
SIAM J. COMPUT.
Vol. 22, No. 4, pp. 875-887, August 1993

() 1993 Society for Industrial and Applied Mathematics
012

MULTIPLE COMMUNICATION IN MULTIHOP RADIO NETWORKS*
REUVEN BAR-YEHUDAt, AMOS ISRAELI, AND ALON ITAI

Abstract. Two tasks of communication in a multihop synchronous radio network are considered: Point-to-point
communication and broadcast (sending a message to all nodes of a network). Efficient protocols for both problems are

presented. Even though the protocols are probabilistic, it is shown how to acknowledge messages deterministically.
Let n, D, and A be the number of nodes, the diameter and the maximum degree of our network, respectively.

Both protocols require a setup phase in which a BFS tree is constructed. This phase takes O((n + D logn)log A)
time.

After the setup, k point-to-point transmissions require O((k + D)log A) time on the average. Therefore the
network allows a new transmission every O(log A) time slots. Also, k broadcasts require an average of O((k +
D) log A log n) time. Hence the average throughput of the network is a broadcast every O(log A log n) time slots.
Both protocols pipeline the messages along the BFS tree. They are always successful on the graph spanned by the
BFS tree. Their probabilistic behavior refers only to the running time.

Using the above protocols the ranking problem is solved in O(n log n log A) time. The performance analysis of
both protocols constitutes a new application of queueing theory.

Key words, radio networks, broadcast, point-to-point routing, distributed algorithms, average case analysis,
queueing theory, randomized algorithms

AMS subject classifications. 05C85, 60K25, 68M10, 68Q22

1. Introduction. A radio network is a network of processors which communicates using
radio. An important feature of radio communication is that if a receiver is in the range of two
or more transmitting stations, then, due to interferences, some messages might not be received.
A radio communication network is single-hop if all nodes are in transmission range of each
other. Otherwise it is multihop. Thus, sending a message between two stations in a multihop
network might involve transmissions through intermediate stations.

Most real life radio networks for data communication are quite limited. In fact, most such
networks are single-hop and most existing multihop networks resort to the tree topology. This
situation looks rather odd considering the ease with which radio networks can be initiated and
the flexibility and modularity of their operation.

A new approach for controlling the activity in multihop radio networks was presented in
the work of [3], where an efficient broadcast protocol is presented. Their method gives a new

way of looking at radio networks. However, they do not provide protocols for many important
network tasks.

In the present work we use some of the ideas presented in [3], together with some new

ideas to get very efficient protocols for two important and practical tasks. The tasks are k point-
to-point transmission and k-broadcast. Point-to-point transmission is the task of sending a

message from one station to another. Broadcast is a task initiated by a single station called the
source, which transmits a message to all stations in the network. A k-point-to-point transmis-
sion (k-broadcast) is a task which consists of k point-to-point transmissions (k-broadcasts).

*Received by the editors February 21, 1989; accepted for publication (in revised form) May 15, 1992. A
preliminary version of this paper was presented in the Symposium on Principles of Distributed Computing, Edmonton,
Canada, 1989.

Department of Computer Science, Technion-Israel Institute of Technology, Haifa, 32000, Israel. This author
was partially supported by Technion V.ER. Fund-Albert Einstein Research Fund.

tDepartment of Electrical Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel. This
author was partially supported by the Technion V.ER. Fund, New York Metropolitan Fund, and the Japanese TS
Research Fund.

Department of Computer Science, Technion-Israel Institute of Technology, Haifa, 32000, Israel. This author
was partially supported by Technion V.ER. Fund.

875

876 REUVEN BAR-YEHUDA, AMOS ISRAELI, AND ALON ITAI

Besides the theoretical interest, these tasks constitute a major part of real life multihop radio
network.

1.1. Model description. Our model consists of an undirected graph whose nodes rep-
resent stations (i.e., processors) and whose edges indicate possible communication, (i.e., an
edge between two nodes implies that the corresponding processors are within range and within
line of sight of each other). The processors have distinct IDs. Initially, each processor knows
its local neighborhood (i.e., the identity of its neighbors), the size of the network, n, and an
upper bound, A, on the maximum degree of the network. It need not have any additional
information of the topology of the network.

The processors may transmit and receive messages of length O (log n) and communicate
in synchronous time slots subject to the following rules. In each time slot, each processor acts
either as a transmitter or as a receiver. A processor acting as a receiver is said to receive a
message in time slot if exactly one of its neighbors transmits in time slot t. The message
received is the one sent. Since communication is synchronous the only difficulty in routing
messages, in this model, is the possibility of conflicts; that is, situations when several neighbors
of a processor transmit simultaneously and it receives nothing. More specifically, we assume
that there is no conflict detection (see [4]).

Throughout the paper, n denotes the actual number of processors, A the maximum degree
and D the diameter of the network.

1.2. Main results. Efficient protocols for k-point-to-point communication and k-broad-
cast are presented. Even though the protocols are randomized, it is shown how to acknowledge
messages deterministically. Both protocols require a setup phase in which a BFS tree is
constructed. This phase takes O ((n + D log n) log A) time.

