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Abstract

In many real life situations (such as department stores, or passport control booths
in airports) parallel queues are formed in front of control stations. Typically, some
of the stations are manned while others are not. Classical queuing theory considers
the configuration constant, and concentrates on the arrival process. This work ex-
plores a new line of research—the case in which the configuration is dynamic, and
the customers can plan to cope with anticipated changes. Specifically, as the queues
build up, management assigns additional officers to the unmanned stations. When this
happens—some people move to the newly manned queues from nearby busy queues.
In anticipation, people may prefer to line up in busy queues next to unmanned ones.

Mathematically we discuss the problem of dynamic arrangement of the queues in a
service system where at any time each server can be in either an active or an inactive
mode. A balancing strategy determines how customers will be reallocated when a
station becomes active. Given a balancing strategy, we seek a partition of customers
to queues that minimizes the maximum wait time of a customer in each of the active
stations, thereby keeping the system balanced at all times. We study two balancing
strategies that we call Split and Trim. For the Split strategy we discuss a special case
(the stations are ordered on a line and a single unmanned station is at one end). We
show how an optimal partition can be calculated recursively. We then give partitions
that approximate the minimal expected wait time within a factor of 1 + O(1/N),
under each of these strategies, where N is the number of stations. We obtain similar
bounds (to within factor 2) for the case, where the number of active servers can be any
1 <n < N —1, and the balancing strategy is Trim.
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1 Introduction

Real life queuing systems appear in two major variants:

1. A single line which feeds multiple service stations, in front of which no wait queue
exists. This is the common practice in many banks, and in computer systems having
several processors, where all user jobs wait in a single ready queue; the scheduler
allocates the next available processor to the first job in the queue.

2. Multiple queues, where each queue is served by a single service station. Such systems
are used, e.g., in airports, highway toll booths, department stores, and computer sys-
tems where the users share several printers, and on sending a job to be printed it is
committed to a printer.

We focus on queuing systems of the second type. Classical queuing theory considers the
configuration constant, and concentrates on the arrival process. Here we explore unchartered
territory—the case in which the configuration is dynamic, and the customers can plan to
cope with anticipated changes.

Specifically, in the above service systems, as the queues build up, management assigns
additional officers to the unmanned stations. When this happens—some people move to the
newly manned queue from nearby busy queues. In anticipation, people may prefer to line up
in busy queues next to unmanned ones. The problem of interest to us is the expected wait
times in the different queues, as a function of the configuration of the manned/unmanned
queues and the anticipation of changes in the system.

1.1 The Queuing Model and Problem Statement

Consider a queuing system which consists of N service stations {0,..., N —1}. Each service
station ¢ has a single server, and a wait-queue @);, from which customers are picked up in a
first-come-first-served order; all stations provide the same type of service, with equal speed,
thus an arriving customer can join any of the N queues.

We assume that time is discrete; at any time unit each of the servers can be in either
an active or an inactive mode. An active server 1, 0 <1 < N — 1, gives service to the first
customer in queue ¢ (whenever the queue is non-empty). The service time of a customer is
a single time unit.

We consider a controlled queuing system, in which the total number of waiting customers
is some constant L > N. Suppose there are n active servers at the beginning of some time

2



unit ¢; by the end of this time unit n customers are serviced and leave the system; then,
in the subsequent time unit, n new customers are admitted into the system. Each active
queue receives a new arriving customer, so that the queue lengths are stationary, i.e., do not
change, as long as the number of servers is fired. Such a situation can be maintained by an
external regulator, who is aware of the number of active servers, and regulates the number
of new customers. (See Section 1.2.)

