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subset of edges no more than r edges may be included m the matching then an O(ne) algorithm is given 

An efficient algorithm for finding all perfect matchmgs is presented It requires O(e) time per matching and 
a total of O(e) space This algorithm may be used to calculate the permanent of a matrix Finally, the algorithm 
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1. I n t r o d u c t i o n  

Matching  problems arise in several areas o f  au tomat ic  data  processing, including analysis 
o f  images, artificial intelhgence,  and the solution o f  school scheduling problems. In 
at tempts to find practical solutions to problems o f  mterpre t ing chest  X-ray images, 
matching  problems may  be posed in terms o f  pairing labels (designating organ  n a m e s - -  
lungs, heart, ribs, etc.) with regions (detected by a segmenta t ion  algorithm). In such an 
approach a biparti te graph is constructed that describes feasible pairings between labels 
and regions [19]. Fo r  example,  for region r and label hear t  the edge (r, hear t )  is included 
tf the size Sr of  r satisfies aheart --< Sr __< bhea,t. A solution to the image analysis p rob lem can 
be considered as a m a x i m u m  matching  (in the constructed graph) which satisfies some 
addmona l  constraints (based upon relationships among  interpreted regions). 

In the artificial mtel l igence literature, solution methods  based on a label ing technique 
have been described for several problems,  inc ludmg the n-queens  problem,  detect ing graph 
isomorphism, and finding consistent labelings for the junct ions  m line drawings. The  
technique used is c o m m o n l y  referred to as relaxat ion labeling (also Wal tz  fi l tering or  
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constraint propagation) [21, 17, 9]. Relaxation labeling is a technique whereby the sets of 
potential labels for each entity are successively replaced with smaller sets according as 
some labels are found to be inconsistent with neighboring entities. Relaxation labeling is 
efficient when the constraints to be satisfied are local (e.g. the constraints involve at most 
two entities at a time). However, the enforcement of certain global constraints cannot be 
done efficiently using relaxation labeling. For example, determination of a labeling 
satisfying the global constraint "exactly m of the n entities shall be labeled x"  (where x is 
one of d possible labels) requires O((~)d m) space using the general algorithm of Freuder 
for any m _< n/2, since all partial solutions of size m are consistent with the global 
constraint and must be carried forward toward compntmg a complete solution [9]. Such a 
constraint may arise when an industrial robot is given knowledge that m out of n parts 
appearing on the conveyor belt are piston rods, for example. Global constraints on the 
number of objects receiving a given label can often be handled efficiently with matching 
techniques by simply providing exactly m labels of type x. In any perfect matching, the m 
labels will all be assigned. Consequently matching techniques are sometimes to be preferred 
over relaxation techniques for solving problems in artificial intelligence. 

Another source of matching problems arises in attempts to find practical solutions to the 
school-scheduling problem (the timetable problem). This problem is known to be NP- 
complete [6]. (A discussion of NP-completeness appears in [l].) A solution can be 
considered as a matching between classes and teachers that satisfies certain restrictions 
(e.g. not more than two labs at the same time). Having this in mind, we look for a 
maximum matching in a bipartite graph with restrictions. (See [5] for the properties of 
graphs and matchings.) This problem is shown to be NP-complete, and offers an expla- 
nation why matching approaches to scheduling are unsuccessful. If no restrictions are 
present, then a maximum matching may be found in O(nl/2e) time [13] (n is the number 
of vertices and e the number of edges). For the case of a single restriction, an O(ne) 
algorithm is presented. The algorithm finds a minimum cost maximum flow for an 
auxiliary network by augmenting along minimum weight paths [8]. In our case the 
algorithm due to Edmonds and Karp [4] may be simplified and implemented more 
efficiently using the shortest path finding techniques of Wagner [20]. 

The restricted matching problem and also certain matching problems which result from 
image analysts may be solved by enumeration. Hence, an algorithm is presented for 
producing a sequence of all perfect matchings. It has the property that at most O(e) time 
passes between the emission of two successive matchings. This compares favorably with 
Gal and Breitbart's algorithm [12] where O(n 3) time may elapse without getting a new 
solution. The third author has developed a method for enumeration of maximum matchings 
for a general graph in order to analyze some biomedical images [19]. However, that 
algorithm may require exponential space and need not produce a new maximum matching 
within polynomial time. 

