e. there exists a successful student for C).

The well-behavior condition is a complicated measurability constraint which is practically
impossible to verify. (Luckily, it is usually satisfied by concept classes of interest). This con-
dition is necessary for the implication from (1) to (2). There are examples of concept classes
of Borel subsets of [0, 1] that have VC—dimension 1 and yet a naive consistent algorithm
fails to learn them even with respect to the fixed uniform distribution on the unit interval
(see [7] or the appendix of [10]).

The following consequence of our analysis shows that in the context of fixed distributions
the implication from (1) to (3) is robust against any measurability difficulties.

Theorem 11: A concept class C C 2Y has a finite V(C~dimension if and only if it is
learnable with respect to every fixed distribution on Y (i.e. for every distribution on Y there
exists a uniform PAC-learning algorithm for C).
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Proof: If C has a finite VC—dimension then by Theorem 5 for every distribution P on
Y, C is learnable in (X,dp). Theorem 8 shows that C is PAC-learnable with respect to
P. For the other direction one can apply the proof of this implication (from (3) to (1) of
Theorem 10) in [10], it does not depend upon any measurability assumptions. L]

Let us mention again that the improvement here over the results of [10] and [9] is that
we assume no well-behavior condition. On the other hand, our theorem applies to fixed
distributions i.e. the learning algorithm depends upon the underlying distribution whereas
the consistent student in [10] is a fixed algorithm that handles every distribution.

The equivalence between conditions 2 and 3 in Theorem 10 is disappointing in the sense
that it rules out the possibility that one algorithm may have better learning capabilities than
another - all consistent algorithms can learn exactly the same classes. Theorem 11 implies
that, in the context of fixed-distribution-learning (at least), this equivalence is broken. There
exist learning algorithms (e.g., those based on an LB D-student) that can learn classes that
are not learnable by other consistent P AC-students.

5.3 Relations with Other Models

In this subsection we exhibit the possibility of viewing various other learnability models, as
special cases of the L BD model. More specifically, we consider the framework for learning
a concept class using certain types of queries, presented by Angluin [1]. We show that
some types of queries can be considered as queries for a “distance” information, under the
appropriate definition of a metric space.

One of the interesting types of queries is the equivalence queries. In this model, the
student guesses a concept and gets a SUCCESS if he guessed the target. If he did not
guess the target he gets a F'AIL together with a counterexample to the student’s hypothesis
(see e.g. [1, 2, 3, 5, 4, 20, 17], for examples of work that use this model). For example,
consider the problem of learning classes of languages (e.g. regular languages, context-free
languages). The model allows the student to ask queries which are languages (using some
fixed representation). The teacher answers with SUCCESS or with a counterexample (e.g.,
a string which is in the symmetric difference of the target language and the hypothesis).

This model has several variants, depending on the way in which the teacher chooses the
counterexample. Consider the following two variants:

1. The teacher’s counterexample is the first word in the lexicographical order on which
the target language and the query-language do not agree [20, 17],

2. The teacher’s counterexample is only the length of the first word on which the target
language and the query-language do not agree [17].

One can formulate the known results in these two variants of the model using the terminology

of the LB D-model by applying the following definitions: Let X = {L|L C {0,1}*, L is regular}.
Denote by wy,wsy,ws, ... the words in {0,1}* in a lexicographical order. Let L, Ly be any
two regular languages, and let ¢ be the minimal index such that w; € L1 ALy (i.e. w; belongs

to exactly one of the two languages). Finally, define di(Ly, Ly) = *, and da(Ly, L)
The main results in these two models become:

— 1
|w;|+1°
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e In the metric space (X, d;) there exists a polynomial-time LB D-student that exactly
identifies the target [20, 17] (the polynomial is in the number of states of an automata
accepting the target language, which is part of the student’s input).

e In the metric space (X, dz) no such polynomial-time student exists [2, 3, 17]. (Actually,
the overall result of these papers put together is stronger).

A different variant of the learning by equivalence queries model is called in [1] the re-
stricted model. In this variant the student, when coming up with a wrong hypothesis,
gets only FFAIL but does not get any counterexample with it. This model can be viewed
as an LBD-problem by endowing the concept class with the discrete metric. (As already
mentioned in this metric space there is no better strategy than exhaustively searching for
the target.) Angluin shows how a student learning in this model can be simulated by a
PAC-student. Her simulation [1, Section 2.4] of £ restricted equivalence queries takes O(¢?)
random examples (if we ignore ¢ and ¢). Our simulation in Theorem 8 is similar to hers
but improves the size of the needed sample to O(¢log ¢). It should be noted however, that
Angluin’s simulation works also for the unrestricted model, and that the number of equiva-
lence queries required for learning certain concept classes in the unrestricted model may be
exponentially smaller than the number of restricted equivalence queries [1, section 3.1].
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