Hence we assume a deterministic queuing model, where in each time unit n customers
leave the system and n new customers arrive. However, the system is dynamic in the sense
that active servers may become inactive, and inactive servers can become active: at time t,
each server can change mode with some probability, that depends on the number of active
servers in t. When the number of active servers is fized, an arriving customer joins one of
the queues, and waits in this queue for service. However, when the number of active servers
changes, the customers adjust to the updated system configuration, by moving from one
queue to another. In particular, when server ¢ becomes inactive the customers lined up in its
queue move to any of the other service stations that are currently active; when an inactive
server 1 becomes active, customers from other active queues move to station ¢ and form a
queue there. Thus, at any time ¢, the number of queues in the system is n, where 1 < n < N.

Formally, the state of the servers is represented by the activity vector A = (aq,...,an—-1),
where a; € {0,1}, and a; = 0 (1), if the ith server is inactive (active).

The state of the system at time ¢ is completely determined by the configuration C* =
(A", ¢', pos’): A is an activity vector; for customer ¢, ¢*(¢) is the queue that ¢ belongs to, and
pos’(c) the position of ¢ in ¢'(¢). Thus, if ¢ is a customer about to be served at time ¢ then
pos'(c) = 1. The functions ¢ and pos are defined only for customers who are in the system at
time ¢. A configuration C? induces a partition (' of the L customers: £;' = |{c | ¢'(c) = i}|.

A configuration should satisfy the following rules:

1. If a! = 0 then ¢! = 0.

2. For all i for which £ > 0, pos® is a bijection from {c | ¢’(¢) =i} to {1,..., 0}

In the normal course of events no server joins or leaves the system, thus A" = A’. Each
active server serves the first customer, i.e., if pos(c) = 1 then pos‘*!(c) is undefined, and
the queues follow a strict FIFO order, that is, if pos‘(¢) > 1 then pos'*!(c) = pos'(c) — 1.
Moreover, Y; a} new customers join the system; they join the end of the current queues so
as to satisfy rules (1) and (2) above.

The transition of customers (in response to changes in the number of active servers) is
determined by a balancing strategy S. This strategy defines how to update ¢ and pos. We
shall consider only strategies for which the way ¢ is updated depends only on ¢(¢) and pos(c).
Since the queues and the strategies follow the FIFO discipline, the effect of the strategy in
response to a change in the system is completely determined by the partition.
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We study strategies that minimize the movement of customers, and prefer moving cus-
tomers to adjacent queues, i.e., from @); to ();—1 or @);+1. This models physically separated
queues in which movement is restricted to adjacent queues, as well as multi-hop networks,
where the cost of moving customers is related to the distance between the servers.

Let P = {P*;,}, P~ = {P7j.} be the N x N activation/de-activation probability
matrices: Given that server j is inactive (active) at time ¢, P*;, (P~ j,) is the probability
that this server becomes active (inactive) in the next time unit, when the number of active
servers at time ¢ is n.

Our performance measure is the maximal expected wait time of a customer, which finds
the system with activity vector A and partition ¢; the maximum is taken over all the active
queues. Thus, for any strategy S, there exists a set of (initial) partitions, with which &
performs best. However, finding this set of partitions is computationally hard (see in Sec-
tion 2.1), therefore we focus on finding a set of partitions that provides close approximation
to the optimal under the strategy S.

For a given strategy & we denote by max W(S, A, ¢, PT, P~) the maximum expected
wait time of a customer arriving when the activity vector is A, and the partition is £. (The
maximum is taken over all arriving customers.) We shorten max W(S, A, ¢, Pt, P7) to
max_W(S, /) when A, Pt and P~ are understood from the context; min-W(S, /) is defined

similarly.
Our optimization problem can be stated as follows:

Given a set of N servers, the matrices PT, P™, a strategy S, and an activity
vector A, find a partition £ such that max W(S, A, ¢, P*, P~) is minimized.

Note that as long as no server is idle, the average waiting time in the system is equal
to the average queue length, independent of the strategy. However, our goal is to minimize
the variance of the wait time between customers that join different queues. Denote by
Wopr(S,A) the maximal expected wait time of a customer that finds the system with
activity vector A, and an optimal partition, where the balancing strategy is S. We call
Wopr(S, A) the min-maz expected wait time.