The above enumeration technique may be used to obtain an algorithm for finding the 
permanent of a matrix. See Ryser [18] for the properties of the permanent. 

Finally, we generalize the enumeration algorithm to yield an algorithm for finding all 
maximum matchings in a bipartite graph. The behavior of this generalized algorithm is 
similar to that of finding perfect matchings. 

2. The Restricted Matching Problem Is NP-Complete 

A graph B ffi (V, E) is bipartite if V is partitioned into two disjoint sets, X and Y; all edges 
have one endpoint in X and one endpoint in Y. A set M C E is a matching tf no vertex is 
incident with more than one edge of M. The size of a matching M is the number of its 
edges. If [ X I _< [ Y[ and every vertex x E X is incident with an edge of M then the matching 
is complete. If in addition IX[ = I YI then the matching is perfect. Hopcrofi and Karp [13] 
find a maximum matching (a matching of maximum size) in O(nl/2e) time. 

Let El . . . . .  Ek be subsets of E, ri . . . . .  rk positive integers. The restrwted complete 
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matching problem (RCM) Is to determine whether there exists a complete matching M for 
B which also satisfies the restrictions: 

I M n E j l _ < r j  f o r j =  1 . . . . .  k. 

THEOREM 1. RCM ts NP-complete 
PROOV. It is easy to see that RCM belongs to the class NP. We show a reduction from 

the satisfiabihty problem of Boolean expressions to RCM. Let ~/= Cj ... Cp be a Boolean 
expression in conjunctive normal form the variables of which are (x~ . . . . .  Xq). Define the 
bipartite graph B = (X to Y, E) as follows: 

X = { C  1 . . . .  Cp}; 
Y =  {Xl . . . .  xq, 21 . . . .  2v) x {1 . . . .  p}; 
E = {(C~, (x , , j ) ) lx ,  appears m Cj} tO {(Cj, (2,,j))12, appears in C~}. 

Let M be a complete matching m B If M does not mclude two edges (C¢, (x,, j)), 
(Ch, (2 ,  k)) then it corresponds to an assignment which satisfies 4/- Therefore, the following 
restrictions are imposed: 

E,,k = {(Cj, (x,,j)),  (Ck, (2,, k))) n E, 
r,jk = 1 

Those E,jh whose cardinality is less than 2 may be ignored. 
We now show that the RCM problem B with the restrictions E,jk has a solution if and 

only if q~ is satisfiable. 
(i) Assume that q/is satisfiable. For each clause Cj choose a single literal y (y  = x, or 

y = 2,) such that y is true I fy  = x, then include the edge (Cj, (x,, j ) )  in the matching M. 
I fy  = 2, then include (Cj, (2, , j))  in M. Thus, M is a complete matching. Since either x, or 
2, is true but not both IM N E,jk[ --< 1. 

(n) Let M be a solution to the RCM problem. The truth value of x, is assigned as 
follows If (Cj, (x, , j))  ~ M for somej  then x, is given the value true. Otherwise, x, is given 
the value false. The restrictions imply that the value of x, is well defined (x, and 2, cannot 
both be true) Every vertex Cj is matched in M with some vertex y. From the construction, 
the hteraly  is true and the clause Cj IS satisfied. Thus, ~/is satisfiable. Q.E.D. 

The restnctedperfect matchmgproblem (RPM) as a special case of RCM when the graph 
B = (X O Y, E) satisfies I g l  = I YI- 

THEOREM 2. RPM is NP-complete. 
PROOF We show a reduction from RCM to RPM. 
Let B = (X O Y, E)  and E1 . . . . .  Eh, r~ . . . .  rk be an instance of RCM Define the 

bipartite graph B' = ((X U X')  to Y, E to E') as follows: X'  = {vl . . . . .  vt} is a set of new 
vertices where t = I YI - I XI and E' = {(v,, Y) I v, ~ X', y ~ Y).  It IS easy to see that B has 
a complete matching ff and only if B' has a perfect matching Q.E.D. 

Given an integer p _< I xI, the restrtcted maximum matchmg problem (RMM) is the 
problem of determining whether there exists a matching M such that 

IMl_>p, I M n E A _ < r , ,  j = l  . . . .  k. 

