
RESEARCH CONTRIBUTIONS

Algorithms and
Data Structures The Number of Buffers
Ian Munro
Editor Required for Sequential

Processing of a Disk
File

ALON ITAI and YOAV RAZ

ABSTRACT: The number of buffers required for
sequential processing of disk files is investigated with the
assumption that there is a single user served by two
processors: one reads blocks from the disk into buffers in
main memory, while the other processor processes the
buffers. If processing is faster than reading, then two buffers
suffice. However, if processing is slower, using only two
buffers does not guarantee minimum completion time. The
minimal required number of buffers is calculated in this
article.

1. INTRODUCTION
Many programs require a file to be processed consecu-
tively. It is well known that if the reading time of a
block is greater than its processing time then two buff-
ers are sufficient to yield the best performance. How-
ever, we show that when processing a block requires
more time than reading it, two buffers are not always
sufficient to ensure minimum completion time. Such
situations arise in many practical systems.

We assume that the system consists of two processors
working in parallel: a CPU dedicated to processing
blocks in buffers and a disk controller dedicated to
reading fixed length blocks from the disk.’ The CPU is
not interrupted by the disk controller and there are no
other processes competing for the CPU or the disk.

’ For technical details the author suggests the following publications: Introduc-
tion to IBM Direct Access Sforage Devices by Marilyn Bohl, published by Sci-
ence Research Associates, Inc. (SRZO-4736-00): Reference Manual for IBM
3330 Series Disk Storage (GA’%-1615): Reference Manual for IBM 3350 Direct
Access Storage (GAL!&1638): Introduction to IBM 3380 Direct Action Storage
(GA26-1662): IBM 3380 Direct Action Storage Description and User’s Guide
(GA26-1664); and Database Design, Zd. edition by Gio Wiederhold, published
by McGraw-Hill, 1983.

0 1988 ACM OOOl-0782/68/1100-1338 $1.50

We shall make the following assumptions:

(1) Reading and processing can be conducted simulta-
neously in parallel.

(2) At any instance, no more than one buffer can be
processed, and no more than one block can be read
into a buffer.

(3) The processing of a block can start only after it has
been read into a buffer.

(4) A block may be read into an empty buffer or into a
buffer only after the processing of the block cur-
rently in the buffer has terminated.

We shall use the following parameters:

R-Reading time of a block
P-Processing time of a block
T-Time of a full rotation of the disk
n-Number of blocks per track,
N-Total number of blocks (of the entire file),
b-Number of available buffers, and
m-Number of tracks [required by the entire file).

Remark 1.1: R is the time the reading head passes over
all parts of a block including all intrablock and one
interblock gap.

Remark 1.2: P is the time required to process the block
by both the system and the application program.

The completion time, C, of an algorithm A processing a
file F is the entire time required for A to process F, i.e,
the time elapsed from starting reading the first block of
F until the last block is processed. The optimal number of
buffers is the minimal number of buffers necessary to
process a file within minimum completion time.

1338 Communications of the ACM November 1988 Volume 3:t Number 11

Consider the following Greedy algorithm which reads
the blocks consecutively:

(11

(2)

(3)

The reader reads the blocks sequentially as long as
an empty buffer is available (and not all blocks have
been read).
The reader remains idle until a buffer becomes
available and the reading head is positioned at the
next block to be read.
The processor processes the buffers sequentially
emptying the buffer when the processing of a block
has terminated.

Let r(t) be the number of blocks the reading of which
has started at time t; and p(t) be the number of blocks
whose processing has been completed at time t. Then
for all 0 5 f 5 C, b, the minimum number of buffers,
satisfies:

b + p(f) - r(f) 2 0. Cl.11

We find b by considering the values oft for which the
value of r(t) - p(t) is maximized and thus derive the
minimal number of buffers required.

We shall distinguish between the following cases:

1. R 5 ST.
1.1 P 5 R-two buffers are sufficient.
1.2 R C P < T see below.
1.3 T 5 P-two buffers are sufficient.

2. R > %T (only one block per track).
2.1 P 5 T - R-one buffer is sufficient.
2.2 P > T - R-two buffers are sufficient.

The following analysis deals with case 1.2. Section 2
discusses the case that the file requires no more than a
single track. In Section 3 we discuss multi-track files,
and conclude with some general remarks.