After the setup, k point-to-point transmissions require O((k + D)log A) time on the
average. Therefore the network allows a new transmission every sequence of O (log A) time
slots. Also, k broadcasts require an average of O((k+ D) log A log n) time. Hence the average
throughput of the network is a broadcast every sequence of O (log A log n) time slots.

Both protocols pipeline the messages along the edges of a BFS tree. They are always
successful on the graph spanned by this tree. Their probabilistic behavior refers only to the
running time. The performance analysis of both protocols constitutes a new application of
queueing theory.

1.3. Previous work. Chlamtac and Kutten [7] showed that, given a network and a des-
ignated source, finding an optimal broadcast schedule (i.e., broadcasting schedule that uses
the minimum number of time slots) is NP-hard. They also routed messages through a (not
necessarily BFS) tree, and discussed "implicit acknowledgments." Their acknowledgments
are conducted in the absence of conflicts, and are achieved at the cost of increasing the time
of a single point-to-point communication to O(DA).

Chlamtac and Weinstein [8] presented a polynomial-time (centralized) algorithm for con-
structing a broadcast schedule which uses O(D log2 n) time slots. This centralized algorithm
can be implemented in a distributed system assuming the availability of special control chan-
nels, but the number of control messages sent may be quadratic in the number of nodes of the
network 16].

In a different context, Birk [2] independently discovered an acknowledgment mechanism
similar to ours.

Bar-Yehuda, Goldreich, and Itai [3] described a randomized single-source broadcast pro-
tocol. To ensure that with probability e all nodes receive the message, the protocol requires
O((D + log(n/e)) log A) time slots. For D 2, they also showed an f(n) lower bound for
deterministic protocols. Thus, for this problem there exist randomized protocols that are much

MULTIPLE COMMUNICATION IN MULTIHOP RADIO NETWORKS 877

more efficient than any deterministic one. For D 2, Alon et al. [1] showed an f2 (log2 n)
lower bound, which matches the upper bound of [8] and [3].

In [4] Bar-Yehuda, Goldreich, and Itai discuss several models of radio communication
and show how to detect conflicts and simulate a single-hop network. Thus they show how to
use protocols designed for the ETHERNET in a multihop network [6], [1].

1.4. Protocol outline. Both protocols depend on the existence of a BFS tree of the graph
which is constructed in a setup phase. In the beginning of the setup part, a leader is chosen.
Once the leader is chosen, it initiates the construction of a BFS tree whose root is the leader.
For this purpose the protocols of [3] and [4] are used. The setup phase is conducted only once,
after which any series of point-to-point transmissions or broadcasts might be performed.

The broadcast process is reactive (continuous); it is invoked whenever a source originates
a message to broadcast. It consists of two subprotocols: Collection--sending the messages
from the sources to the root of the BFS tree and distribution--sending the messages from the
root to all the processors of the network.

The point-to-point transmission is also reactive. It is invoked whenever a processor wishes
to send a message. A message from node u to v travels first up the tree. Once the message
reaches a common ancestor of u and v it continues downwards towards v. The protocols for
both directions are very similar to the collection protocol and are fully described in 5.

Since both protocols are reactive, it is not possible to wait until all the messages have
finished traveling upwards, and only then start their journey downwards. Therefore, in both
protocols the collection and distribution subprotocols are conducted concurrently, either by
using separate channels or by multiplexing: The odd time slots are dedicated to the upward
traffic (collection) and the even ones to the downward traffic. We shall not elaborate further
and assume separate channels.

All our protocols make use of a basic protocol, Decay [3], for passing messages from one
layer to the next. In the sequel we use the term send whenever Decay is used.

procedure Decay (m);
repeat at most 2 log A times

transmit rn to all neighbors;
flip coin R{0, 1}

until coin O.

Decay is a probabilistic protocol, with the following properties:
(1) It lasts 2 log A time slots.
(2) If several neighbors of a node v use Decay to send messages then with probability

greater than the node v receives one of the messages.
Several of our protocols require that all successfully sent messages be acknowledged.

We show that, although there is positive probability that a message is not received, every
message that has actually been received is acknowledged with certainty. The overhead of the
acknowledgment mechanism is minimalmit slows down the protocol by a factor of 2. As a
result the point-to-point transmission is always successful on the graph spanned by the BFS
tree.

1.5. Organization. Section 2 describes the setup phase. Since it relies on previous work
we only show how to modify it for our needs. All the other results are entirely new. Section 3
describes the acknowledgment mechanism, 4 the collection protocol and its analysis, 5 the
point-to-point transmission protocol and 6 the distribution protocol. An application, ranking,
is described in 7. Concluding remarks appear in 8.

878 REUVEN BAR-YEHUDA, AMOS ISRAELI, AND ALON ITAI

2. The setup phase. Our protocols require the existence of a basic communication sub-
network. This network consists of a leader which is a root of a BFS tree. Bar-Yehuda,
Goldreich, and Itai [4] described how to find a leader in O((log log n). (D + log(n/e)) log A)
time.

