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Summary. Given a formulation of a problem, a compact representation is 
required both for theoretical purposes - measuring the complexity of algo- 
rithms, and for practical purposes - data compression. 

The adjacency lists method for representing graphs is compared to the 
information theoretic lower bounds, and it is shown to be optimal in many 
instances. For n-vertex labeled planar graphs the adjacency lists method 
requires 3nlogn+O(n) bits, a linear algorithm is presented to obtain a 
3/2n log n+O(n) representation while n log n+O(n) is shown to be the mini- 
mum. 

1. Introduction 

Algorithm design is concerned with finding efficient algorithms to solve prob- 
lems. Each instance of a problem has some representation. 

One measure of efficiency is the worst case time complexity; for each 
algorithm Al a function wt m is defined as follows: for each problem P let 
tAt(P ) be the number of steps required by the algorithm Al, then wtm(n ) is the 
maximum of G,(P) over all problems whose representation requires n bits. The 
representation method plays a crucial role in defining the complexity. In order 
to obtain meaningful complexity measures, it is required that the problems be 
represented compactly. 

The knapsack problem may be solved in time linear in the length of a 
representation, whose length is an exponential function of the length of the 
usual more compact representation. 

In Sect. 2 the space required to store adjacency lists is computed and then 
compared to the information theoretic lower bound. Section 3 is devoted to 
labeled planar graphs as a case study. It is shown that when using adjacency 
lists to represent labeled graphs with n vertices, 3nlogn+O(n) bits 1 may be 
required while the minimum is nlogn+O(n) bits. An efficient algorithm is 
given for constructing a representation which requires at most 3/2 n logn +O(n) 
bits. 

1 All logarithms are to the base 2 
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2. Representations of Labeled Graphs 

Let G be a labeled undirected graph with no self loops and no parallel edges. 
A fairly compact representation is by adjacency lists: for each vertex i a list L i 
is constructed. L i consists of all the vertices adjacent to i with a larger label. 
Hence, each edge is represented once in the adjacency lists. To count the 
number of bits required we must be more specific. Each entry in the list Li is 
an integer between 2 and n and can be represented by a block of [ l o g ( n - 1 ) ]  
bits. In each list the blocks are separated from one another by a "comma"  and 
each list ends with a "period". Since a comma or a period must appear after 
every block, their locations are known in advance and they can be represented 
by one bit. To handle empty lists an additional Boolean vector of length n -  1 
is used: it contains zeros in those locations for which t h e  corresponding Li's 
are empty. The total length of the representation is [log ( n - 1 ) ]  + m + n - 1 .  

Observe that the length of the representation depends only on m and n. 
Therefore, assume that all graphs having n vertices and m edges are to be 

represented. The number of such graphs is /[nkll2)). To represent all graphs 
\ m /  

log bits are enough. Let k = 2 ; p = m/k and q = 1 - p .  

k~ 
= log (p k) [ (q k) [ 

(k/e)  k 

~ log 2 ~  (p k/e) pk. ~ (q k/e) ~k 

= -log( 2~]//~.(pPqq) k) 

= - �89  log (2rcpqk)- k(p log p + q log q) 

Consider a graph G with n vertices and m edges as an object drawn at 
random out of the class G,, m of all graphs with n vertices and m edges [1]. All 
edges (i,j) have the same probability p to appear in G. G may be represented as 
a sequence of k bits m of which are 1. The probability of the i-th entry to be 1 
is p. The entropy of every entry is -plogp-qlogq [2]. Consequently, the 
entropy of the space of k such random variables is -k(plogp+qlogq). The 
other expression, -�89 may be interpreted as the influence of the 
dependency between the edges (whose number is forced to be m). 

Let us consider four special cases: 

Case 1. m = n  l+~ where 0 < e < l .  Therefore p=2.n~/(n-1) and the entropy E 
tends to 1 - e  as n approaches infinity. Thus, using adjacency lists causes a 
waste by a factor of 1 / (1-  ~). 
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Case 2. m = p . k  where p is a constant 0 < p < l .  In this case, using adjacency 
lists causes a waste of space by a factor of c. log n for some constant c > 0. 