Definition 1.1 Given a strategy S and activity vector A, the partition £ yields a (1 4 9§)-
approximation to the min-maz expected wait time, if

ma:z:_W(S,ﬁ) < (1 + (S)WOPT(S,A) .
Our secondary goal is to find a partition that minimizes the balance ratio.

Definition 1.2 The balance-ratio of a partition { under a balancing strategy S is given by

maz_W(S, /¢
88,6 = min_W((S 75)) '



Throughout the paper we refer to a simplified model, in which the probability that any
active server becomes inactive is negligible, thus the expected wait time of any customer
depends only on activation of servers while this customer is in the system, and the resulting
change in the position of the customer in the wait queue. The analysis of the more general
case, where transitions of customers can occur due to de-activation of servers, is left for
future work.

1.2 Application to Communication Systems

Consider a communication system consisting of N parallel lines between s and ¢, of which only
some are active. Due to external considerations (such as cost or response time) the router
wishes to send as many messages (customers) as possible through the system. However, since
the router has a buffer which can hold at most L messages, it should send a new message,
only when an old one has left the system. If n sub-lines are active, at each time unit, n
messages leave the line, hence the router can release only n new messages in every time unit.

When a non-active line becomes active then the router can move to it messages from
other lines. Thus new messages will be sent only after the messages currently waiting were
sent. The router can also rearrange all the messages so as to preserve the FIFO discipline.
Note, however, that if moving message among queues causes delays, the router might want
to minimize such moves, as well as distribute the messaged between the lines in anticipation
of the repair.

1.3 Related Work

In the context of queuing theory, a model close to the one discussed above is the server of the
walking type model, where each server in the system can become inactive for a certain amount
of time, upon completion of a service period [4, 3, 7, 8]. Related work on this model studied
the steady state distribution on queue lengths and on the wait times of customers, when
some probabilistic assumptions are used, e.g., for determining the length of the “vacation”
taken by a server. However, no balancing strategies are used in this model, i.e., when the
server is inactive the customers are assumed to line up in its service station, until the server
becomes active again.

Another related problem is the dynamic server problem introduced in [1]. This problem
refers to a task system in which the number of available servers can change at any time. The
paper presents competitive algorithms for this problem; the model is slightly different than
our service system, as customers do not line up in queues for service; they are distributed
in many sites in a computer network, thus rearrangements of the queues are inapplicable.
A similar dynamic server model was used also in the study of load balancing schemes for
multimedia systems (see in [5, 6]).



1.4 Main Results

We consider two natural balancing strategies, that attempt to minimize the movement of
customers: the Split (see Section 2), and the Trim strategy (see Sections 3 and 4). We derive
efficient initial partitions for these strategies. In particular,

e For the Split strategy, if n = N — 1 then

(i) We show how an optimal partition can be calculated recursively, based on the
knowledge of the activation probability of the inactive server.

(ii) We give a partition which yields a 1 + O(1/N)-approximation to the min-max
expected wait time.

e For the Trim strategy:

(i) For N/2 < n < N — 1 we give a set of partitions that yield a (1 + O(1/N))-
approximation to the min-max expected wait time.

(ii) For 0 < n < N/2 we give a set of partitions that yield a (2 4 ¢)-approximation to
the min-max expected wait time, where £ = o(1).

1.5 Organization of the Paper

In Sections 2 and 3 we derive results for the case where n = N —1. In Section 2 we present the
Split strategy, for which we show (in Section 2.1) how an optimal partition can be computed
recursively. We then give (in Section 2.2) a partition that is a close approximation to the
optimal. In Section 3 we propose the Trim strategy, and give an efficient partition for the
casen =N — 1.

In Section 4 we show how our results can be extended to apply to the case, where the
number of inactive servers in the system is any 0 < n < N — 1. Finally, we summarize in
Section 5, with some directions for future work.