In [3] Bar-Yehuda, Goldreich, and Itai describe how to find a BFS tree. Their algorithm
assumes that all nodes wake up at time 0. It requires O(D log A log(n/e)) time slots and
succeeds with probability e. Since we have assumed that all the IDs are distinct and n
is known to all the nodes, the leader election and BFS can be modified so that they always
succeed; only the running time is random.

First, choose e 1/n, thus with probability > n -1 the leader election and the BFS
protocol succeed. To ensure that the protocol always succeeds, when joining the tree each
node sends a message to the root using the collection protocol of 4. This protocol only
uses already constructed edges of the BFS tree, always succeeds, and requires an average of
O (n log A) time slots to send all these messages. If the root does not receive all the messages
by twice the expected time, the algorithm is aborted and the entire setup phase is reinvoked.
Note that since all nodes know when the invocation should terminate, different invocations by
the same processor cannot exist concurrently.

Since the probability of reinvocation is less than , the entire modified setup protocol
lasts O ((n + D log n) log A) time slots on the average.

2.1. Preventing collisions from different levels. An advantage of the BFS tree is that a
collision at a node v at level can occur only by messages sent from levels 1, i, and + 1.
Collisions of messages sent from different levels are prevented by using time multiplexing:
We require that a mode at level transmits a message at time slot only if _-- mod 3. This
increases the duration of our protocols by a factor of three. Henceforth, we assume that this
mechanism has been built into all our protocols.

3. The acknowledgment protocol. The protocols of4 and 5 use messages which are
each destinated to a single processor. These protocols require that every message be acknowl-
edged. We now show how to conduct acknowledgments deterministically. The odd time slots
are dedicated to the original protocol and the even ones to acknowledgments. Namely, every
node that receives a message sends an acknowledgment on the next time slot.

The next theorem shows the correctness of this protocol. The theorem depends on the
fact that each message has a unique destination and that the destinations of different messages
successfully received at the same time slot are distinct.

THEOREM 3.1. Let v be a node that received a message from node u using the above
protocol, then u receives an acknowledgment.

Proof. Suppose that v received the message from u at time slot and that u did not
receive the acknowledgment. According to the protocol, v sent an acknowledgment at time
slot + 1. Since u did not receive the acknowledgment there must have been a conflict at
u, i.e., at time slot + another node, v’, connected to u also sent an acknowledgment (see
Fig. 1). According to the protocol, v would not send an acknowledgment unless it received a
message destinated to it at time slot t.

However, since the message sent by u was destinated to v :/: v and v’ acknowledges only
messages destinated to it, v’ received its message from a node u’ -#: u. Therefore, at time slot
both u and u’ sent messages, and since v’ is connected to both of them, a conflict occurred

at v’ (at time slot t) and v did not successfully receive any message. This contradicts the
assumption that v successfully received a message at time slot t. 71

4. Collection. The purpose of the collection protocol is to send messages from the
sources to the root of the BFS tree. Since no source knows the number of IDs of the other
sources, this is done concurrently and independently by all of them.

MULTIPLE COMMUNICATION IN MULTIHOP RADIO NETWORKS 879

FIG.

Messages are sent, using Decay, via the BFS tree from BFS children to their parents. To
each message we append the ID of the node v which sent the message and the ID of v’s BFS
parent. This information enables a node to figure out whether the message was sent by its BFS
child, by its BFS parent, or by another node. The nodes will make use of this information and
we shall omit the details of this.

4.1. The collection protocol. Every node has a buffer of unacknowledged messages.
Initially, all buffers except those of the sources are empty. The protocol proceeds in phases.
In the odd time slots of each phase every node whose buffer in not empty executes Decay
to send a message from its buffer to its BFS parent. The even time slots are dedicated to
acknowledgments as explained in 3. Every such message is re-sent until an acknowledgment
is received. Thereupon it is removed from the sender’s buffer. When a message is received it
is put on its receiver’s buffer. Since the acknowledgment occurs immediately after sending,
messages exist in exactly one buffer and proceed from child to parent.

4.2. Analysis of the collection protocol.

4.2.1. Transmission between adjacent levels. We first estimate how fast messages move
from level to level.

THEOREM 4.1. Let >_ be a level containing messages at the beginning of a phase.
def

There is probability > # e- (1 e- 0.2325 that during the phase a message from
level is successfully received by its BFS parent.

Before sketching the proof, note the difference between this theorem and property (2) of
Decay. Suppose node u is sending a message to its neighbor v and node u’ to its neighbor
v’. If u’ is connected also to v and u’ to v, then property (2) is satisfied even when v gets the
message of u’ or v’ gets that of u. In contrast, here we insist that each message arrive at its
correct destination.

Proof sketch. A phase consists of a single invocation of Decay. At any given time, the
nodes which still want to transmit are called live. At each time slot each live processor first

dies. Therefore, on the average, half of the live nodestransmits and then with probability
die at each time slot.

