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ON THE COMPLEXITY OF TIMETABLE AND
MULTICOMMODITY FLOW PROBLEMS*

S. EVENt, A. ITAIf anp A. SHAMIR{

Abstract. A very primitive version of Gotlieb’s timetable problem is shown to be NP-complete,
and therefore all the common timetable problems are NP-complete. A polynomial time algorithm,
in case all teachers are binary, is shown. The theorem that a meeting function always exists if all teachers
and classes have no time constraints is proved. The multicommodity integral flow problem is shown
to be NP-complete even if the number of commodities is two. This is true both in the directed and
undirected cases.

1. The timetable problem is NP-complete. The timetable problem {TT), which
we shall discuss here, is a mathematical mode! of the problem of scheduling the
teaching program of a school. In fact, it is a rather naive model since it ignores
several factors which definitely play a role in practice [1]. However, we shall show
that even a further restriction of the problem still leads to an NP-complete prob-
lem [2], [3].

DeriniTiON (TT). Given the following data:

1. a finite set H (of hours in the week);

2. acollection {T;,T,, -+, T,}, where T, = H; (there are n teachers and 7T;

1s the set of hours during which the ith teacher is available for teaching);

3. acollection {C,,C,, ---, C,},where C; € H;(there are mclassesand C;is

the set of hours during which the jth class is available for studying)};

4. an n x m matrix R of nonnegative integers; (R;; is the number of hours

which the ith teacher is required to teach the jth class).
The problem is to determine whether there exists a meeting function

SR, np x {1, ,m} x H—{0,1}
(where f(i, j, h) = 1 if and only if teacher i teaches class j during hour h) such that:
(@ f(,j,h)=1=heT,NC;:
(b) > fli,j,h)=R; foralll <i<n and 1=<j=m

heH

(© > fli,j,m=1 foralll £j<m and heH,;

i=1
(d > fG,j,h=<1 foralll Si<n and heH.
i=1

(a) assures that a meet takes place only when both the teacher and the class are
available. (b) assures that the number of meets during the week between teacher
i and class j is the required number R;;. (c) assures that no class has more than one
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teacher at a time, and (d) assures that no teacher is teachmg two classes simul-

taneously.
A teacher i is called a k-teacher if |T) = k; he is called tight if

ijs

that is, he must teach whenever he is avallable
DerINITION (RTT). RTT (the restricted timetable problem)is a TT problem with
the following restrictions:
1. |H =3;
2. C; = Hforall 1 £ < m (the classes are always available);
3. each teacher is either a tight 2-teacher or a tight 3-teacher;
4, R;=0orlforeveryl £i<nandlsj=<m
Clearly both the TT and the RTT problem arein the NP class. We want to
show that RTT is NP-complete. In that case TT is trivially NP-complete too. We
recall that 3-SAT (satisfiability of a conjunctive normal form with 3 literals per
clause) is NP-complete where 3-SAT is defined as follows: Given the data

1. asetof literals X = {x;,x5, ~, X;, X1, X5, =, X1}
2. afamily of clauses D, D5, ---, D, such that forevery 1 £ j = k,|D}| =3
and D; € X,

the problem is to determine whether there exists an assignment of values “‘true”
and ““false’ to the literals, such that :
(a) exactly one of x; and X; is assigned “‘true” while the other is assigned
“false”,
. {b) in each clause D, there is at least one literal assigned “true’”.
THEOREM 1. 3-SAT oc RTT.
Proof. The proof is by displaying a polynomially bounded reduction of the
~ 3-SAT to RTT. In our construction, certain classes play the role of occurrences
of literals x; or X; in the clauses; the order in which some 2-teachers teach these
classes mdxcates the truth value of the literals. All other classes and teachers are
used in order to guarantee that this assignment of truth values satisfies conditions
(a) and (b) above, and that all occurrences. of a literal are assigned the same truth
value.
‘ Let p; be the number of times the variable x; appears in the clauses, i.e.,