2. SINGLE TRACK FILES
The following lemma shows that within a track the
aforementioned Greedy algorithm is optimal.

Subcase (i): The reader reads all the tracks consecu-
tively. Thus the reader finishes at time NR. During that
time there should be enough buffers so that the reader
never runs out of empty buffers. Since processing starts
after reading the first block, at time bIR, (bI - l)R/P
blocks have already been processed and their buffers
have been emptied. At time bR < t C NR the reader has
started to read [f/R1 blocks. Also L(f - R)/PI buffers
have been emptied. Thus the number of empty buffers
is

LEMMAS: Let F be a file residing entirely in a single
track of the disk, and A be an algorithm which processes the
file sequentially using b buffers (A may read the file in any
order). lf CA is the completion time of A and CG the comple-
tion time of the Greedy algorithm when it uses b buffers,
then Cc 5 CA.

or

bl - ft/Rl + L(t - R)/PJ 2 0. (2.1)

bl 2 ft/Rl - L(t - R)/PJ.

The least number of empty buffers occurs just after
starting reading the last block, i.e., slightly after t =
(N - l)R. At that time,

PROOF: Consider the relationship between R, P and
T as analyzed previously. It is clear that the Greedy
algorithm is optimal for all cases but case 1.2. The fol-
lowing shows that it is also optimal for case 1.2.

b, = N - L(N - 2)R/P1. (2.4

Remark 2.1: Note that when P approaches R from
above limPIR b, = 3.

Suppose CA < CG. For any algorithm D # G define
s(D) to be the minimum index (51) such that D reads
block B,cn, before reading block Bs(+I. Among all algo-
rithms that use b buffers and whose completion time is
CA, let A’ maximize s.

Subcase (ii): The reader has periods of idle time.

This occurs only if no empty buffer becomes available.
In this case it is simpler to use the following argument
instead of (1.1).

Let s = s(A’) and let A” be the algorithm which reads If the reader has idle time after reading block Bi,
the blocks in the same sequence as A’ except that the block B,,, will not be available in memory until T + R
reading of B, is delayed to time &-the time A’ finished time after completing reading B,. To prevent the proces-
reading B,-, . Since processing is sequential, A’ must sor from becoming idle the processing of the bz - 1
keep Bsml in memory until after it is processed, i.e., available full buffers should require at least T + R time.

November 1988 Volume 31 Number 11

Research Contributions

until at least time t, + P. Thus at time t, the buffer A’
used for B, is available to A”. Since the read head is
above B, at time fg, A” can start reading B, at that time
and complete reading it by time t, + R 5 t, + P, the
earliest time A’ can start processing B,. Consequently,
A’ and A” finish processing B, at the same time. While
A” read B,, the read head of A’ was idle, thus after time
f, + R, A ’ and An are identical. Thus A’ and An have
the same completion time. But s(A”) 5 s + 1, contrary
to the definition of A’. Cl

Here we calculate the number of buffers required by
the Greedy algorithm to achieve minimum completion
time. The only interesting case is case 1.2: If within a
track the reader becomes idle it will be idle at least one
complete revolution, since this is the time it takes for
the next block to return to the read head and become
available for reading. Since we assumed P < T at least
one buffer has become available during a revolution
and reading may resume.

Thus reading should proceed in cycles: filling all
available buffers, then a revolution of read idle time,
during which at least one buffer is emptied.

Two subcases are possible:

(i) The reader does not become idle until the entire
track is read.

(ii) The reader has periods of idle time after which
reading is resumed.

Communications of fhe ACM 1339

Research Contributions

For example,

(b? - l)P ;Z T + R (2.3)

Remark 2.2: Note that when P approaches R from
above limPIR bz = 3.

Both subcases (i) and (ii) avoid idle time of the pro-
cessor. We should choose the subcase which minimizes
the number of buffers. Consequently, the number of
buffers required by the combi.ned strategy is

b = minlb,, b2)

(2.5)
= min N - L(N - 2)R,lPl, 1 +

Consider the case that the track is full, i.e., II = N,

T=(N+&)R where&=:- (0 5 8, < 1).

Let e2 = (N - 2)R/P - L(N - 2)R/PJ (0 5 O2 c 1)
The number of buffers in subcase (i) is N - (N - 2)R/P
+ &. Subcase (i) occurs when

T+R
N - (N - 2)R/P + I& 5 1 + p

nP-(N-2)R+OaP5P+T+R=P+(N+&)R+R

N(P - 2R) 5 (1 - &)P - (1 -- O,)R.

If P > 2R then subcase (i) occurs when

N ~ (1 - &)P -- (1 - B,)R
(P - 2R) ’

When P c 2 R the constraint becomes

N ~ PO - &I -- (1 - &lR
(P - 2R).

