
SIAM J. COMPUT.
Vol. 7, No. 4, November 1978

1978 Society for Industrial and Applied Mathematics

0097-5397/78/0704-0003 $01.00/0

FINDING A MINIMUM CIRCUIT IN A GRAPH*

ALON ITAI AND MICHAEL RODEH:

Abstract. Finding minimum circuits in graphs and digraphs is discussed. An almost minimum circuit is a
circuit which may have only one edge more than the minimum. To find an almost minimum circuit an O(n 2)
algorithm is presented. A direct algorithm for finding a minimum circuit has an O(ne) behavior. It is refined
to yield an O(n) average time algorithm. An alternative method is to reduce the problem of finding a
minimum circuit to that of finding a triangle in an auxiliary graph. Three methods for finding a triangle in a
graph are given. The first has an O(e3/2) worst case bound (O(n) for planar graphs); the second takes
O(n 5/3) time on the average; the third has an O(nlg7) worst case behavior. For digraphs, results of
Bloniarz, Fisher and Meyer are used to obtain an algorithm with O(n log n) average behavior.

Key words, graph, digraph, triangle, circuit, shortest path, matrix multiplication, analysis of an
algorithm, computational complexity, worst-case, average-case, random graph

1. Introduction. In this paper we discuss finding short circuits in graphs and
digraphs. The problem of digraphs arose when we tried to define the distance
between two perfect matchings in a bipartite graph [4]. We assume that the reader is
familiar with the standard definitions of graph theory [9]. Let G (V, E) be a graph
with n vertices and e edges. In this paper the edges of a path (circuit) are all distinct.
The length of a path (circuit) is the number of its edges. We assume that the vertices
are numbered and we shall not distinguish between a vertex and its number. A
minimum circuit is a circuit whose length is minimum. Harary [6] defines the girth of a
graph to be the length of its minimum circuit. Several theorems relate to this notion
[5], [7]. An almost minimum circuit is a circuit whose length is greater than that of a
minimum circuit by at most one. We present an O(n :z) algorithm for finding an almost
minimum circuit. To find a minimum circuit we develop an O(n :z) average time
algorithm. The straightforward algorithm for finding a minimum circuit has an O(ne)
behavior. We also show an O(n :) reduction from the problem of finding a minimum
circuit to that of finding a triangle (a circuit of length 3). Three methods for finding
triangles are presented"

(i) Using rooted trees. The algorithm takes O(e 3/2) time in the worst case and
O(n) for planar graphs.

(ii) Check directly whether an edge is contained in a triangle. O(ne) worst case
and 0(//5/3) average time.

(iii) By Boolean matrix multiplication, in O(n!g7) time [10] (all logarithms are
taken to base 2).

Algorithms for finding a shortest path in digraphs can be adapted to find-
ing a minimum directed circuit (dicircuit). In particular, Friedman’s
O(n3(log log n/log n)1/3) algorithm for weighted graphs [8] and directed breadth first
search. The latter requires O(ne) time in the worst case. However, it is proven, using
the methods of [2], that on the average O(n :z log n) time suffices. Using Boolean
matrix multiplication we show how to find a shortest dicircuit in at most O(//lg7 log n)
time.

We use three representations of labeled graphs:
(i) The adjacency lists: A (v) is the set of vertices adjacent to v. In this paper it is

assumed that all graphs are given in this representation.

* Received by the editors November 24, 1976, and in revised form on October 18, 1977.

" Computer Science Department, Technion, Israel Institute of Technology, Haifa, Israel.
t IBM, Israel Scientific Center, Haifa, Israel.

413

414 ALON ITAI AND MICHAEL RODEH

(ii) The upper adjacency vectors: UA(v) is a sorted vector which contains those
vertices w >v adjacent to v. This representation depends on the labeling of the
vertices. Each edge is represented in exactly one vector. The vectors may be obtained
from the adjacency lists in O(e) time (using bucket sort).

(iii) The adjacency matrix: (M)u.v 1 if and only if u and v are connected by an
edge. The adjacency matrix may be constructed from the adjacency lists in O(e) time
[1, p. 71, Ex. 2.12], even though this representation requires O(n 2) space. Hence n 2 is
a lower bound to the space requirements of all algorithms which use this represen-
tation.