Let TRYi be the set of nodes of level who are live at time 0. Consider two cases.
Case 1.]TRYil < A" The analysis of Decay [3] implies that with probability > there

exists a time slot with exactly one live processor u of TRYi. Hence, the BFS parent of u
receives u’s message.

Case 2. ITRYil > A" The probability that a node v TRYi is live at time to ae_f log A
is 1/A. The probability that TRYi contains a live node at time to is (1 (l/A)) IrRYil >

1-(1--(I/A))A > 1-e-1.
Let u be the first such node in some fixed arbitrary order, w its BFS parent, and S

{v TRYi[(v, w) E}\{u} (the transmitting neighbors of w not including u). If at time

880 REUVEN BAR-YEHUDA, AMOS ISRAELI, AND ALON ITAI

to, S contains no live nodes, then w receives u’s message. The existence of a live node in S is
independent of the behavior of u. The probability that at time to, S contains no live node is at
least

Since]S] _< A the above probability is > e-. Therefore, the probability of a
successful transmission is greater than or equal to

Prob(TRYi contains a live mode at time to) Prob (at time to all nodes in S dead)
> (1-e-1) xe-.]

4.2.2. Outline of the analysis. In the remainder of the section we shall show an upper
bound on the expected completion time of the collection protocol. We shall go through a series
of models and show that when moving from one model to the next the expected completion
time can only increase. In this subsection we describe the models; a formal proof follows in
subsequent subsections.

The first model is the previously discussed radio network which contains a BFS tree of
depth D and k messages arbitrarily placed on the nodes of the tree. In Theorem 4.1 we showed
that there is probability > # e- (1 e-) that among all the messages placed in the nodes
of level at least one moves to level 1.

The second model consists of a path of D + nodes. All the messages in the ith level of
the previous model reside in node of the path. The root of the tree is now node 0. We also
stipulate that in a single step at most one message can move from node to node and
that the probability that such a move actually took place is exactly #.

In the third model the messages are not already present in the system at time 0, but their
arrival is a Bernoulli event with parameter) < #, i.e.., for every time there is probability
that a new message appears at node D.

The last model we introduce (model 4) is identical to the third, but we assume that it is
already in steady state in the sense of Queueing Theory (see 14]) and we define the expected
completion time to be the expected time for k additional messages to arrive at node D and
then proceed to the root (node 0).

4.2.3. A tandem queue of Bernoulli servers. We now use Queueing Theory to analyze
the performance of model 4: The model consists of D servers connected in series, with the
output of the ith server being the input to the st. We first analyze the behavior of a single
level.

A Bernoulli server with parameter # is a discrete server (i.e., it operates in discrete time
steps) such that if at any time step the queue of incoming customers is nonempty, then with
probability # during that time step exactly one customer is served (removed from the incoming
queue and placed on the outgoing queue). The arrival rate) is the probability that a new
customer (i.e., message) appears in the incoming queue during a phase. The departure process
is the process by which customers are served by the server. Following Burke [5], Hsu and
Burke 12] analyzed the behavior of the departure process when ,k < #.

THEOREM 4.2 [12]. Consider the departure process ofthe above server (with) < IX), i.e.,
let (t) ifat time a customer was processed, and (t) 0 otherwise. Then converges
to a Bernoulli process with parameter

Hsu and Burke also showed that the probability that at time the length of the queue is j
approaches a limit pj and

MULTIPLE COMMUNICATION IN MULTIHOP RADIO NETWORKS 881

]j))
j--1

(*) Po --, Pl --Po, Pj Pl.
/x (1 -))# tz(1 --.)

Thus the expected queue length is N Y.j>_o JPJ ()(1 ,k)// ,k). By Little’s result

[14], in steady state the average time in the queue is, E(T) (/X) (1))/(# X).
We now return to model 4, a steady-state network of D Bernoulli processors connected

in series each with parameter #, and the arrival rate to the Dth server is ,k < /z. The major
observation is that since the output of the ith server is the input to the st, the input to all
servers is Bernoulli with parameter .. Using this observation we get the following theorem.

THEOREM 4.3. The expected completion time ofmodel 4 is (k/) + (1)/(/)D.
Proof. Suppose that at time to the queueing system is in steady state and a message mo

arrives. Let T denote the time the message spends in the queues. Consider the k messages
m mk preceding message too. Let Xi denote the interarrival time between message m
and the next message, mi_ 1. Define

Qk T -+- XI -k- X2-f- + XI,.

Qk is the time for k messages to pass through the queueing system of model 4. The expected
time is

E(Q,) E(r) + E(X) + E(X2) +... + E(X,).

The theorem follows from the fact that E(Xi) (1/)) and from the previous discussion which
showed that

E(T) D. 71

In Theorem 4.15 we shall show the expected completion time of model is less than or
equal to that of model 4. Thus the performance of model 4 constitutes an upper bound for
the radio network. Substituting X /1 -/x satisfies X </x and yields that the expected
number ofphases required for k messages to reach the root is at most 2(1 +/1 #)#-1 (k+D).
Since each phase lasts twice the time of Decay and # e-l(1 e-), we get the following
theorem.