Note that there are two crossover points: when P = 2R
and when (1 - &)P = (1 - fh)R.

3. READING AN ENTIRE CYLINDER
Let us now consider the general case of a cylinder with
m tracks and a total of N 5 nm blocks. When the tracks
are full, i.e., T = nR the analysis is identical to that of
the previous section. In general, however, L = T -
nR > 0, i.e., at the end of each track there is some space
remaining, of size less than a block, where no data is
written. Thus, no data is read while the head passes
over that space.

This leftover space causes some anomalies: The first
is that the Greedy algorithm is not always optimal. If
P > L + R, Lemma 1 still holds; but for R < P < L + R,
we have the following counterexample:

The Greedy algorithm works as follows: At t = 1 B1 is
ready for processing. At t = 2 Bz is also ready, however,
BJ cannot be read since no buffer is availabl.e, thus the
reader must be idle for an entire revolution T = 3R + L
= 3.2 by this time both buffers are empty and B3 is in
memory only at time 2 + T + R = 6.2, and it may be
processed. Bq starts entering at time 6.2 + L = 6.4 and is
in memory at time 7.4. Thus the completion time is 8.5.

The optimal algorithm reads Bq before B3 (at the be-
ginning of the second revolution), at that time the first
two blocks have already been processed and we have
two available buffers, one for B4 and one for BS. Thus
we have not interfered with the reading and pro-
cessing of B3. However, now B4 is available for process-
ing immediately after the processing of BB, i.e., at time
6.2 + P = 7.3. Thus the completion time is 7.3 + P =
8.4. Somewhat less than the completion time of the
Greedy algorithm. 0

The second anomaly is that sometimes the processor
must be idle (even with an infinite number of buffers):
namely, when R/P is sufficiently close to 1, then at the
end of a single revolution, n blocks have been read and
(T - R)/P blocks have been processed. The last block of
the track is processed at time R + nP, the next block
(the first block of the second track) becomes available
at time T + R. If R + nP C T + R then the idle time is
T - nP. Thus the completion time is equal to

the reading time of the first block

+ (m - 1) revolutions

+ the processing time of the last track

= R + (m - l)T + (N - (m - l)n)P

This occurs when T - nP > 0. However, since T C (n +
l)R, we get (n + l)R - nP > 0, or n/(n + 1) < R/P < 1.

Since the tracks are processed independently, the
number of buffers is determined as if there were only a
single track, and since while reading a track the reader
is not idle, Subcase (i) of Section 2 applies, i.e.,

b = n - L(n - B)R/PJ.

Since n/(n + 1) I: R/P < 1 then for n 2 3:

b 2 n - L(n - 2) - d = n - (n - 3) = 3,

and

J

= n - (n - 3) = 3.

Example 1: Let b = 2, R = 1, P = 1.1, L = 0.2, N = 4
and m = 3. (That is, the first three blocks reside on the
first track and the fourth block on the second.)

Hence, for II 2 3, b = 3.
For n = 2, since, b 2 2, we have b = 2.

Subcase (i): An entire track is read in each revolution.

Let t be the time since reading began, and k(t) =
Lt/TJ the number of tracks alreadv read. At time t the
reader has started reading k(t)n +i(t - k(t)T/Rl blocks,
and the processing of L(t - R)/PI has ended. Thus the
number of empty buffers is

1340 Communications of the ACM November 1988 Volume 31 Number 11

Research Contributions

b - k(t)n -

Or T - nR

,,zk(t)n+[~]-[+O. (3.2)
b,-b;r- P -- a'>-2.

However, since the above must be integral,
The least number of empty buffers occurs either just
after starting to read the last block, or just after starting
to read the last block of the m - 1st track. In the first
case t = (m - l)T + (N - (m - 1)n - l)R. Since k(t) =
m - 1,

-l.,_b;.[(N-N/)(1--;)+l].

Note that the minimum number of buffers is the maxi-
mum of b, and bi.

Subcase (ii): The reader has idle time before reading is
completed.