It is easy to see that RMM is also NP-complete 

3. Fmdmg a Complete Matchmg with a Smgle Restriction 

The general RCM problem is NP-complete. However, if there exists only one restriction 
(the RCM 1 problem) a solution can be found in O(ne) time. Let B = (X to Y, E) and El, 
r~ be an instance of RCMI.  We reformulate the problem In terms of a network N for 
which a maximum flow of cost less than or equal to r, as sought [8]. N consists of a directed 
graph G = (V, A), capacities c(u, v), and costs d(u, v) assigned to the edges: 

(i) V = X O Y O {s, t} where s, t ~ X to Y; 
(ii) A = {(s, x) lx  ~ X} tO {(y, t)ly ~ Y} tO { (x ,y ) l (x ,y )  E E, x E X , y  E Y}; 
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(iii) C(U, V) ---- ! for (u, v) ~ A; 

(iv) d(u, v) - { ~ otherwise.(U'v)EEJ' 

L e t / b e  a flow function; its value I l l  is ~x~xf(s, x) and its cost is ~(~,,o}~Af(U, v)d(u, v). 
A complete matching corresponds to a flow of  value ] X] from s to t. The cost of  the flow 

is equal to the number of  edges of  El in the matching. Therefore, a minimum cost 
maximum flow for the network N yields a matching which uses the minimum number of  
edges of  El. This number is less than or equal to r~ if and only if there exists a solution to 
the given RCM 1 problem. 

In order to solve the minimum cost maximum flow problem we follow [8] and [4]. 
A f l ow/ i s  extreme if its cost is minimum among all flows of  the same value. The zero 

flow is extreme. 
For a given flow/, the network N f ns defined as follows: 

(i) G r = (V, At); 
A t =  ((u, v)l(u, v) ~ A,f(u, v) = 0} o {(u, v)l(v, u) ~ A,f(v, u) -- 1}; 

(ii) cr(u, v) -- 1, (u, v) E At; 
d(u, v) (u, v) ~ A, 

(in) A(u, v) = [_d(v ,  u) (v, u) ~ A. 

THEOREM 3 ([8, p. 121]). I / f  is extreme and P a path o f  minimum weaght in Ng f rom s 
to t then a f l o w f '  obtained by augmenting along P is extreme. 

The above theorem suggests a method for solving the minimum cost maximum flow 
problem: Start with an extreme flow f 0  = 0; compute fk+~ from f k  (k = 0, 1 . . . .  ) by 
augmenting along any one of  the shortest paths from s to t in N r* (with respect to the 
wenghts A). N r* might contain negative weights. Since it is more efficient to find shortest 
paths in a graph with nonnegative weights, Edmonds and Karp [4] introduce auxiliary 
wenghts Ak(u, v) _> 0. These weights are obtained from the original weights A(u, v) and a 
vertex labeling function ~(u)  to be defined in the following algonthm: 

procedure MI~__COST__MA~__FLO~__FOR__RCMI, 
begin/° = zero flow; ~ = zero labehng functwn, 

for  k := 0 s t ep  I until n - I do  
begin determine/~+~ by augmenting along any one of the shortest paths from s to t m N a wzth respect to the 

(nonnegatlve) we:ghts 

A*(u, v) = ~*(u) + A(u, v) - ~r~(v): 

for v E V do 

begin ok(v) = the weight o/the shortest path from s to v, 
~'+'(u) .= ~r*(u) + o*(u), 
¢Olmnent if u is inaccessible/rom s then o*(u) = oo 

end 
end 

end 

Finding shortest paths is the most time consuming part of  the algorithm. Edmonds and 
Karp [4] present an O(n 2) solution. The following discussion leads to an O(e) algorithm. 

THEOREM 4 [4]. For each k and u, ~'k(u) is the weight o f  a shortest path f r o m  s to u in 
N r* with respect to the weights A(u, v) and ~rk+l(u) >_ 7rk(u). 

COROLLARY. During the execution o f  M I N  C O S T ~ M A X _ _ F L O W _ _ F O R _ _ R C M I  
the weights o f  shortest paths (o k) are bounded by n. 