THEOREM 4.4. The expected number of time slots for k messages to reach the root is
bounded by 32.27(k + D) log A.

This constant can be improved using the techniques of 11].

4.2.4. The expected completion time of model 3 is not greater than model 4. The
difference between model 3 and 4 is that model 3 stipulates that initially all queues are empty,
whereas in model 4 the queue in each node has reached steady state; in particular there
is nonnegative probability that the queues are not empty. In this subsection we prove the
intuitively clear point that adding messages to the queues can only increase the expected
completion time.

Consider partitions of messages between the levels, i.e., (D + 1)-vectors a (al
aD+l) such that ai >_ 0. A move vector is a (D + 1)-vector of nonnegative integers, m
(m m D+). Partition a’ Move(a, m) is obtained by moving m messages from level
to level (if m > ai then only ai messages are moved). Formally, the number of

messages moved from level is i min(ai, mi), D, 3+1 mz+l. Therefore,
a ai i At- i+1.

882 REUVEN BAR-YEHUDA, AMOS ISRAELI, AND ALON ITAI

A move sequence is an infinite series M (rn m2, ...) of move vectors. Move* (a, M, t)
is the result of making moves according to M, i.e.,

Move* (a, M, 0) a

Move*(a, M, + 1) Move(Move*(a, M, t), rnt+l).

Define a partial order < between partitions, such that a < b if and only if there exists a move
sequence M and an integer such that a Move* (b, M, t). (Also, a < b if a < b and a b.)

A move vector rn is a singleton if exactly one of its components is and all the other
components are zero; the singleton whose th component is is denoted ei. The following
lemma shows that we can simulate any move vector by a move sequence of lexicographically
nonincreasing singletons.

LEMMA 4.5. For every move vector m there is a singleton move sequence Em such that

for every partition a, Move(a, m) move*(a, Ern, -?=1 mi).
2Proof. Let Em (.elm, em, .) such that etm ej, where j is the first nonzero component

-I I-Iof rn -I-’, em
COROLLARY 4.6. a < b if and only if there exist an integer and a move sequence E

consisting only ofsingletons such that a Move*(b, E, t).
LEMMA 4.7. Ifa < b thenfor any move vector m, Move(a, m) < Move(b, m).
Proof. Lemma 4.5 and Corollary 4.6 imply that it suffices to prove the lemma for

rn ej and a Move(b, ei). If j + then Move(a, ej) Move(Move(b, el), ej)
Move((b, ej), el), implying Move(a, ej) < Move(b, ej).

Also, if bi 0 then a b. Thus we assume that j + and Di > 0. If bj 0
then b Move(b, ej), and Move(a, ej) Move(Move(b, ej+), ej). From the definition
of <, Move(Move(b, ej+), ej) < b Move(b, ej). Otherwise (bj - 0), Move(a, ej)
Move(Move(b, ej+l), ej) Move(Move(b, ej), ej+l) _< Move(b, ej).

The completion time of a partition a with respect to a move sequence M is T (a, M)
min{t Move(a, M, t) (0, 0 0) }. (For some M’s the completion time may be infinite.)

LEMMA 4.8. If a < b thenfor all M, T (a, M) < T (b, M).
Proof. Let b be the least partition for which there exists a move sequence M and a partition

a such that a < b while T (a, M) > T (b, M). Let M’ satisfy

T (b, M’) Min(T (b, M) T (b, M) < T (b, M) }.

Let M’ (m m2, .). The minimality of M’ implies that Move(b, rn1) < b. Define
M" (m m2, .). By Lemma 4.7 Move(a, rn) <_ Move(b, rn), thus by the minimality
of b, T(Move(a, m), M") < T(Move(b, rn), M"). Hence,

T(a, M’) < + T(Move(a, ml), M") < + T(Move(b, m), M")- T(bM’).

Consider an arbitrary probability distribution on the move sequences. In a tandem queue
t_ 1)- #,i D, andof Bernoulli servers with parameter # and arrival rate L, P(m

P(m 1)D+I
Let Pt (a) be the probability that T (a, M) t. The average completion time is E(T (a))
tp, aS t= j--t
LEMMA 4.9. a _< b implies that E(T(a)) _< E(T(b)).
Proof. Leta_<b. Thus byLemma.4.8, {M" T(a,M) _< t}

_
{M" T(b,M) _<

t}. Taking probabilities, P({M T(a,M) _< t}) > P({M T(b,M) _< t}). In other
words, Y=0 pj(a) > ’=0 pj(b). The last condition defines that T(a) is stochastically

MULTIPLE COMMUNICATION IN MULTIHOP RADIO NETWORKS 883

greater than T(b) [15]. In this case, E(T(a)) --tl -jct PT(a) < t Yj=, PT(b)
E(T(b)). q

LEMMA 4.10. The expected completion time of model 3 is less than or equal to that of
model 4.

Proof. In model 4 the expected completion time depends both on the distribution of the
initial partition and on the move sequences.