k
= Z ID; N {x;, %}
i=1

For each x; we construct a set of 5 - p; classes which will be denoted by C{) where
|l £a<pand I £b =5 (weomit the superscript { whenever all classes used in
the construction refer to the same i). In order to simplify the exposition, we shall
use a graphic representation of the classes and teachers (see Fig. 1 for the structure
corresponding to a single i). In our graphic representation the vertices denote
class-hour combinations, where the rows signify the hours and the columns
signify the classes. The hours are h,, h, and h,. Now a 2-teacher who is available
during hours h, and h,, and is supposed to meet once with C, , and once with
C,,», Will be represented as shown in Fig. 2. The two diagonals show theonly two
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ways possible to schedule this teacher. A 3-teacher who has to teach C, , , C,,,,
and C,,;, is denoted by a line with three arrows in the columns corresponding to
these classes, as shown in Fig. 3. For every 1 £ g £ p;, we add two new classes,
C,iand Cy, with the structure shown in Fig. 4. There are three teachers described
in the structure ; two are 2-teachers and one 3-teacher. Since all these 3 teachers
must teach during h,, the top 3 vertices, (b, C,,), (h,C;,) and (h;, C};) must be
utilized.

h, O ] O h'
hi

h, © C @) hy o)
hz

hy O O o R o
hy O O ) ’ ! 3 ! P

Ca‘.b' Cuzb2 Colbl Cazrbg Cd3b3 qu C:ﬂ Clt;l
FiG. 2 FiG. 3 FiG. 4

However, we have a choice of utilizing exactly one of the vertices (h;, C,;)
and (h3, Cyy), while leaving the other available; there are several ways to do this,
as the reader may verify by himself. As far as the rest of our structure is concerned,
the effect of this substructure is as follows: (4, , C,y) is taken and one of (h,, Cy1)
and {hy, C ) is taken. Thus we shall delete (h,, C,;) from our diagrams.

Consider now the structure of teachers described in Fig, 5; it is intended to
consistently assign truth values to all occurrences of x; and X; in the clauses.

h, o o o o
h, O o 0o
hy O o o

Ci Ciz Ciz3 Ciq Ci5 Czr Czz2 Caz C2q4 C25 C3z
Fi1G. 5
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Clearly, there is a 3-teacher assigned to classes C, 4, C;; and C,;: thus the struc-
ture described in Fig. 5 is circular. Consider now the p, 2-teachers who are available
“during h, and h,, where the gth such teacher is assigned to classes C 3 and Cy,

We claim that all these teachers must be scheduled in the same manner; that is,
either all of them teach the C_; classes during h; and the C,, classes during h,, or
all of them teach the C 3 classes during h, and C,, classes during h,. Assume we
have a schedule which does not satisfy this consistency condition. Then there
" must be a ¢ such that the gth teacher teaches C 5 during h, and C,, during h,,
while the (g + 1)st teacher’ teaches the C, y, ; during i, and Cyy 1, , during 4, .
In this case, the 3-teacher who must teach Cy,, Cy 4, and Cy 4y 3 cannot be
scheduled during h,—a contradiction.

We thus obtain, independently for each i, a uniform scheduling of all the 2-
teachers who are available during k, and h,. The order in which these teachers
teach C,5 and C, in the ith structure will be interpreted as the truth value of the
_variable x; in the original 3-SAT problem.

We now add a few more 3-teachers, connecting the various i-structures, in
order to guarantee that in-each clause D;, at least one literal gets the value “true”.
For every clause D; = {&;, &,, &3}, we assign a 3-teacher in the following way.
He is assigned to one class for each of the three literals. If £, = x; and this is
the gth appearance of this variable, then the corresponding class is Cfl‘%, while if
&, = X;, the corresponding class is C{}. The classes corresponding to &, and &,
are defined analogously.

This completes the definition of the RTT problem. The total number of
classes defined is 21 - k, and the total number of teachers is 22 - k (15 - k 2-teachers
and 7 - k 3-teachers). We claim that the given 3-SAT problem has a positive answer
if and only if the RTT problem constructed above has a positive answer.

First, assume the 3-SAT problem has a positive answer. We use, now, the

values of the literals in such an assignment to display a schedule for the con-
structed RTT problem—to prove that its answer is positive, too.
_ If x; is assigned “‘true™, then for every 1 < g < p;, the gth 2-teacher is
scheduled to teach C% during h, and to teach C, during h,. Conversely, if x;
is assigned ““false”, then for every 1 < q £ p;, the gth 2-teacher is scheduled to
teach C{3 during h2 and C[? during h,.