PRoov. By Theorem 4, Irk(u) may be expressed as a sum of  at most n weights A. Since 
A(u, v) _< l, ~rk(u) _< n. Moreover, 0 _< ~rk(u). By the construction o~(u)= ~rk+~(u)- ~rk(u) 
Thus 0 _< ok(u) _< n. Q.E.D. 

Following Dijkstra's algorithm [3], let S be a set of  vertices whose distance from s is 
known. For the remaining vertices S only a tentative distance is known To start S :-- ~;  
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:= V; 8(s) := 0; 6(v) := oo for v E S - {s} At each stage, we find a vertex v E S whose 
tentative distance 8(v) is minimum and transfer it to S. Then we use 8(v) to update the 
tentative distances of  the vertices of  S adjacent to v. 

If  the weights are nonnegative, then 8(u) is the weight of  a minimum path from s to u. 
The main problem is to find a vertex v E S whose tentative &stance is minimum. Dijkstra 
suggested searching sequentially through S. This yields an O(n ~) algorithm. Using a 
balanced tree for keeping the tentative distances leads to an O(e log n) algorithm [16]. We 
take advantage of  the fact that in our case the distances are integers between 0 and n. 
Following Wagner [20] we keep the vertices of  S in a vector of  buckets (the ith bucket 
contains a list of  vertices whose tentatwe distance is equal to i). We search through the 
vector for the first nonempty bucket. A vertex v of  minimum tentative distance is found in 
that bucket. Since the distances are nonnegatwe the index of  the first nonnegative bucket 
does not decrease. Therefore, the entire search through the vector requires O(n) time. 
Updating tentative distances is done by moving vertices from buckets, an operation which 
takes constant time and occurs at most e times. Hence, the algorithm requires at most 
O(e + n) time and O(n) space in addition to the input. 

Once the distances to all vertices are known, a shortest path from s to t may be found in 
linear time. Since there may be no more than I XI augmenting paths we have: 

THEOREM 5. MIN COSZ__MAX~FLO~__FOR___RCMI requires at most O(ne) 
trine. 

RCM may be defined for general graphs. For such graphs RCMI can be solved in O(n 3) 
time by finding a maximum matching with a mimmum cost [! 1]. 

4. Finding A II Perfect Matchings 

Let B = (X t.J Y, E) be a bipartite graph such that IXI = I YI = n. A maximum matching 
may be found in O(nl/2e) time [13]. A matching Is perfect if it contains n edges. We use 
clrcmts to produce all perfect matchings one by one. A clrcmt C in B is an M-alternating 
ctrcuit if for any two adjacent edges of  C exactly one is m M. 

LEMMA 1. A perfect matchmg Mts not unique tf and only if there exists an M-alternating 
circuit. 

PROOF. Let M'  be another perfect matching. Consider the graph H -- (X I..I Y, 
M'  Q M) (G denotes the symmetric difference). Since M # M' there exists a vertex v of  
posmve degree in H. The degree of  v is at most two (each perfect matching can contribute 
at most one to the degree of  v). I f  the degree of  v in H is one then only one edge in M (~) 
M' is incident with v. Assume that this edge belongs to M. Then it does not belong to M'. 
Moreover, none of  the edges of  M'  is incident with v. This contradicts the hypothesis that 
both matchings are perfect. Consequently, the nontrivial connected components of  H 
consist of  disjoint M-alternating circuits. 

I f  M is a perfect matching and C an M-alternating circuit then M' = M (~) C is another 
perfect matching. Q.E.D. 

We use the auxiliary directed graph D = (X, E') to find an M-alternating circuit in B 
where E'  = {(u, v)lu, v ~ X, 3 w ~ Y: (u, w) E M and (v, w) ~ E}. (An edge in E'  originates 
from two adjacent edges in E, the first of  which belongs to M.) A bipartite graph B with 
a perfect matching M and the corresponding directed graph D are illustrated in Figure 1. 

B conta;,ls an M-alternating circuit through (x, y) E M if and only if D contains a 
directed circuit through x. We may find a directed circuit in D in O(e) time. (The algorithm 
for finding strongly connected components may be employed [1].) 