2 The Split Strategy

Assume first that the servers are linearly ordered, ()q is inactive, and ¢; customers wait at
Qi, v =1,...,N — 1. The probability that a server appears at (o in the next time unit is
P*y(n_1). Since system configuration can change only due to the activation of a server in Q,
we note that the arrival probability of this server reflects a geometrically distributed repair
time, with probability p = P*o_y). Let L = L/N be the average queue length when all
the stations are active.



In this section we discuss a balancing strategy that we call Split. We first show how an
optimal partition can be calculated recursively. We then show that if p > 1/L then a simple
partition (based on accumulating a large amount of customers near the inactive server) can
yield expected wait times that are close to the optimal within a factor of 1 + O(1/(Lp)) =
1+ O(1/N).

The Split balancing strategy is as follows:

At step ¢ = 1 (when a server arrives at ()g), every other customer from )3 moves to Q.

After that, Qo has Lo = [{;/2] customers and Q; has L; = [{;/2] customers.

At step ¢ > 1: queues Q, ..., Q;_; have each L;_; = %Z;;ll ¢; customers. The customers
of (); who have to wait more than L;_; time, evenly split to queues (o,...,Q; in a
cyclic manner, i.e., customer L;_; + 1 moves to Qq,..., customer L;_; + 1 moves to

Qi_1, customer L;_; + 1+ 1 remains in ();, customer L;_; + 7 + 2 moves to (Jy etc.

Thus, if ¢(¢) = ¢ then in the new configuration ¢'(¢) and pos’(c) are defined as follows:

i pos(c) < Li-y

q(c) = { (pos(c) — Li—y — 1) mod (i + 1) otherwise.

and

pos'(c) = [{d | ¢'(d) = ¢'(c) and (q(d), pos(d)) <iex (q(c), pos(c))},
where (a,b) <jex (¢/,0") if @ < @’ or a = @’ and b < V'. Note that in the new configuration all
queues have length 0 € {V/J ) [ﬂ }

2.1 Finding an Optimal Partition

Assume that the arrival probability of a server at ()g is a fixed parameter p. For any ¢ > 1,
the probability that the server arrives at (o at time ¢ is

pe=(1-p)"'p . (1)

Let W;(Split,?) be the expected wait time of a customer at );, given that the initial lengths
of the queues are £ = (0,0y,...,0n_1).

Let A, = 4, — L,y = {; — %E]‘Q {; denote the excess number of customers in (); over
the average number of customers in queues Qo, ..., ();_1, after the customers of these queues
moved (in response to the arrival of the new server at (o), but just before the customers of
(); moved. Consider a customer ¢ that arrives at time ¢ = 0 and joins ¢);. We simplify the
calculations by allowing the queue lengths to be non-integral numbers.

If the server arrives at time ¢, 1 <t < A;, then H_%(AZ — (t — 1)) customers of @; that are

before ¢ leave (); to join Qo, ..., ;1. Thus the wait time is reduced by that amount.
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We will use the equality
k k 1 A
Spt=pd> (1-p)t==[1-(1-pfkp+1)] . (2)
t=1 t=1 p
The expected wait time at @); is

Ay
Wi(e, Split) = Zpt<&—( 1) )+Zptz
t=1

t>A

. B A’L
= f— — Aid pi— tht‘l’ ZP%]

+1 = t>A

i

[ 1
- f _ : (1 — p)Ai) _ = (1 — A A (1 — p)A:
=t _AZ (1-(1-p™) ; (1-(1=p)*Ap+1)+1—-(1-p)
= 4 ! -A» Ly 1(1 )2+ 1 — (1 — p)™
i+l pop P P '
Given queues of length ¢y, ..., /x_1, a new customer joins the queue with minimum expected

waiting time. Hence the system will become totally balanced when

Wi (Split, £) = Wy (Split, £) = - - - = W _(Split, {) .