2. Finding an almost minimum circuit. Let G (V, E) be an undirected graph
with n vertices and e edges which has neither parallel edges nor self loops. Let Imc
denote the length of a minimum circuit (if none exists then Imc). A circuit is an
almost minimum circuit if its length is less than or equal to lmc + 1. We present an
O(n) algorithm for finding an almost minimum circuit.

First we present the algorithm FRONT. Given a vertex v V this algorithm finds
a lower bound for the length of the shortest circuit through v. The algorithm assigns
values to two global variables: the vector / of length n and the n n matrix level.
These values are used in the sequel. FRONT(v)conducts a partial breadth first search
(BFS) from v. When defined the value of level(v, u) is the level of u in the search. If
the connected component which contains v is circuit-free then the algorithm
terminates with k(v)=. Otherwise, it stops when the first circuit is closed; this
circuit does not necessarily pass through v; k(v) is defined to be the last level from
which the search was conducted; 2/(v)+ 1 is a lower bound for the length of the
minimum circuit through v.

The algorithm FRONT uses a first-in, first-out queue which is initially empty.
The queue operations are enqueue(u) which inserts u at the rear of the queue, and
dequeue which removes and takes the value of the first element of the queue.

procedure FRONT(v);
begin for u s V do level(v, u):= nil;

enqueue(v); level(v, v):= 0;
while the queue is not empty do
begin comment if the graph contains a circuit in the connected component of v

then the queue is never empty at this point;
u := dequeue;
for w s A(u) do

begin if level(v, w) nil
then begin level(v, w) := level(v, u)+ 1;

enqueue w) end
1. else if level(v, u)<= level(v, w)

then begin k(v):= level(v, u);
return end

end
end;
comment the connected component of v is circuit-free;

2. k(v) := oe
end

FRONT builds a partial BFS tree. When a nontree edge is encountered (line 1)
the algorithm terminates. Otherwise k(v)=eo (line 2). Each tree edge is scanned at

A MINIMUM CIRCUIT IN A GRAPH 415

most twice. Thus the algorithm takes O(n) time. In the queue each vertex may appear
at most once. Therefore, the algorithm requires O(n) space for local variables, the
vector level of length n, and the queue, in which each vertex can appear at most once.
Hence, the algorithm requires O(n) space in addition to the input. Observe that a
minimum circuit through v could be found by scanning all the edges. In the worst case
this takes O(e) time. In the next section we present a method of scanning which takes
O(n) time on the average.

Let us apply FRONT to every vertex v V, and let kmin be the minimum value
of k(v).

LEMMA 1. Let x be a vertex for which k (x)= kmin < c, then x is contained in an
almost minimum circuit.

(a) (c)

FIG.

Proof. Let v be a vertex which belongs to a minimum circuit C. If lmc is even,
FRONT(v) stops when encountering a vertex w as in Fig. la; k(v)= lmc/2-1. If
Imc is odd the algorithm stops as in Fig. lb or Fig. lc; k(v)= (Imc 1)/2.

2k(v)+ 1 _<- Imc <= 2k(v)+ 2.

Since k(v) >- kmin, 2kmin + 1 <= lmc. The circuit found when applying FRONT to x is
not longer than 2kmin + 2. Therefore, it is not longer than lmc + 1 and is an almost
minimum circuit. This circuit contains x, since otherwise its length would have been at
most 2(kmin 1)+ 2 2kmin < lmc, a contradiction. Q.E.D.

Note that if lmc is even then for a vertex x on a minimum circuit the algorithm
stops as in Fig. l a and finds a minimum circuit. In particular, in bipartite graphs the
length of all circuits is even and the algorithm finds a minimum circuit.

Since FRONT is applied n times at most O(n z) time is required to find an almost
minimum circuit. If the algorithm is applied to the full bipartite graph to which we add
zero or more edges the algorithm might find only circuits of length four, even though
the graph may contain triangles. In this case the algorithm requires O(n 2) time, hence
the bound is tight for the algorithm.

The space requirements can be lowered to O(n). As noted, the queue requires
only O(n) space. The matrix level can be replaced by a vector in which for all v
level(v, u) share the same location. The algorithm for finding an almost minimum
circuit can be optimized by keeping the value of kmin and terminating FRONT(v)
whenever level(v, w) kmin.