Case 3. m- -cn logn  for some constant c>0.  Here p=(21ogn)/(n-1) .  In this 
family the adjacency lists representation tends to be optimal as n increases. 

Case 4. Labeled trees. Using adjacency lists n log n + O(n) space suffices. On the 
other hand, the number of labeled trees is n"- 2. Therefore, ( n -  2) log n bits are 
required; thus, the adjacency lists representation is optimal in the limit. 

3. Representation of Labeled Planar Graphs 

Since trees are labeled planar graphs, labeled planar graphs require at least 
( n - 1 ) l og  n space. First Tutte's result [5] on the enumeration of rooted non- 
separable inner-triangular graphs is used to prove that every labeled planar 
graph may be represented in n log n + O(n) bits. 

However, having an existence proof on representations of graphs does not 
supply us with an effective procedure to construct such a representation. 
Therefore, a procedure is described for constructing a good representation. 
This procedure works in linear time and produces a representation which 
requires at most 3/2nlogn+O(n)  bits. This representation is more compact 
than adjacency lists which require 3 n log n + O(n) bits. 

A planar graph is triangular if all its faces contain exactly 3 edges. Every 
planar graph is a subgraph of a triangular graph with the same number of 
vertices. Let GT be a triangular planar graph containing G (GT can be con- 
structed in linear time). Let us sort the edges of GT in lexicographical order and 
construct a Boolean vector D of length 3 n - 6  (the number of edges in GT) 
such that 

D(i)=~'I if the i-th edge of GT is an edge of G 

10 otherwise. 

A representation of G results from a representation of GT together with the 
vector D. We conclude that for a cost of 3 n - 6  bits the problem of represent- 
ing an arbitrary labeled planar graph is reduced to the problem of represent- 
ing a labeled triangular graph. 

Given a lebeled triangular graph GT, a choice of a face and an orientation 
for it induces a unique representation of the graph in the plane (for a more 
precise treatment, see [4]). Let us choose the face whose vertices {1, I4:1, I4:2} 
form a minimum lexicographical triple. Draw the graph in the plane such that 
the face (1, W1, W2) is the outermost face, where (1, 14:1, I4:2) is arranged in 
clockwise order, W 1 < W 2. Let GT 1 be this planar representation. 

Attaching direction to the edge (1, Wx) (from 1 to W 0 and ignoring the 
labels of the vertices yields a non-separable inner triangular graph (that is, all 
inner faces must consist of three edges while the outermost face may contain 
an arbitrary number) with a designated edge in the outermost face (called a 
root by Tutte). In our case the outermost face consists of three edges, the 
number of inner faces is 2 n - 5  and the root is the original edge (1, W 0. Tutte 
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found the generating function q(x,z) for enumerating rooted non-separable 
inner-triangular graphs: 

q(x,z)= ~ ~ 2J+l(2k+l)!(gJ+2k)!xk+2zk+ZJ 
k=O~=O (k!)2J!(2j+2k+2) ! (1) 

where the exponent of x expresses the number of edges in the outermost face 
and the exponent of z corresponds to the number of inner faces. To find the 
number of triangular graphs, set k + 2 = 3  and k+2j=2n-5 .  Therefore k = l  
and j = n - 3. Substituting in (1) yields 

2 , - 2 . 6 .  [ 3 n - 5 ~  
2 n-2 .3!(3 n - 7 ) ! =  \ n - 3  ! <24n 

( n -  3)! (2n--2)! ( 3 n - 5 ) . ( 3 n & 6 )  

Therefore, every rooted non-separable triangular graph with n vertices may be 
represented by 4n bits. 

Adding labels may produce up to n! labeled triangular graphs. Therefore, 
log(n!4")+O(n)=nlogn+O(n) bits suffice to represent all labeled planar 
graphs. The note at the beginning of this section implies that this is also a 
lower bound. 