Let a (al a9, aD+l) be an initial partition, a a9 are the lengths of the
queues at the nodes, while ao+ k since the completion time of model 4 is the time k
additional messages appear at node D and reach the root.

in model 3 the initial partition is k (0, 0 0, k). k < a since for M ((a az,
0), (a2 a/9, 0, 0) (a9, 0 0), (0 0)), k Move*(a, M, D). By
Lemma 4.9, E(T (k)) < E(T (a)). Our result follows since this holds for every initial partition
of model 4. [3

4.2.5. The expected completion time of model 2 is not greater than model 3.
LEMMA 4.1 1. The expected completion time of model 2 is less than or equal to that of

model 3.

Proof. In model 3 the initial partition is k (0, 0 0, k), while in model 2 it is
b (bl b9, 0), such that k Y bi. Obviously, b < k, so the result follows as before
from Lemma 4.9. [3

4.2.6. The expected completion time of model 2 is not smaller than model 1. The
difference between models and 2 is in the move vectors. In model 2, m {0, 1} and

P(mit 0) #,. while in model 1, m can assume any nonnegative integer value and
P(m 0) # The actual movements of the messages depend on the topology. To
prove that the expected completion time of model 2 is not greater than that of model we need
to consider the effect of changing the move vectors.

A move vector m (m 1, m 2 m z+ dominates the move vector l (rh 1, th 2,

th 9+) if for all i, m ? i.

LEMMA 4.12. Ifm dominates r and a < b then Move(a, rn) < Move(b, ff).
Proof Let Em and Ea, be the singleton move sequences corresponding to m and ff

(Lemma 4.5). Let and/" be the respective lengths. Since E, is a subsequence of Em, by
repeated use of Lemma 4.7 we can show that Move*(a, Em, t) < Move*(a, E,, {). Thus,
by Lemma 4.5,

Move(a, m) Move* (a, Em, t) < Move* (a, Ea,, {).

By Lemma 4.7,

<_ Move* (b, E, ?) Move(b, r). 3

A move sequence M(m m2, .) dominates li(ff r2, .) if for all j, mJ dominates

LEMMA 4.1 3. IfM dominates and a < b then T (a, M) < T(b, 171).
Proof. The proof is by induction on T (a, M) and using Lemma 4.1 2.]

LEMMA 4.14. The expected completion time of model is less than or equal to that of
model 2.

Proof. Consider an instance a, a2 aT of model 1,. i.e., the completion time is T
and a is the number of messages at level at time < T. Define the move sequence

is the number of messages that moved from ievel to levelM (m, m2, .) as follows: m
t-- 0at time t. When a > 0 then by Theorem 4.1, P(m _> 1) > #. However, when a

> 1) 0, violating the probabilistic assumptions of modelthen mit 0, SO obviously, P(m

884 REUVEN BAR-YEHUDA, AMOS ISRAELI, AND ALON ITAI

2. We therefore define the move sequence (r 1, 12, .): if a > 0 then h m i,

By Theorem 4.1 and the construction P(rh > 1) >/z Since Motherwise (a[0), rh
0, for every < T Move* (a, M t) Move* (a, M, t). Thusand differ only when a

the completion times T (a,) T(a, M) T.
Construct a move sequence M (lli,’", Ilr," ")" (/’i E {0, 1}). If rh > then

h with probability ((P(m > 1) #)/P(m > 1)); otherwise rh 0. Since 11
dominates 171, by Lemma 4.1 3, the completion time of ll is less than or equal to that of 1I.

By the construction of M,

P(rhti 0) P(th 0) + P(rh > 0 and rh 0)
P(th > O) #o +I o

P(rh > O)

(1 P(th > 0)) -1- (P(rh > O) lz) #.

Thus, the distribution of 37/is identical to the distribution of the move sequences of model 2.
The required result follows by taking expectations. [3

We summarize the above reductions with the following theorem.
THEOREM 4.15. The expected completion time ofmodel is less than or equal to that of

model 4.

5. Point-to-point transmission. As mentioned before, this protocol consists of two sub-
protocols: The upward direction subprotocol from the initiator of the message u to a common
ancestor w of u and the destination v and the downward direction subprotocol from w to v.
However, in order to conduct these protocols the network should first execute a preparation
protocol. This protocol is executed only once.

5.1. Preparation. This protocol is executed during the set-up phase (2) before starting
any point-to-point transmission. In 2 we described how the BFS tree is constructed; here we
describe how additional information the BFS parent, and the BFS descendants (and on which
subtree each descendant belongs), are conveyed to each node.

The BFS protocol of 2 enables each node to know the ID of its BFS parent and its
depth (distance from the root). The descendant information can be found once the BFS tree
is constructed: As soon as a node joins the BFS tree, it sends its ID to the root via its parent.
During the BFS protocol, each node can record its parent; thus, to send a message to the root
it is sufficient to send it to that parent and ask it to send the message further. Whenever a
node receives such a message from one of its children, it adds the ID of the originator of the
message to the list of IDs of descendants. Conveying all the descendant information requires
the collection of n messages, i.e., O((n + + D) log A) O(n log n) time. To record
all this information each node must have sufficient storage to keep O (n) IDs.