Let ¢; be given, we first calculate W;(Split,{) and choose {3 such that Wi(Split,l) =
W3 (Split, /). We can easily perform these calculations, since Wy(Split,¢) depends on p and
on Ay = {3 — {1/2. We continue in this fashion to compute the values of /3,...,¢n_1. The
key observation is that /; depends only on p and A; = ¢; — %Z](i Z;. Hence ¢; depends only
on p and {q,...,¢;_1, which we have already computed.

If only L, the total number of customers, is known we can perform a binary search on ¢,
to find values /1, ...,#x_; that balance the system and satisfy N7 ¢; = L.

Note that for p = 1, we get

i ' R _
Wi (Split, 0),—y = l; — ——A; = {; — ;) £; =1L;.
( pet )|p 1 Z‘I’l _I_l Z ; 1; J
Since L; = /1/2, in this case the system is balanced when ¢;/2 = {3 = --- = {y_;. In other

words, the first queue (next to the inactive server) has twice as many customers in it—since
with probability p = 1 at time ¢ = 1 a server appears at (Jg, half of the waiting customers
move to ()o; then, all queues are of equal length.



2.2 Approximating the Min-max Expected Wait Time

Assume now that the inactive server is at position A, for some 0 < h < N — 1. Thus, the
activity vector is A = (1,1,...,0,...,1), with a; = 0 for ¢« = h, and a; = 1 otherwise. In
the following we show how the min-max expected wait time can be closely approximated for
this case.

We propose to use a static partition ({o,..., ¢, ...,fn—1), in which all the queues that
are of the same distance from the inactive station have the same length. In fact, we show
that a close approximation to the optimum can be obtained by choosing a partition, in which
the queues next to the inactive server have the same length ¢/, and all the other queues in
the system have the same length ¢”. Hence, we only need to compute the ratio ¢'/¢" > 1.

When the inactive server is positioned at the end of the line, the queue will be balanced
(upon activation of this server) by the Split strategy. When the server is at position A, for
some 0 < h < N — 1, the queues will be balanced using the Split strategy with a slight
modification: the balancing process will handle in phase ¢ all queues that are of distance at
most ¢ from the inactive server. Thus, after the first phase queues h — 1,h,h + 1 will be
of equal length. After the second phase queues h — 2, h — 1,h,h + 1, h + 2 will be of equal
length, and so on.

Let s € {1,2} denote the number of immediate neighbors of the inactive server. For
p > 1/L we define the partition £5P%* = (£, ... {x_;), where

%(3 + l)L + ( ( - — %) i is a neighbor of inactive server
;=20 1=h
L+ 1/(p(N —1)) otherwise.

Theorem 2.1 The partition (57" yields a (1 + 1/(L p(N — 1)))- approzimation to the
min-maz expected wait time, when the balancing strategy is Split, that is,

' 1
(Split, £5P1) < - ‘ < < N-—1.
WZ(Spht,E ) ~ (1 + 7 p(N _ 1)) WOPT(Spht,.A) V0 2 N 1 (3)

Proof: Let p; be as defined in (1).

(i) The case h = 0. Suppose a server arrives to queue h at time ¢ < ¢;. At that time a
customer that arrived at time 0 is at position ¢; — ¢, half of the customers before it
move to queue h, thus its remaining time decreases by (¢; —t)/2. If the server arrives
at queue h after time /;, the customer is already served, thus its waiting time is not
decreased—it remains ¢;. The expected waiting time is therefore,

£
Wi (Split, 0571y = £ — Zp/l
t=1



— 51—%(1—(1— )41)6 4= Zptt

tl
1 1 1&
= b+ -(1-p) b+ pit
21+2( P) 1-|-2t:1pt

Using equation (2) we have

Sl 11 1
Wi (Split, £57") = 5l + 50 — )l + 5 (1= (1=p) " (tp+ 1)
_ 1 1 £y 1 £ £
= Jh+5(1-p) 51‘|‘% {1—(1—}?) tip—(1—p) }
1 1 1
= 4+ —— —(1—p) .
5t + o 2p( p)

Taking ¢, = 2L + %(ﬁ — 1), we get

, 1, - 1 1
W : Split < = -
S (e —
B 2Lp(N —1)

which yields inequality (3).