3. Finding a minimum circuit. We have shown how to find a minimum circuit for
the special case in which the length is known a priori to be even. In this section we use

416 ALON ITAI AND MICHAEL RODEH

by-products of FRONT to develop an O(n 2) average time algorithm to find a
minimum circuit for the general case.

Assume that FRONT has been applied to a vertex v for which k is minimum and
let us look at the values of level. If the connected component of v is circuit-free then
the entire graph is circuit-free. Otherwise, a circuit is detected. Using the notation of
FRONT, this circuit passes through u and w. If level(v, u)= level(v, w) then the circuit
is odd and thus minimum. Otherwise, the circuit is even and may not be minimum. It
remains to check for the existence of an edge (x, y) such that level(v, x)= level(v, y)=
level(v, u). The vertex x must be either a vertex still in the queue or u itself. Thus,
when FRONT(v) terminates, define

F(v)={u}t.J{xlx V, x is in the queue, level(v,x)= level(v, u)}.

In O(n) time we may sort F(v) (bucket sort) and prepare a bit vector representing
F(v) and a linked list of its nonzero elements. The procedure EDGE below, when
applied to F(v) searches for an edge (x, y) in F(v).

Let S be an ordered list of distinct vertices with the additional property that
membership can be determined in constant time. (Observe that F(v) satisfies these
requirements.) (x, y) E is an S-edge if x, y S. EDGE(S) searches for vertices u < w
such that (u, w) is an S-edge. First it searches (lines 1-4) for (u, w) such that u is not
among the last n x/3 vertices of S. If unsuccessful, it searches exhaustively for an edge,
the endpoints of which belong to the last n 1/3 portion of S (lines 5-6). If both searches
fail then there exists no S-edge.

EDGE uses UA in a destructive mode. Since needed later, it can either be copied
before use or reconstructed using a stack to undo all destructive operations. The latter
solution is preferred since it enables a sublinear algorithm (o(n)). However, the details
are omitted.

procedure EDGE(S);
1. begin for := 1 step 1 until]SI n x/3 do

begin u := S(i);
while UA(u) is not empty do

2. begin choose at random a vertex w in UA(u);
3. if w $ then return ((u, w));

delete w from UA(u)
end

4. end;
5. for := max(l, IS]- n 1/3 -t- l) step 1 until]SI do

begin u := S(i);
for/" := + 1 step 1 until SI do
begin w := S(]);

if (u, w)E then return ((u, w))
end

end;
6. return(nil)

end

EDGE may require O(n 2) time. However, its average behavior is better.
Let ud be the upper degree vector (ud(v)= UA(v)I) and Gua be the class of all

labeled graphs with a given ud vector. Observe that the class of all labeled graphs is a
disjoint union of all the Gua classes.

A MINIMUM CIRCUIT IN A GRAPH 417

Let P be a probability measure on labeled graphs, such that any two graphs in
are equiprobable. The following probability measures are special cases of P [3]:

(i) The existence of each edge is an independent random variable with equal
probabilities.

(ii) All graphs with a given number of edges are equiprobable.
For S

V, let Es be a subset of $ x (V- S) and es the cardinality of Es.

LZMM, 2. Let GEs {G (V, E)IE Es}. Then the average behavior of EDGE
on GEs is bounded by O(es + n2/3).

Proof. If (u, w) belongs to Es then the check w e $ (line 3) necessarily fails.
EDGE might waste at most O(es) time on such edges. Therefore, it suffices to prove
that the other edges require O(n /3) time on the average.

Using the linked list representation of S and the adjacency matrix, lines 5-6
require at most O(n/3) time. Thus, it remains to show that lines 1-4 require O(n 2/3)
average time.

Under P, all graphs in Gs Gua are equiprobable. We now wish to estimate the
probability that an edge (u, w) chosen at random in line 2 is an S-edge. By assumption
(u, w) does not belong to Es. Let there be 11 edges in UA(u)fqEs. Denote by 12 the
number of edges in UA(u)-Es checked before (u, w). The vertex w may be any of
n u -(11 + l) remaining vertices, with equal probabilities. Since w > u, if w e $ then
it can be any one of the vertices of $ {u + 1,..., n}. The probability that w S is
therefore:

1/3ISf3{u+l,..., n}l>n
n u -(/1 -t- l) n

By decreasing the probability of success, the average number of trials until the first
success increases. Hence, the average execution time of lines 1-4 is bounded by

O = i(1-n-Z/3)i-ln -2/3 0(n2/3). Q.E.D.