To save space (and time) we propose the following scheme [13]: After the BFS tree is
completed, a depth first search (DFS) is conducted on the BFS tree. Henceforth, each node
uses its DFS number as its address. Since the DFS numbers of the descendants of a node
constitute a consecutive range, it suffices that each node remember the DFS number of each
of its children and the maximum DFS number of all the descendants. Thus, each node v needs
only O(deg(v) log n) bits of local memory.

Using a token, DFS can be implemented in O(n) time: First the token conducts a DFS of
the graph, each node sends the token to the largest neighbor not yet in the DFS tree, and when
all the neighbors are exhausted it is sent to the parent. Whenever a node sends the token, it
broadcasts its own ID together with the ID of its BFS parent. Thus all the neighbors of a node
know when the node joins the DFS tree, and the token is not sent to nodes already in the tree

MULTIPLE COMMUNICATION IN MULTIHOP RADIO NETWORKS 885

(except when the DFS backtracks from a child to its parent). There are no conflicts, since only
the node holding the token can transmit; also the entire traversal requires 2n 2 time, since
the token traverses once in each direction of each tree edge.

After the first DFS is completed, each node knows the parents of all its neighbors; in
particular it knows which of its neighbors are its BFS children. Thus we can conduct a second
DFS traversal this time on the BFS tree. This traversal also costs O(n) and after it is completed
each node knows the DFS number of all its BFS children and its maximum descendant. Note
that we required that each node knows the IDs of all its neighbors only in order to conduct the
first DFS traversal.

5.2. The upward subprotocol. This protocol is essentially identical to the collection
protocol, except that messages do not go all the way to the root but only to the least common
ancestor of the originator and the destination which are included in the message. When the
message reaches a BFS tree ancestor of the destination, the downward protocol is invoked.

5.3. The downward subprotocol. This protocol is also very similar to the collection
protocol. The messages are prepended with the ID of their final destination. Every node sends
messages destinated to its BFS children and keeps a buffer of unacknowledged downgoing
messages. Here we also use Decay. On each phase a message is sent, according to that
protocol. Messages are resent until an acknowledgment is received. A node w receiving a
message destinated to u processes it only if u is a BFS-tree descendant of w. To process a
message, w acknowledges it, and if w u it is put on w’s downgoing buffer.

5.4. Performance analysis. The setup phase requires O (n + D log A) time after which
passing k messages requires an average of O ((k + D) log A time. When k -+ x the average
time per message is O (log A).

6. Broadcast. To broadcast a message a node first sends the message to the root using
the collection subprotocol of 4. Then the message is sent to all the nodes of the network
using the distribution subprotocol to be described.

In the distribution protocol every message has several destinations, therefore, the ac-
knowledgment mechanism of 3 can no longer be used. In principle the message can be sent
using the BFS protocol. However, each message would require 2D log A log n time to reach
all the nodes with probability e. A better idea is to use pipelining: Send the + st message
before the th one reaches its destination.

The protocol consists of superphases each consisting of 4 log A log n time slots (we allow
an error of e l/n2). At superphase the root sends the tth message and all the nodes of
level repeatedly send the t-ith message (using the Decay protocol 2 log n times).

Let v be a node. of level and a superphase in which the nodes of level send the
message m. By property (2) of Decay, in each invocation of Decay, there is probability >
that v receives a message. Since there can be no interference by messages sent from different
levels (2.2), if v receives any message it must be from level and since all the nodes
of that level send the same message, with probability > v receives the message m. Since
a superphase consists of 2 log n invocations of Decay there is probability >_ 1/n2 that
v receives m during the superphase. The probability that rn is passed successfully to all the
nodes of the network is > 1/n.

For each message the above protocol may fail with finite probability. If the number of
messages is unbounded then eventually the protocol will fail. This failure can be prevented
by changing the protocol as follows:

The root appends consecutive numbers to the messages. Every node v
examines these numbers and when v encounters a gap it realizes that it did

886 REUVEN BAR-YEHUDA, AMOS ISRAELI, AND ALON ITAI

not receive a message. Thereupon, v sends a message to the root requesting
it to resend the missing message.

Since, on the average, no more than 1In of the messages will be resent, the extra
load on the network is a factor -i=o(1/n i) n/(n 1). Moreover, the time spent in
each layer is O(log A log n); thus the effective rate in which messages leave the root is
O ((n / (n 1)) log A log n) O (log A log n). Also, each message requires an average of
O(D log A log n) time slots to reach all the nodes.

The previous change causes another problem: The message numbers are unbounded. An
additional change can correct this problem. The messages are numbered mod 3n2. After
message number n2 is received each node sends an acknowledgment to the root. The expected
time that all these messages reach the root is O((n 4- D)log A). Thus the expected time
that all the acknowledgments reach the root is O((D log n 4- n) log A). Let c be the implied
constant in the above expression. If the root does not receive acknowledgments from all the
nodes by 2c((D log n 4- n) log A) time slots after it sent the nZth message it resends the last
n 2 messages. It can be shown that the probability that the nZth message has to be resent is less
than g, thus this last correction increases the load of the system by at most a factor of 2.