(m - l)T + (N - (m - 1)n - 1)R + e - (m - l)T =
R 1

= N - (m - 1)~

(m - l)T+ (N - (m - 1)n - l)R + t - R
P I

= (m + l)T + (N - (m - 1)n + 6 - 2)R
P

Substituting in (3.2)

bI = (m - l)n + (N - (m - 1)n)

The analysis here is also similar to that of a single
track. The difference is that for a single track the maxi-
mum waiting time is T - R. Here, we must account for
the space between the end of the nth buffer and the
end of the track. Therefore, if the reader runs out of
buffers just after reading the last buffer of a track the
reader must wait T - nR time until getting to the begin-
ning of the next track, so the next buffer becomes
available only R + (T - nR) = T - (n - l)R time later.
Substituting the latter for R in (2.4) yields

-I@ - 1)T f (N - (m - 1)n - 2)R 1 Note that also here

1 P 1

I

lim b = lim 1 +
(1

2T - (n - 2)R

= N _ (m - l)T - (m - 1)nR + (N - 2)R J PIT PTT P 1)
P P

= N _ I (m - W - W W - W

= l$ (f3 - 2t + (n - 2)R/Tl) = 3,

P
+-

P 1 where t = T/P - 1.

=N- (m - l)(T - nR)
P

(N - 2)R + (y
-p 9

for some 0 5 (Y < 1.

Note that since nR 5 T < (n + l)R, 0 5 T - nR < R.
The term [m - l)(T - nR)/P comes from the empty
space at the end of the track. Since while the head
passes over that space, the CPU may finish its process-
ing but no blocks are read, the effect is, as the equation
implies, to decrease the number of buffers.

The second case is identical to the first except that
the last track plays no part-thus the effective number
of blocks is N’ = (m - l)n and the number of completed
tracks is m - 2, thus m’ = m - 1. Consequently,

b;=N’- (m’-l)(T-nR)+(N’-2)R

P P 1
= (m - 1)n -

(m - 2)(T - nR) + ((m - 1)n - 2)R
P 1 P *

=(m_lln_(m-2)(T-nR)_((m-1)n-2)R+a,
P P

Consider the difference between these two expressions:

Summary: The following table gives the value of b for
more than one track.

I I

-CR<1
n R<- n

n+l P P n+l

n=2 2

min(max(b,, b;), b2)
n>2 3

See further examples in the appendix to this article.

4. CONCLUSIONS
In practice the Greedy algorithm is always used. We
have shown that except for a single pathological case it
indeed ensures minimum completion time. If the algo-
rithm is I/O-bound (R > P) then two buffers suffice.
However, for processing CPU-bound problems in most
cases at least three buffers are required to ensure mini-
mum completion time.

We have analyzed the case of a small file which re-
sides on a single track and that of a larger file which
occupies several tracks of the same cylinder. We have

November 1988 Volume 31 Number 11 Communications of the ACM 1341

Research Contributions

not discussed multi-cylinder files, since a cylinder con-
tains a large amount of data and thus its processing
time is large. Optimizing over the cylinder boundaries
can save at most T, the time for a single revolution,
which is much smaller than the processing time of a
cylinder. Thus it makes more sense to process each
cylinder as a separate file.

For T > P > [(n + l)/n]R > 0, our calculations show
that b is a piecewise continuous function of P/R with

possible jumps of +-1. This has practical significance
since quite often P is known only approximately and
we are forced to use an upper bound for P. ‘The conti-
nuity of b ensures that if the estimate of P is not too far
from its true value the number of allocated buffers will
not significantly exceed the optimal b for the true value
of P. Thus we can find an upper bound on the number
of buffers and allocate enough buffers to achieve the
minimum completion time.

CR Categories and Subject Descriptors: 8.32 [Memory Structures]:
Design Styles-serluentiai-access munory; C.4 [Performance of Systems]:
D.4.4 [Communications Management]: Buffering

Additional Key Words and Phrases: Huffering, disk files, performance
evaluation, sequential files

ABOUT THE AUTHORS:

ALON ITAI is an associate professor at the Computer Science
Department of the Technion-Israel Institute of Technology,
Haifa. He has done research in data structures, probabilistic
analysis of algorithms, and distributed algorithms. Author’s
present address: Alon Itai, Computer Science Department,
Technion-Israel Institute of Technology, Haifa, Israel.

YOAV RAZ is currently with the OLTP Systems Architecture
Group. Digital Equipment Corporation. He was cofounder and
managing director of Sitav Ltd. (a software house], Israel;
senior lecturer at the Computer Science Department of the
Technion-Israel Institute of Technology, Haifa; and a visiting
associate professor at the Computer Science and Engineering
Department, University of California at San Diego. His research
interests include database management systems and theory of
computation. Author’s present address: Yoav Raz, Digital
Equipment Corporation, 200 Forest Street, MROl-l/A65,
Marlboro, MA 01752.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of ihe publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

1342 Communications of the ACM November 1988 Volume 31 Number 11