For the case in which 0 < h < N — 1, we have W), (Split, (°P"t) = W,,_,(Split, £57").
Until the arrival of a server at queue h, queues h — 1 and h + 1 have the same length
{ =101 =Llhyq1. A customer ¢ that arrived at time 0 to queue h — 1, will be at time ¢
at position £ —t. Upon the arrival of the new server at queue h, third of the customers
before ¢ in Q)1 will move to (), so that the three queues have the same length. Thus
the waiting time of customer ¢ will decrease by (¢ — ).

¢
: 1
Wit (Split, £57) = £ — Zpt—(g -

¢ 1<
= g_gzpt‘l‘gztpt

t=1 t=1

= -3 =p) 4 - - D+ )
= §£+§£(1— p)’ +${1—(1—p)%—(1—p)q
= §£+%[1—(1_ p)’]

1

3

(1)
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Substituting in the last equation ¢ by %(ZIJ + %(L —

o %), we have the statement of

the theorem.

]

3 The Trim Strategy

In this section we propose a balancing strategy called Trim. We define a partition, that is
shown to provide a close approximation to the min-max expected wait time, while maximizing
the balance in the system.

The following is an informal description of the strategy. Consider first the case, where
the inactive server is at the end of the line (i.e., h = 0). Suppose that initially there are ¢;
customers in queue 7, 1 <17 < N — 1. When server 0 becomes active, customers from queues
1 through N — 1 transfer to )y as follows.

If for a customer ¢, q(¢) = ¢ and pos(c) = j, then all customers in queues
Q1,...,Q; — 1 whose positions are larger that L will line up in (o before ¢. In
addition, any customer d for which ¢(d) = ¢ and pos(d) < j will also precede d

n Qo.

We call this balancing strategy Trim, since it trims all the long queues in the system, and
transfers the excess customers to ()o, until all queues are of the same length L.

Formally,

0 otherwise.

qd(c) = { a(c) pos(c) < L

and
pos'(c) = [{d | ¢'(d) = ¢(c) and (q(d), pos(d)) <iex (¢(c), pos(c))}|.
Note that if ¢'(¢) = g(c) then pos’'(c) = pos(c), and as with the Split strategy, in the new
configuration all queues have length £ € {U/J ) [ﬂ
Assume now, that the inactive server is located at station A, for some 1 < h < N — 2.

For this case we slightly modify the Trim strategy: if a customer ¢ is at distance ¢ from the
inactive server, then when the server becomes active

o All the customers at positions j > L, that belong to queues closer than ¢ will line-up
in ) before c.

o All the customers at positions j > L who belong to the queues {h — 4, + i} then join
in random order at the end of ()}, including c.
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We call this strategy Random Trim.

In the next result we define a static partition of the customers to queues, which is shown
to be efficient with respect to our two measures (min-max wait time and balance ratio),
when the balancing strategy is (Random) Trim.

Let the random variable X denote the activation time of the server, then X ~ G(p) (i.e.,
X is geometrically distributed, and Prob(X = ¢) = p(1 — p)'™1).

Theorem 3.1 Let M be the median of the random variable X, and let
r=lgy(L /M) , (4)

and

' —1
r* = max{r’ >r|r < T } . (5)

Define h' as follows: if h = 0 then h' =1, otherwise h' = h—1. Denote by {1""™ the partition
(lo,...,¢n_1), where

ja)

1=h
i=1{ L(2—-1/27) 1 =h'
E(l + 1/(2”*(N —2))) otherwise.