7. Ranking. Our protocols can be used for additional problems, such as ranking in ex-
pected time O (n log n log A):

The problem:
Given n processors with distinct IDs idl idn, renumber the processors,
id’ id’ such that < id; < n and id; < idj if and only if idi < idj.

The protocol:
Use point-to-point communication to send all the IDs to the root. It calcu-
lates the destination of each of the new IDs and sends them to the nodes.

There is a total of 2n 2 messages, which require O (n log A) time (not including the setup
costs of 2).

8. Remarks and open problems. (1) If n is not known but only an upper bound N, we
can still find a BFS tree with probability e in expected time O(D log(N/e) log A). This

setup time is sufficient for k-broadcast. However, point-to-point transmissions still require
O(n + D log(N/e) log A) time to acquire the descendant information.

(2) If there are no IDs then the processors can randomly choose sufficiently long IDs such
that with probability t all the IDs are distinct.

(3) Suppose that we change the model such that in case of a conflict the receiver may
get one of the messages. In this model our deterministic acknowledgment mechanism is no

longer valid. A more complicated, less reliable and slower protocol also exists for this case.
(4) In some "real life" situations processors can detect that a conflict occurred. We have

not postulated this ability since we do not know how to use it,

(5) Our protocols route messages through a spanning tree causing congestion at the root.
Are there efficient communication protocols that avoid this problem?

Acknowledgments. it is a pleasure to thank Shay Kutten and Moshe Sidi for helpful
discussions and an anonymous referee for suggesting using DFS numbers to improve the
memory requirements.

REFERENCES

N. ALON, A. BAR-NOY, N. LINIAL, AND D. PELEG, A lower boundfor radio broadcast, J. Comput. System Sci.,
43 (1991), pp. 188-210; also in STOC 1989.

MULTIPLE COMMUNICATION IN MULTIHOP RADIO NETWORKS 887

[2] Y. BIRK, Concurrent communication among multi-transceiver stations over shared media, Ph.D. thesis, Tech.
Report CSL-TR-87-321, Stanford University, Stanford, CA.

[3] R. BAR-YEHUDA, O. GOLDREICH, AND A. ITAI, On the time-complexity of broadcast in radio networks: An
exponential gap between determinism and randomization, J. Comput. System Sci., 45 (1992), pp. 104-
126; also in PODC 1987.

[4] ,Efficient emulation of single-hop radio network with collision detection on multi-hop radio network
with no collision detection, Distributed Computing, 5 (1991), pp. 67-71.

[5] E J. BURKE, The output ofa queuing system, Oper. Res., 4 (1956), pp. 699-704.
[6] J. CAPETANAKIS, GeneralizedTDMA: The multi-accessing tree protocol, IEEE Trans. Comm., COM-27 (1979),

pp. 1479-1484.
[7] I. CHLAMTAC AND S. KUTTEN, On broadcasting in radio networks-problem analysis andprotocol design, IEEE

Trans. Comm., COM-33 (1985).
[8] L. CHLAMTAC AND O. WEINSTEIN, The wave expansion approach to broadcasting in multi-hop radio networks,

INFOROM (1987), pp. 874-881.
[9] DIGITAL--INTEL--XEROX, The Ethernet data link layer and physical layer specification 1.0, Sept., 1980.
10] R. GALLAGER, A perspective on multiaccess channels, IEEE Trans. Inform. Theory, IT-31 (1985), pp. 124-142.
11 M. HOFRI, A feedback-less distributed broadcast algorithm for multihop radio networks with time-varying

structure, 2nd ACM Intr. MCPR Workshop, Rome, May, 1987. Also available as TR-451, Computer
Science Dept., Technion, Haifa, Israel, March, 1987.

12] Hsu AND P. J. BURKE, Behavior of tandem buffers with geometric input and Markovian output, IEEE Trans.
Comm., COM-24 (1976), pp. 359-361.

13] A. ITAI AND M. RODEH, The multi-tree approach to reliability in distributed systems, Proc. 25 Symposium on

Foundations of Computer Science, Oct. 1984, pp. 137-147. Also in Inform. Comput., 79 (1988), pp.
43-59.

[14] L. KLEINROCK, Queueing Systems, Volume 1: Theory, John Wiley & Sons, New York, 1975.
15] D. STOYAN, Comparison Method for Queues and Other Stochastic Models, John Wiley & Sons, Inc., New

York, 1983.
[16] O. WEINSTEIN, The wave expansion approach to broadcasting in multihop radio networks, M. Sc. thesis,

Computer Science Dept., Technion, Haifa, Israel, 1987.
17] D.E. WILLARD, Log-logarithmic selection resolution protocols in a multiple access channel, SIAM J. Comput.,

15 (1986), pp. 468-477.