The following procedure MINmCIRCUIT finds a minimum circuit of length
lmc. If lmc is finite the circuit passes through v. If Imc is odd then the circuit also
passes through the edge a.

procedure MIN__CIRCUlT(Imc, v, a);
1. begin for v V do FRONT(v);
2. find kmin;

if kmin then begin Imc := o
return end;

3. for v V and k (v) kmin do
4. begin find F(v);

prepare a representation of F(v) as a sorted linked list;
5. prepare a bit vector representation of F(v);
6. a := EDGE(F(v));

if a nil then begin lmc := 2krnin + l
return end

7. end;
Imc := 2kmin + 2;
v := any vertex for which k is minimum

end

418 ALON ITAI AND MICHAEL RODEH

THEOREM 1. The average execution time of MIN__CIRCUIT is bounded by
O(n).

Proof. Line 1 requires at most O(n 2) time; line 2, O(n) time. In each iteration,
lines 4-5 require O(n) time. In line 6 EDGE is called with S F(v) and Es is the set
of edges incident with S which were scanned by FRONT(v). Hence, es <= n and each
iteration of line 6 costs O(es + n2/3)- O(n) time on the average. Since the loop (lines
4-7) may be executed at most n times, MIN__CIRCUIT requires O(n 2) time on the
average. (The average of a sum is equal to the sum of the averages.) Q.E.D.

Steps 1 and 2 of MIN__CIRCUIT can be done in one pass as explained in the
end of the previous section. The space requirements can be lowered to O(n) since we
can keep a vector instead of the matrix level. In step 4, the values of level(v,. are
required to find F(v), however FRONT(v) can be called again to obtain these values.
This optimization increases the running time by at most a constant factor, while
decreasing the space by a factor of n.

4. A reduction to finding triangles. Now we turn to show a reduction of the
problem of finding a minimum circuit to that of finding a triangle in an auxiliary graph.
A disadvantage of this method is that the number of edges might grow considerably.
However, the number of vertices may only be doubled. Thereby, an upper bound for
the complexity of the problem is found.

To this end we construct the graph G’= (V’ V, E’). V’ consists of a copy of
those vertices of G for which k is minimum. A vertex v’ (v’ denotes the vertex
corresponding to v) is connected by an edge to all the vertices in F(v). Fig. 2 contains
an example of an auxiliary graph G’. The original graph G appears in boldface.

FIG. 2

v F(v) k(v)

w, u 2
x t,w,u
w x, y, u
y w,v
u x, w, v
v y, u, z
z y,u 2

LEMMA 3. G’ contains a triangle through v’ if and only if v is contained in a
minimum circuit in G and Imc is odd (i.e. Imc 2kmin + 1).

Proof. Let G’ contain a triangle (v’, x, y). By the construction, v’ is connected
only to vertices of F(v). Therefore, x, yF(v)c_ V. The vertices x and y are at
distance kmin from v. FRONT traces minimum length paths v-x, v-y. The length of
these paths is kmin and they are vertex disjoint (i.e. they intersect only at v), because
an additional intersection would entail a shorter circuit. (v’, x, y) is a triangle in G’ and
x, y V. Thus, (x, y) belongs to E. This edge and the two paths form a circuit of length
2kmin + 1. Since Imc >= 2kmin + 1 the circuit is minimum.

A MINIMUM CIRCUIT IN A GRAPH 419

In the other direction, assume Imc is odd and a minimum circuit passes through v.
Therefore, lmc- 2kmin + 1, k(v)= krnin and v’e V’. Let C be a minimum circuit
through v. There are exactly two vertices x, y in C whose distance from v is kmin
[Imc/2]. Thus, x,yF(v) and (x,y)E’. Therefore, (v’,x,y) is a triangle in
G’. Q.E.D.

COROLLARY. If a triangle in G’ passes through a vertex x V then there exists a
minimum circuit of G through x.

Proof. If the triangle consists solely of vertices of V then the triangle is contained
in G and is a minimum circuit (because parallel edges and self loops have been
excluded). If the triangle contains a vertex of V’ then this follows from the proof of
Lemma 3. Q.E.D.