Then for any r > 1 and a system of N > 2 stations,

1

(Z) (Trim yields a (1 + m

)-approximation to the min-max expected wait time.

L+ (27(V-2))7
12

(ii) B(Trim, (17 <

Proof: We give the proof for h = 0. The generalization to arbitrary h is straightforward.
We first note, that if M < L/2 there exists 7* > r satisfying (5) (since clearly, r* = r satisfies
the inequality). Now, we show separately the approximation-bound and the balance-ratio of
the partition £77™,

(i) We first show, that

1

(Trim, 77y < (1 4+ ————
W;(Trim, ) <( —I_QT*(N—Q)

YWopr(Trim,A)  V1<i<N-1. (6)

For ¢'y = L- (1 —1/2"), let B be the event
(D

“The inactive server becomes active within less than ¢ time units”
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then B
Wi(Trim, ET”m) = Prob(B)¢} + (L + ¢})(1 — Prob(B))
=0 + E(l — Prob(B)) .

Since M = L/2" and r* satisfies (5), the probability that the server remains inactive
in the next ¢} time units is

L= Prob(B) = (1 - p)"" 55 < L )
Hence,
Wi(Trim, £17™) = L(1 — 21* )+ L;? <L.
Since Wopr(Trim, A) > L, obviously inequality (6) holds for 7 = 1.
For queues 1 = 2,..., N — 1 we have

and again inequality (6) holds.

(ii) We now bound the balance-ratio of the system under Trim. Since for any 1 <¢ < N—1,

: 1 _
A(Trim, /77y < (1 4+ ————— | L
W( rlm? )— ( —I_ZT*(N—Q)) 9

it remains to show that

: _ 1
min W (Trim, £77™) > [ (1 - QT*)

We note, that the choice of ¢; implies

Wi (Trim, ¢£7™) > L (1 — 21)
Let C be the event
“The inactive server becomes active within the next L/(2" (N —2)) time units”.
Then for2=2,...,N —1
W;(Trim, £77™) > Prob(C) (¢, — L) + (1 — Prob(C))L > ¢, |

which yields the statement of the theorem.

Corollary 3.2 Ifp > 2 then the partition (1" defined in Theorem 3.1 gives

3

L
i) a —I-— -a roximation to € min-maxr erpeciea wait ime.
' 1 8(N1_2) pproximation to the mi pected wail ti

(it) B(Trim,(frm) < 2.
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4 Extensions

In this section we discuss the case, where the number of active serversisany 1 <n < N —1.
We show how our results for the case n = N — 1 can be used to obtain similar bounds for
the Split and the Trim strategies. We exemplify this generalization for the Trim strategy.

a. If n > N/2, then we can divide the set of queues to N — n regions, such that each
region 1 < 5 < K contains exactly one inactive station, and A; > 1 active stations,
where Zé\;” A; = n (see Figure 1). We call this version of the Trim strategy the
Region-Trim. Note, that the stations in each region are not necessarily neighboring
stations on the line. The total number of customers in the queues of region j is A;- L .

In region 7, 1 < j < N —n, the partition of the customers to the queues will be defined
as for the Trim strategy, namely, the partition of L; = A;L customers, in a system of
N; = A; +1 queues, in which a single server is inactive. Denote by h; the jth inactive
server, and let A’ be the active station closest to h; in region j, then the partition of

Region-Trim is given by (71 = (4o, ..., {n_y), where
0 t=hjforsomel <3< N-—n
=3 L(2-1/27) i = h forsome 1 <7 <N —n

E(l + 1/(2”*(N —2))) otherwise,
where r* is defined in (5).

b. For the case where K > N/2 we choose 1*—one of the active queues in the system
(0 < i* < N —1)—to be the master queue; Q« will consist of L (N —(2—1/2"")(n—1))
customers. Upon activation of a server at (),, for some 1 < 57 < N — n, the last
L(2 —1/2") customers in Q; move to @», (see Figure 2). Note, that when n reaches
N/2, Master-Trim becomes Region-Trim.