In every clause D; there is at least one literal 21551gned ‘true” ; assume it is £
-~ If ¢ = x; and this is the gthr appearance of this variable, then the 2-teacher who is
supposed to teach C,, and C,; is scheduled to teach C,, during h; and C,,
during h,. ‘

(In our Fig. 6, the schedule assigned to each of the 2-teachers discussed so far
is shown by a heavy solid line, and the choice we avoided is shown by a dashed
line. A light solid line indicates that no choice has been made yet.) The 3-teacher
of Cy_1)4,Cprand C s useshy toteach C,_y, 4, h, toteach C,y and hy to teach C,;.
(His meets are indicated by the circled vertices.) Finally, the 3-teacher correspond-
ing to D; uses h, to teach C,z- It remains to be shown that he can use h; and hy
to teach the other two classes he is assigned to teach. Clearly, h, is never occupied

! Here q + 1 should be computed conventlonally except that p; + 1 = 1, to fit the circular
structure.
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by any other teacher in classes of types C,, and C_5. If & = x, is another literal in
D; and it is “false”, then the corresponding C,, class must be taught during h,
by the 2-teacher, and h; remains available. Also if ¢ = X, and it is “false”, then
C,s must be taught during h, by the 2-teacher and again h; remains available.
Finally, if both remaining literals in D; are “true”’, then for one of them, we do not
follow the scheme used for &. For example, if & = x,, it is “‘true” and this is the
ath appearance of this variable, then the 2-teacher teaches C,, during h, and
C,3 during hy. The 3-teacher teaches C,_,, 4 during h;, C,; during h; and C,;3
during h, (as shown in Fig. 7). Thus h; remains available to teach C,,, and the
scheduling of the 3-teacher corresponding to D; is now easy. The other cases are
similar, and the reader may check them out for himself.

o o
! J

Ca-1yt Cay2 Ca-13 Caotie Casys Cai Caz Cas Cas Cas  Cayiy
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Second, assume the answer to the constructed RTT problem is positive, and
assume we have a legal scheduling. If in the structure of x; the 2-teachers assigned
to teach C 5 and C 4 teach C 3 during h; and C,, during h,, then x, is given the
value “true”, and if they teach C , during h, and C,, during h,, then x; is given
the value “false”. It remains to be shown that each clause D, = {¢,,¢;, &3}
contains at least one literal which is “true”. If £ e D; and it is ““false”, then h, is
used for teaching the corresponding class (a C,, if £ = x;, and a C,4 if &€ = X)) by
the 2-teacher that teaches it and the adjacent class (C,; if £ = x;and C 4 if & = X)).
Thus, if all three literals are “false”, the 3-teacher corresponding to D ; cannot
have an assignment to teach its three classes, since he cannot use h,. Q.E.D.



696 S. EVEN, A. ITAI AND A. SHAMIR

2. The timetable problem with binary teachers is polynomially solvable.
Consider the TT problem with the restriction that all teachers are 2-teachers. (A
1-teacher is of no interest.) We shall show that a simple branching procedure
solves the problem in polynomial time, since the branching depth is limited.

Our algorithm will determine schedules for the teachers progressively. At a
given stage, when part of the teachers have been scheduled we say that a teacher
is impossible if he cannot be scheduled consistently ; we say that he is implied if
there is only one possible way to schedule him consistently with the schedules
established so far.

ALGORITHM.

1. Set PHASE to 2.

. If all teachers have been scheduled, halt with a positive answer.
If there is an unscheduled teacher who is impossible, go to step 7.
. If there is no unscheduled implied teacher, go to step 6.
Let T; be an unscheduled implied teacher. Temporarily schedule 7; as
necessary and go to step 2.
6. Make all temporary schedules permanent. Let T; be any unscheduled
teacher. Arbitrarily choose a schedule for him and record this decision.
Set PHASE to 1 and go to step 2.
7. If PHASE = 2, halt with a negative answer.
‘8. Reverse the schedule of the recorded teacher and undo all the temporary
schedules. Set PHASE to 2 and go to step 3.

This algorithm clearly returns a positive answer only if a possible meeting
function is constructed. It uses a limited backtracking since only one decision is
ever recorded and possibly changed. It is less obvious that this limited back-
tracking is sufficient to discover a meeting function, if one exists. »

Let a component of the evaluation be a set of teachers whose schedules gained
permanency simultaneously (in step 6). The components may depend on arbitrary
choices and on the order in which the teachers are considered. They are numbered
consecutively according to their order of occurrence. For completeness, the set
of teachers who are not scheduled or whose schedule had not been made perma-
nent at the time the algorithm terminated is considered the last component.