Finding a triangle in G’ provides us with an edge (x, y) E which is contained in a
minimum circuit of G. The circuit itself may be found in O(n) time by an algorithm
similar to FRONT.

5. Algorithms for finding triangles. We study several algorithms for finding
triangles.

5.1. Search by rooted spanning trees. Let T be a rooted spanning tree of a
connected graph. Using the following lemma we may construct an algorithm to check
whether the graph contains a triangle.

LEMMA 4. There exists a triangle which contains a tree edge if and only if there
exists a nontree edge (x, y) for which (father(x), y) E. (Every edge is checked in both
directions.)

Proof. If (father(x), y) E then obviously (x, y, father(x)) is a triangle.
In the other direction, assume that (x, y, z) is a triangle and (x, z) is a tree edge

(without loss of generality x =father(z)). Two cases arise: If (z, y)-T then the
condition is met for this edge since (father(z), y)= (x, y) E. Otherwise, (z, y) T. In
this case z father(y) (each vertex has at most one father). The condition is met for
the nontree edge (y, z) since (father(y), x) (z, x) E. Q.E.D.

For each nontree edge (x, y) we can check whether (father(x), y) E in constant
time using the adjacency matrix. Consequently, in time O(e) we may check whether
there exists a tree edge which belongs to a triangle.

Let us call a connected component trivial if it is an isolated vertex. We may now
describe the procedure TREE"

procedure TREE;
1. Find a rooted spanning tree for each nontrivial connected component of G;
2. If any tree edge is contained in a triangle the algorithm terminates;
3. Delete the tree edges from G.
Each iteration of TREE requires at most O(e) time.

procedure TRIANGLE;
Repeat TREE until all edges of G are deleted.

THEOREM 2. For planar graphs TRIANGLE requires at most O(n) time.

Proof. TRIANGLE deletes edges from the graph. We first show that each
iteration of TREE deletes at least a third of the remaining edges. At first e _-< 3n-6
and we delete n 1 edges; (n 1)>_-e/3. At subsequent iterations a third of the edges
of each connected component are deleted. Therefore, a third of the remaining edges
are deleted. Consequently, the number of edges at the ith iteration is at most ()i-Xe.
The work in the ith stage is proportional to the number of remaining edges. There-
fore, the total work is proportional to ,i=1 e(32-)i-1 3e O(n). Q.E.D.

420 ALON ITAI AND MICHAEL RODEH

THEOREM 3. For any graph TRIANGLE requires at most O(e 3/2) time.

Proof. Let c denote the number of connected components. During the execution
of TRIANGLE the value of c increases. Initially c 1. At first we estimate the time
required by TRIANGLE while c _-<n-e 1/2. Then we estimate the time while c >

1/2.

(a) c -< n e 1/2.

Each iteration of TREE causes the deletion of n-c->_n-(n--el/2) e 1/2 edges.
Since there are e edges there may be at most e/e /2= e 1/ such iterations.

(b) c >/1 -e 1/2.

The degree of each vertex is at most n-c<=n-(n-el/2)=e 1/2. Since each
iteration of TREE decreases the degree of each nonisolated vertex, there may be at
most e 1/2 such iterations.

Therefore, we have at most 2e 1/2 iterations in the entire process. Each iteration
takes O(e) time. Thus, TRIANGLE takes O(el/2)O(e) O(e 3/2) time. Q.E.D.

For K,,,, (the full bipartite graph with 2n vertices) the algorithm may take O(e 3/2)
time while c -< n e 1/2. For the graph obtained by adding m vertices all connected to a
single vertex of K,,m O(e 3/2) time is required while c > n -e a/2.

5.2. Search by vertices. G contains a triangle if there exists a vertex v and an
edge a between two vertices u, w(u < w) of UA (v).

procedure VERTEX;
for v V do

begin a := EDGE(UA(v));
if a nil then return(v)

end

EDGE requires that UA(v) be represented by an ordered linked list; moreover,
membership in UA(v) can be determined in constant time using the adjacency matrix.

THEOREM 4. VERTEXfinds a triangle in O(n 5/3) on the average.
Proof. The proof is based on Lemma 2. When calling EDGE(UA(v)), Es is

empty. Therefore, EDGE UA(v)) requires at most O(n 2/3) time on the average. The
result follows since EDGE is called at most n times. Q.E.D.