The procedure NE~__SOLUTIONS(G, M, C, L) below accepts a bipartite graph G 
which is a subgraph of  B, a perfect matching M of G, and an M-alternating circuit C. It 
finds all the additional perfect matchings of  G A perfect matching of  B is obtained by 
adding the set of  edges L to a perfect matching of  G. Note that NE~___SOLUTIONS is 
invoked only when M is not unique. 

Method of Operatwn. Let (x, y) E M be an edge of  the M-alternating circuit C. The 
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perfect matchings of  G fall into two disjoint categories: 
(a) Matchmgs which do not contain (x, y): The perfect matching Me = M @ C does not 

contain the edge (x, y). Let Ge = G - {(x, y)).  There exist additional matchings which do 
not contain (x, y) if and only if there exists an Me-alternating circuit Ce in Ge. These 
matchmgs are found by invoking N E W _ _ S O L U T I O N S ( G e ,  Me, Ce, L) recursively. 

(b) Matchings which contain (x, y). Let M,, = M - {(x, y)}. Then there exist additional 
matchings which contain the edge (x, y) if there exists an M,,-alternating circuit C,, in 
G,, = G - {x, y}. (Mo is a perfect matching in G,, ) These matchings are found by invoking 
NE~___SOLUTIONS(G, , ,  M,,, C,,, L O {(x, y)}) recursively. 

procedure NEW__SOLUTIONS(G,  M, C, L), 
begin comment Me, Ge, C., M,,, G,,, C,, are local variables, 

I Let (x, y) E M f3 C, 
M e : = M @ C ,  

2 Ge = G - {(x, y)}, (delete the edge (x, y ) f rom G). Fred an alternatmg ctrcult Ce m Ge wUh respect to Me, if 
none exists then Ce '= nil, 

3 M . . . .  f f  - .{(x,  v)};] (delete the verttcesx, v f rom G a n d M )  
u,,  = u -  l x ,  y L  j - ~  
Fred an alternating c:rcmt C,, in G,, wtth rerpect to M,,; if none extstv then C, = nil. 

4 Output Me t.J L, 
5 if C. # nil then call N E ~ _ _ S O L U T i O N S ( G . ,  M.,  C.. L), 
6 if C,, # nil then call N E W ~ S O L U T i O N S ( G , , ,  M,,  C,,, L k) {(x, y)}) 

end 

LEMMA 2. The procedure N E ~ _ _ S O L U T I O N S  finds a new matching in O(e) rime. 
PROOF. On entering N E ~ _ _ S O L U T I O N S ,  lines 1-3 are executed requiring at most 

O(e) time A new matching is output in line 4. Consequently, a new matching is output 
O(e) time after entering N E ~ _ _ S O L U T I O N S  If  Ce # nil or C,, # nil then 
N E ~ _ _ S O L U T I O N S  is called recursively and a new matching ts found in O(e) time. I f  
both Ce and Co are equal to nil then a return from the recurslon occurs without finding a 
new matching. Checking Ce # nil and C,, # nil takes constant time. Thus the total time to 
exit the recursion is bounded by a constant times the depth of  the recursion, which is at 
most e. Q . E D  

The procedure A L L _ _ S O L U T I O N S  finds all perfect matchings using 
N E  ~ SOL UTIONS.  

procedure A L ~  SOL U TIONS(B), 
begin Fred a perfect matching M, 

if none exists then return, 
Output M; 
Fmd an alternatmg cwcu:l C m B with respect to M, 
if none emstv then return, 
call N E W _ S O L U T I O N S ( B ,  M, C, 0 )  

end 

Note that the algorithm halts at most O(e) time after the last matching is found 
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We may summarize: 
THEOREM 6. (a) The procedure A L L _ _ S O L U T I O N S  finds all perfect matchings; (b) the 

time delay to f ind a new matchmg is O(e); (c) i f  a bipartite graph contains m perfect matchings 
they are found by A L L _ _ S O L U T I O N S  m O(e(n ~/2 + m)) time 

Since the depth of  the recursion is at most e and each circuit may have at most n edges, 
the space requirements in the above formulation are bounded by O(ne), provided Ge and 
Gv are produced by deleting edges and vertices and restonng them later. By recomputing 
the alternating circuits instead of  storing them then the algorithm may be implemented 
within O(e) space. (The execution Ume may be doubled.) 