LemmMa 1. If T, is a teacher of the last component, then none of the class-hours
he may use is occupied by a teacher of a previous component. :

Proof. New components are started by entering step 6; but thlS occurs only
when no teacher is implied. Since all teachers are binary, the lemma follows. Q.E.D.

The lemma implies that whenever the algorithm terminates with a negative
answer, after trying both possible schedules for a certain teacher and all the
schedules implied by it and failing, we can be sure that all the permanent schedules
made before could not have hindered the situation, and thus the negatlve answer
is conclusive.

It is worth noting here, that the technique of hmlted branchmg is applicable
in other similar situations, such as the 2-SAT problem (i.e.; the satisfiability prob-
lem for conjunctive normal forms with at most two literalsiper clause). Using
appropriate data structures in order to find the implications of any decision made,
and trying both decisions in step 6 in parallel (so that the quicker success stops
the evaluation of the other possibility), it can be shown that the algorithm has

VI I )
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time complexity O(n). Other known algorithms for the 2-SAT problem, such as
the Davis and Putham [4] algorithm (pointed out by Cook [2]) or an algorithm
which follows from Quine’s work [5] on the concensus (star) operation, have time
complexity O(n?).

3. There is always a meeting function if all teachers and classes have no time
constraints. The purpose of this section is to document a theorem which follows
from the classical theory of matching in biparstite graphs {6].

We say that a given TT problem has no time constraints f forall 1 < i<n
and. 1 =j<m T, = C; = H; we say that it is apparently feasible if neither the

teachers nor the classes are overloaded, ie.:

j=

() foralll £i<n, Y R,<[H|,
1

(i) foralll <j < m, R, < IH|.
K J

Clearly the condition that a TT problem be apparently feasible is necessary
for the existence of a meeting function, but is not sufficient.

Our purpose is to prove the following theorem:

THeOREM 2. If a TT problem is apparently feasible and has no time constraints,
then it has a meeting function. '

Proof. First let us define the following quantities:

[ =

ry =

> Ry, h = |H|,
i=1j=1

o r _ r
»—m—ﬁ, H=n PR

Now, define a bipartite multi-graph G(X, Y, E) in the following way:
‘Y:{xl7'x2’.‘.9xn}U{él?éZ;".#év}a
Y:{)’p)’z,‘”’ym}U{’?1,7)2,"':’7u}~

E is a set of edges connecting between vertices of X and vertices of Y con-
structed as follows. For every 1 i < nand 1 < j < m, we put R;; parallel edges
between x; and y;. Next, foreach 1 £ i < n, we complete the degree? of x; to be
exactly hby puttingh — >, R, edges between x; and vertices of {n,, 75, -+, 1,};
it does not matter to which of these vertices these edges are connected provided
the degree of each 7, never exceeds h. Also, for each 1 £ j £ m, we complete the
degree of y; to be exactly h by putting h — Z;‘=1 R;; edges between y; and vertices
of {&,,&,, -+, &}, again taking care that the degree of each & never exceeds h.
Finally, we complete the degree of the vertices in {&,, &,, --+, & and {n,n,, -+,
1.} to be exactly A, too, by putting edges from any &, to any », which both have
a lower degree.

It remains to show that this definition is proper in the sense that all the condi-
tions it implies are easily met.

> The degree of a vertex is the number of edges incident to it.




698 S. EVEN, A. ITAl AND A. SHAMIR

The number of edges we construct in the completion of the degrees of
Xy,X5, X, is n-h — r. Thus we can do this if u-h = n-h — r, and p satisfies
this inequality. Similarly, v satisfies the condition for the possibility of the comple-
tion of the degrees of y,,y,, -+, y,. Finally, the number of edges required .to
complete the degrees of £,,&,,---, &, is v-h — (m-h — r), which is equal to
r — {r/h|- A (This is the remainder of r upon division by h.) Similarly, the number of

- edges required to complete the degrees of {#,,7%,, -, 1,} is the same. Thus, the

last part of the construction raises no difficulties, either.

Next, let I'(4), where 4 < X, be the set of vertices B & Y such that there is
anedgea > be E, where ae A and be B.

LEMMA 2. For every 4 € X, |T(4) = |A4].