Note, that if the upper adjacency vectors or the adjacency matrix has to be
prepared then by the note in the Introduction, the algorithm requires additional O(e)
time. In any case, O(n 2) space is required.

5.3. Matrix multiplication. Let M be the adjacency matrix (i.e. (M)u, 1 if and
only if (u, v)s E). Let M2 be the Boolean multiplication of M with itself. (M2)u, 1 if
and only if there exists a vertex w such that (M),,w (M)w, 1 (i.e. (u, w), (w, v)s
E). If also (M),o 1, then (u, v, w) forms a triangle. Let B M2 and M (and denotes
element-by-element logical and). (B), 1 if and only if a triangle passes through the
edge (u, v). Using Strassen’s algorithm [10] we may multiply Boolean matrices in
O(n1g7) time, thus obtaining an O(nlgT) algorithm.

Combining this algorithm with the reduction of 4 we obtain an algorithm for
finding a minimum circuit that takes at most O(n1g7) time.

6. Finding a minimum dicircuit. In the sequel digraphs, dicircuits and dipaths
denote directed graphs, circuits and paths respectively.

The techniques for (undirected) graphs described in the previous sections are not
applicable to the problem of finding minimum dicircuits in digraphs. Dicircuits may be

A MINIMUM CIRCUIT IN m GRAPH 421

found by n applications of the procedure DICIRCUIT described below. This method
has worst case behavior O(ne) but O(n" log n) on the average. Another method using
Boolean matrix multiplication requires O(nlg7 log n) time.

6.1. The procedure DICIRCUIT. DICIRCUIT(v) finds a shortest dicircuit
through v. We conduct a directed BFS from v. The queue has the same role as in
FRONT; level(v, u)denotes the length of the shortest dipath from v to u if one exists
and nil otherwise; scan denotes the number of scanned vertices.

procedure DICIRCUlT v)
begin for u V do level(v, u):= nil;

enqueue(v); level(v, v):= 0; scan := 1;
while scan < n do
begin if queue is empty then begin

k(v) := nil;
return end;

u := dequeue;
for w A(u) do

if w v then begin k (v) := level(v, U)+ 1;
return end

else if level(v, w)= nil then
begin level(v, w):= level(v, u)+ 1;

enqueue(w);
scan := scan + 1 end

end;
enqueue(u);

4. while queue is not empty do
begin u := dequeue;

if (u, v)E then begin k(v) := level(v, u)+ 1;
5. return end

end;
6. k(v) := nil

end

The procedure may terminate at four points in the program:
(a) Line 1. The queue has become empty. In this case there is no dicircuit

through v, so we return with k(v)= nil.
(b) Line 2. We have returned to vertex v. In this case we have closed a shortest

dicircuit through v whose length is k(v).
(c) Line 5. We have reached all the vertices. In this case we look for the first

vertex in the queue which closes a dicircuit. This is done via the adjacency matrix. The
vertices of the queue are ordered by nondecreasing value of level. Therefore, a
dicircuit closed in this stage is indeed a shortest dicircuit through v.

(d) Line 6. There is no edge from the scanned vertices to v. Therefore, there is no
dicircuit through v, so we return with k(v)= nil.

Even though DICIRCUIT may require O(e + n) time, the average performance
is somewhat better.

THeOReM 5. Suppose P is a probability measure on labeled digraphs with n vertices
such that digraphs with the same outdegrees are equiprobable. Then DICIRCUIT takes
O(n log n) time on the average.

Proof. DICIRCUIT takes most time if it scans all vertices. We may consider only

422 ALON ITAI AND MICHAEL RODEH

the time needed to reach all vertices since the additional time (lines 4-5) is O(n).
Procedure R of [2] also scans a digraph until all vertices have been reached. The main
difference is that R uses a stack while DICIRCUIT uses a queue. However, R does
not take advantage of any property of the stack not shared by a queue. R is proven to
take O(n log n) time on the average. Thus DICIRCUIT has an O(n log n) average
behavior too. O.E.D.

A shortest dicircuit through v can be found by inserting father(w):= u after
line 3. The dicircuit is found by backtracking from the vertex u which closed the
dicircuit (lines 2 and 5).