The proof given above is not constructive in the sense that it is based on 
an enumerat ion theorem and no easily computable function to find the com- 
pact representation is provided. Since the compact representation is required to 
measure the complexity of problems and algorithms, an efficient function is 
imminent. Below is described a linear time algorithm to find a representation 
which is worse than the optimal by a factor of 3/2. 

Recall the properties of the graph GTI: it contains G as a subgraph, its 
outermost face is (1, W1, W2) and it is triangular. The graph GT 1 will be 
represented using a vector A and a list L. Initially, L = W 1, W 2. We have thus 
wasted 21ogn bits to represent the outermost face. In the i-th step the graph 
GT~ is inner triangular and the outermost face contains the vertices 
1/1, V 2 .. . .  , V k in clockwise order, and all the edges of this face have already 
been represented. Let V 1 be the smallest vertex in the outermost face and let 
e o, e 1 .. . .  , % be the edges incident with 1/1, ordered clockwise, such that (V 2, 1/1) 
= e  o, (V 1, ~ ) = e , ,  and the other edges are not incident with the outermost face. 
Four exclusive cases may arise: 

Case 1. V 1 is incident only with two edges of the outermost face, namely, 
(V2, V 0 and (V 1, Vk). Since the graph is inner triangular the edge (V:, Vk) nec- 
essarily exists. The two edges are deleted and (V 2, Vk) is added to form a new 
outermost face. Consequently, GT~+ 1 is obtained from GT~ by deleting V 1. 

Case 2. The edge e 1 leads to V 3 (which is two edges away from 1/1 on the 
outermost face). Replace the edge (1/1,1/2) and (V2, 1/"3) by the edges (V 1, V3), 
consequently V 2 is deleted to obtain GT~+ 1- 

Case 3. The edge e 1 leads to a vertex on the outermost face, Vj, Vj+V3, V k. 
Append Vj to L. The edge (Vj, V2) necessarily exists. Delete the edge (1/'1, V2) to 
obtain GT~+ 1. The vertex Vj becomes an articulation point and it separates the 
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planar graph GT~+I into two parts. First represent the part whose outermost 
face is (V~, V~,V~+ 1 . . . .  ,Vk). Then represent the part whose outermost face is 
(V~, V2, V3,... , V~_ 1). Two additional edges have been accounted for at the cost 
of logn bits, hence �89 bits per edge. 

Case 4. The edge e I leads from V 1 to some vertex V not on the outermost face. 
Append V to L. The edge (V 2, V) necessarily exists and at the cost of log n bits 
two edges have been accounted for. 

Consequently L contains no more than 2 1 o g n + l / 2 . ( 3 n - 6 )  logn 
< 3/2 nlog n bits. To be able to decode L an additional vector A must be kept 
to designate which of the four cases occurred at each stage. The length of this 
vector is at most 3 n - 6  and each entry requires 2 bits, hence 6 n - 1 2  bits. 

Given the adjacency lists of a graph, a planar representation can be found 
in linear time using Hopcroft and Tarjan's algorithm [3]. From a planar 
representation the vectors D and A and the list L can also be found in linear 
time. Conversely, a planar representation and the adjacency lists representation 
can be found from D, A and L in linear time. 

References 

1. Erd6s, P., Spencer, J.: Probabilistic methods in combinatorics. Academic Press 1974 
2. Gallager, R.G.: Information theory and reliable communication. John Wiley and Sons 1968 
3. Hopcroft, J., Tarjan, R.: Efficient planarity testing. JACM 21, 549-568 (1974) 
4. Liu, C.L.: Introduction to combinatorial mathematics. McGraw-Hill 1968 
5. Tutte, W.T.: The enumerative theory of planar maps. In: A survey of combinatorial theory. J.N. 

Srivastava, Havary, F., Rao, C.R., Rota, G.-C., Shrikhande, S.S. (eds.). North-Holland Publishing 
Company 1973 

Received October 18, 1979 / December 29, 1981 