Proof. There are h-|[(A)} edges incident to I'(4) in G. This includes all the
edges which are incident to 4. Thus

hAT(A) = h-|Al. Q.ED.

Lemma 2 assures that Hall’s condition holds, and thus, by Hall’s theorem
(6], there is a set of n + v(=m + p) edges, no two of which have a common end-
point. We now use this set of edges M (which is commonly called a complete
match of X to Y) to define the meeting function for the first hour h, € H; if
x; — y;€ M, then f(i,j, h;) = 1; otherwise f(i,j; hy) = 0. Clearly conditions (c)
and (d) hold for h;. Next we remove M from E. The new graph has degree & — 1
for all its vertices, and as in Lemma 2, Hall’s condition holds again. This assures
the existence of another complete match M’ of X to Y, and we can use it to define
f@,j,hy)foralll < i< nand 1 <j < m We repeat this until, by the hth applica-
tion, all E’s edges have been used. This assures that condition (b) holds. Thus the
proof of Theorem 2 is complete. Q.E.D.

The technique used here is an easy generalization of the one classically used
to prove the school dance theorem. (See, for example, [7, Example 2, p. 92].)
Since the proof is constructive and a complete match of X to Y can be obtained
in polynomial time (Hopcroft and Karp [8]), this technique can be used in order

to find an appropriate scheduling in polynomial time rather than just proving its
existence. '

4. The two-commodity integral flow problem is NP-complete. Knuth (see [9])
has shown that the multicommodity integral flow problem is NP-complete. His
reduction, from the satisfiability problem, uses as many commodities as there are
clauses.

We present a reduction of the satisfiability problem to the two—cbmmodity
integral flow in directed graphs (D2CIF), and in turn, a reduction of the D2CIF
problem to the U2CIF (the undirected version).

DeriniTion (D2CIF). Given the foltowing data:

1. G(V, E) a directed finite graph; a directed edge from u to v is denoted

u—u; ’ :
- a capacity function ¢ : E - N, where N is the set of nonnegative integers ;
vertices s; and s, (not necessarily distinct) which are called the sources:
vertices t; and t, (not necessarily distinct) which are called the terminals
two nonnegative integers R, and R, which are called the requirements:

A )
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The problem is to determine whether there exist two flow functions f; and
f>, both E —» N, such that

(a) for every u—vekE, fillu—-v) 20, filu—-v)=0 and fi(u - v) +
folu— v) =cu—v): :
intuitively, the commodities flow along the directed edge u — v from u
to v. The total flow along an edge is bounded from above by the capacity
of the edge;

(b) for each commodity i€ {1,2} and each vertex veV — {s;, t;}

Y flu—vy = 3 filo—>w);
u—vek v—wek

this is the conservation rule which states that for each commodity the
amount of flow which enters a vertex equals the flow which emanates
from it;

(c) for each commodity i€ {1, 2}, let the total flow be

F, = Z Jils; = v) — Z J{v = s);

si—vek vos;ek
then it is required that
F 2R,

A flow problem is simple if the capacities of all edges are equal to one.
THEOREM 3. Simple D2CIF is NP-complete.
Proof. It suffices to show : satisfiability oc simple D2CIF.

Let the clauses of the satisfiability problem be D,,---, Dy and x,, -, Xx,,
Xy, -+, X; be the literals. For each variable x;, we construct a lobe as shown in
Fig. 8. (Here p; is the number of occurrences of x; in the clauses and g, is the number
of occurrences of X;.) The capacity of all edges is 1. The lobes are connected to
one another in series : v} is connected to v:*!, s, is connected to v! and v to t,.
s, is connected to all the vertices v} and 7 where j is odd. In addition, there are-
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vertices D,, D5, -+ -, D, and an edge from each to t,. For the jth occurrence of x;

(x;), there is an edge from v}; (5)) to the D, in which it occurs. The requlrements

are R, =land R, = k.

(a) Assume that there exist flow functions f; and f, which satisfy the require-
ments. Clearly, F; =1 and F, = k. The unit of the first commodity flow must pass
through all lobes. Define x; to be “true” if and only if the first commodity flow
passes through the lower path of the ith lobe. In this case, flow of the second com-
modity may pass through the.upper part of the lobe to all the clauses which contain
x;. Since F, = k, through each vertex D; there is a unit flow of the second com-
modlty Assume that this unit of flow comes from the ith lobe. If it comes from the
upper part of the lobe, then x; € D; and the first commodity must flow through the

" lower part of the lobe. Thus x; is “true” and D; is satisfied.