By applying DICIRCUIT to all vertices of the digraph a shortest dicircuit may be
found in O(n: log n) average time.

6.2. Binary search using matrix multiplication. Let Imdc be the length of the
minimum dicircuit in G; M the adjacency matrix; D. the matrix of dipaths of length
less than or equal to/. ((Dr)u,v 1 if and only if there exists a dipath of length 1 -< <-/"
from u to v.) The matrix Dr has a nonzero element on the main diagonal if and only if
Imdc <-. (i.e. lmdc is the smallest for which D contains a nonzero element on its
main diagonal.)

Let j + k then Dr (DiDk) or M where DiDk is Boolean matrix multiplica-
tion and or is an element-by-element logical or, since (OiOk)u,v 1 if and only if
there exists a dipath of length l, 2_-< l_-< + k. The or operation adds the dipaths of
length 1.

We compute D by the following method:

DI=M
D2t D or M.

We compute D2, until there is a nonzero element on the main diagonal. This
happens when i= flog lrndc]. The value of Imdc is found by a binary search on] in
the region 2-1 </" <-2" First we compute D:,-1+2,)/: D2,-2+:,-1 D:,-2D2,-1 or M.
If the diagonal is all zeros we continue the search in the region 2-1+ 2-:</’-< 2i.
Otherwise, we continue in 2-a </" <- 2- + 2-:.

The process requires 2 log lmdc matrix multiplications (i.e. O(n lg7 log lmdc)=
O(nlg7 log n) time).

The space requirements are O(n: log Imdc)= O(n 2 log n) since we store log lmdc
matrices.

The minimum dicircuit itself may be found in additional O(e) time by a directed
BFS from a vertex v for which (D,,,ac),,.v 1.

7. Conclusions. Using FRONT we have an O(n 2) reduction from the problem
of finding a minimum circuit to that of finding a triangle. We have shown a method to
find a triangle in O(n 5/3) average time. However, this itself does not yield an O(n:)
average time algorithm to find a minimum circuit since the graphs obtained by the
reduction might have a special structure and do not necessarily satisfy the probabilistic
assumptions which led to the O(n 5/3) average time bound. Fortunately, we can solve
the problem directly in O(n 2) time on the average. However, any algorithm which
finds a triangle in time greater or equal to O(n 2) implies an algorithm to find a
minimum circuit within the same time bound. Consequently, finding triangles by
Boolean matrix multiplication leads to an O(nlg7) worst case algorithm to find a
minimum circuit.

We have seen several algorithms for finding a triangle. TRIANGLE is efficient
for sparse graphs (especially for planar graphs). VERTEX appears better on the

A MINIMUM CIRCUIT IN A GRAPH 423

average but has O(n 3) worst case behavior. Better worst case performance can be
achieved by using Boolean matrix multiplication.

A related problem is finding a minimum weighted circuit in a weighted graph. It is
unclear to us whether our methods can be modified to answer this problem too.

Acknowledgment. The authors wish to thank Shmuel Katz for making valuable
suggestions.

REFERENCES

A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] P. A. BLONIARZ, M. J. FISHER AND A. R. MEYER, A note on the average time to compute transitive
closures, Proc. of the 3rd Int. Colloquium on Automata, Languages and Programming (July 1976),
S. Michelson and R. Milner, eds.

[3] P. ERDOS AND J. SPENCER, Probabilistic Methods in Combinatorics, Academic Press, New York,
1974.

[4] A. ITA! AND M. RODEH, Some matching problems, Proc. of the 4th Int. Colloquium on Automata,
Languages and Programming (July 1977), A. Salomaa, ed.

[5] P. ERDt3S, Graph theory and probability II, Canad. J. Math., 13 (1961), pp. 346-352.
[6] F. HARARY, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[7] L. LovAsz, On chromatic number offinite set systems, Acta Math. Acad. Sci. Hungar., 19 (1968),.pp.

59-67.
[8] M. L. FRIEDMAN, New bounds on the complexity of the shortest path problem, this Journal, 5 (1976),

pp. 83-89.
[9] C. L. LIU, Introduction to Combinatorial Mathematics, McGraw-Hill, New York, 1968.

[10] V. STRASSEN, Gaussian elimination is not optimal, Numer. Math., 13, pp. 354-356.