Thus, the partition for Master-Trim is given by M = ({y,... ,fx_1), where

0 t =h; forsome 1 <73 < N —n.
li=3 L(N—-(2-1/2")n—-1)) i=1:
L(2—1/2"") otherwise.

where r* is defined in (5).

Assume that the probability that the jth inactive server becomes active in the next
time unit is a monotonically increasing function of the number of inactive servers, and
that P*;v_1) > 1/L . In the following we show, that for any n € [I, N — 1], the
expected wait time of these partitions under the Trim strategies is at most 2 + ¢ times
the optimal, where 0 < ¢ < 1 is small.

Theorem 4.1 Let M and r be defined as in (4). For a system of N > 2 stations, and
any r > 1,

14



If N/2 < n < N —1, then (8T yields a (1 + m) -approximation to the
min-maz expected wail time.

. If1 <n < NJ2, then MT yields a (2+ ¢ )-approzimation to the min-maz expected
wait time, where e = o(1).

Proof: Note, that we compare the expected wait time under the two variants of

Trim to the expected wait time under an optimal partition, which uses any Trim-based

strategy, for balancing the system.

a. For the case where N/2 < n < N — 1, we can obtain the bound for each region

separately, since the servers are independent. Hence, the statement of the theorem
follows from Theorem 3.1.

. For the case where 1 < n < N/2, each customer joins either the master queue, or
one of the active stations. We need to show, that for any 0 <: < N — 1

W;(Master-Trim, EMT) < (24 e)Wopr(Trim, A), (9)

where ¢ = o(1).
We now show, that (9) holds for ¢« = ¢*. As before, h; is the jth inactive server,
1 <j<N-—n. LetYy,...,Yn_pn) be a sequence of random variables, where

v { 1 if h; becomes active by ¢t = L(2 —1/2"")
=

0  otherwise,

and let Y = 25‘21 Y;. Recall that P*;, > 1/L ,for any 1 <n < N — 1. Then
N-—-n
ElY] =) Prob(Y; =1)
7=1

>(N—-n)(1—-€e?*)=pu>-(N—-n).

By Chernoff’s inequality [2], for any 0 < § < 1

—ps?

Prob(Y < (1 —d)u) < ez
Taking § = 1/3, we have

N — —n
Prob (Y < 5 n) < e_N2—4 =&

Therefore, with probability 1 —&;, within 2L time units half of the inactive servers
become active. Thus,

W;(Master-Trim, fMT) < 2L (1 — &) + lisey
<2L +¢

where ¢ = o(1). Clearly, for any active server, ¢ # ¢*, inequality (9) is satisfied.

]
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Region 1 Region 2 Region 3

Figure 1: The Region-Trim with n = N — 3.
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Figure 2: Master-Trim

16



5 Discussion

In this paper we have studied balancing strategies for a dynamic service system model, which
has many applications in everyday service systems, as well as in computer and communi-
cation systems. We considered two natural balancing strategies for such systems, and gave
static partitions, which minimize the maximal expected wait times of customers under these
strategies.

Several interesting questions remain open: for simplicity, we assumed a deterministic
queuing model. A natural extension is to consider more general distributions on the arrival
of customers and the service times. (Note, however, that also in a nondeterministic setting,
the arrival rate should be adjusted to the number of active servers, so as not to exceed the
service rate). We have studied the line topology, which is typical, e.g., in drugstores. It is
natural to examine more general topologies, that would represent the application our model,
e.g., to process migration in distributed system, in which some nodes (processors) may be
inoperational at certain times. Finally, de-activation of servers should be incorporated in
the model, i.e., it is reasonable to assume, that any active server can become inactive with
some probability, which depends on the id of this server, as well as the system configuration.
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