If the flow comes from the lower part of the lobe, a similar argument holds.

This completes the proof that the expression is satisfiable.
(b) If the expression is satisfiable, we send the first commodity flow through

- the lower path of the ith lobe if and only if x; is “‘true”. Since each clause D;

contains at least one literal x; or X; which is “‘true”’, the second commodity passes
through the upper or lower path depending on whether x; or X; is “true”.

Thus both requirements are met. Q.E.D.

Next, we show that U2CIF [10] is NP-complete, too. The definition of U2CIF
is similar to that of D2CIF except that the graph is undirected. Denoting an
undirected edge between u and v as u — v, its capacity is c(u — v). However, the
flow has a direction. If the flow is from u to v fi(u — v) is positive and fi(v — u) is
its negation. (Note that c¢(u — v). = ¢(v — u} =2 0.) Condition (a) changes into

fillu = o) +1folu — o) S clu —v), u—veE,
implying that the total flow in both directions is less than the capacity.
As before, condition (b) assures that for each ve ¥V — {s;, t;} the total flow of
commodity i entering v is equal to the total flow of commodity i emanating from
v, Le.,

Y filu—1v) =0.

u—veE
Let the total ith commodity flow be F, = ZS e f( — u). Condition (c) states

that F; =
THEOREM 4. Simple U2CIF is NP-complete.
Proof. 1t suffices to show:

simple D2CIF oc simple U2CIF.

‘First we change the directed graph G(V, E) as follows: we add four new vertices

§,,8,,f and f, to serve as the two new sources and terminals, respectively. We
connect §; to sy via R, parallel edges and ¢, to I, via R, parallel edges. Similarly,
§, is connected to s, and t, to f, via R, parallel edges in each case. Vertices s,
sy, t, and t, are now subject to the conservation rule and the requirements are
the same. Clearly, the requirements can be met in the new graph G'(E’, V') if and
only if they can be met in the original one. Also, without loss of generality, we
may assume that R, + R, < |E|, or obviously the requirements cannot be met.
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- Thus these changes can only expand the data describing the problem linearly.

Now we proceed to construct the undirected network from the new directed
network.

Fi6. 9

Fach edge u — v of G’ is replaced by the construct shown in Fig. 9. (u or v
may be one of the sources or-terminals.) Only the unlabeled vertices of the con-
struct are new and do not appear elsewhere in the graph..

It remains to be shown that the requirements can be met in the directed
network if and only if the requirements R} = R, + |E'| and R, = R, + |E'| can
be met in the undirected network.

First assume that the requirements of the directed network can be met.
Initially, flow one unit of each commodity through each one of the edge-constructs,
as shown in Fig. 10. This yields F;, = [E'| and F, = |E'|. Next, if u — v is used in
G’ to flow one unit of the first commodity, then we change the flows in the edge-
construct as shown in Fig. 11. The case of the second commodity flowing through

FiG. 10



702 S. EVEN, A. ITAL AND A. SHAMIR

FiG. 11

# — vin G' is handled similarly. It is easy to see that Ry and R} are now met in
the undirected graph.

Now assume we have a flow in the undirected graph satisfying the require-
ments R and Rj. Since the number of edges incident to §; (7;) is R}, all these edges
are used to emanate (inject) ith commodity flow from (into) §; (f;). The flow through
each edge-construct must therefore be in one of the following patterns:

1. asin Fig. 10;

2. as in Fig. 11;

3. asin Fig 11, for the second commodity.

We can now use the following flow through u — vin G': If the u — v construct is of
pattern 1, then fi(u — v) = fo(u - v) = 0. If it is of pattern 2, then fi(u — v) = 1
and fo(u — v) = 0, etc. Clearly this defines a legal flow for G’ which meets the
requirements. . Q.E.D.

It is easy to see that the multicommodity integral flow problems, as we have
defined them, are easily reducible to the version in which we have only one (total)
requirement, ie., F; + F, = R. Thus, the latter versions are NP-complete, too.
Also, the completeness of the above problems imply the completeness of the two-
commodity integral flow problems with arbitrary capacities for both the directed
and the undirected case. Also, the completeness of m = 2-commodity integral
flow problems follows.
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