The procedure A LL__SOL U T I O N S  may be used to compute thepermanent of  a matrix. 
Let A = (atj) be a real matnx; then its permanent is defined byperm(A)  = ~  I~r-i a,.,(o. 
The summation is over all permutations ~r on n letters. Let B = (X t_l Y, E) be a bipartite 
graph where X = {Xl . . . . .  x,}, Y = {yj . . . . .  yn}, and (x,, yj) E E if and only if a,j v ~ O. 
S,  = I-IT-1 a,.~l,i is nonzero if and only if M, = {(x,, y,t,))l i = 1 . . . . .  n} N E is a perfect 
matching. The value of  the permanent is equal to the sum of  S, over all permutations 
whtch correspond to perfect matchings. Thus, we may use A L L _ _ S O L U T I O N S  to find 
the value of  the permanent in O(e(n ~/2 + m)) time, and (n - l)m multiplications (m is the 
number of  perfect matchings). The standard way to compute the permanent requires 0(2 ~) 
time [ 181. 

5. Fmding All Maximum Matchings 

In the previous section the problem of finding all perfect matchings in a bipartite graph 
was considered. Now we turn to generalize the techniques and find all maximum matchings 
instead of  lUSt perfect matchlngs. As before an inttial maximum matching may be found 
in O(nl/2e). 

If  the matching M is maximum but not perfect then there.exist exposed vertices--vertices 
which are not incident with any edge of  M. Let z be an exposed vertex and (z, y)  an edge; 
then y is matched since otherwise M is not maximum. Let (x, y) E M. Then other maximum 
matchings can be found from M not only by alternating circuits but also by replacing 
(x, y) by (y, z). A path (x, y, z) is an M-transposition if (x, y) E M and z is an exposed 
vertex. The following lemma is a generalization of  Lemma I and is proven similarly. 

LEMMA 3. A maximum matchmg M is not unique if  and only if  there exists either an M- 
alternating circuit or an M-transpositton. 

M-alternating circuits are found as before. 
As in the case of  perfect matchmgs, B contains an M-alternating circuit through (x, y) 

E M if and only if D contains a directed circuit through x. 
To find an M-transposition choose any nomsolated exposed vertex z, a vertex y adjacent 

to z, and that vertex x to which y is matched. (Such a vertex x always exists since M is a 
maximum matching.) Searching for an M-transposition takes at most O(n) time. 

Now we outline the method of  operation of  an algorithm for finding all maximum 
matchmgs of  a bipartite graph B. First find an initial maximum matching. Then search for 
an M-transposmon (x, y, z). I f  the search succeeds then define Me -- M U {(y, z)} - 
{(x, y ) } ,  Be  = B - {(x, y)} and proceed recursively to look for new maximum matchings 
in Be. Also define M,, = M - {(x, y)}, Bo = B - (x, y} and check whether M,, is a umque 
maximum matching m Be,. Appending (x, y) to these matchmgs yields maximum matchings 
of  B. If  no M-transposition exists, search for an M-alternating circuit and proceed as in 
NE ~__  SOL U T I O N S  

We have omitted the bookkeeping details but it is qmte obvious that the behavior o f  the 
generalized algorithm is similar to that of.4 LL__SOL UTIONS.  

We summarize: 
THEOREM 7. All maximum matchmgs m a bipartite graph may be found such that the 

ttme delay to f ind a new matching ts at most O(e). The entire algorithm requires O(e) space 
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6. Conclusions 

For  the ease o f  a single restriction an O(ne) solution has been presented. However ,  it is not  
known whether  there exists a polynomia l  solution even for two restrictions. One  of  the 
referees suggested a var iant  to Theo rem 1, in which the number  o f  restrictions is O(n), the 
m a x i m u m  degree is two, and the restriction on the number  o f  edges that  may  appear  in a 
match ing  is ei ther  greater  than or  equal  or  less than or  equal  to one. His p roof  is similar  
to ours. 

I f  M is a match ing  which satisfies most  o f  the restrictions, then in many  cases there 
exists a match ing  M' such that M and M'  have m a n y  edges in c o m m o n  and M '  satisfies all 
the requirements .  Therefore ,  it might  be wor thwhi le  to find all matchings  such that  
successive matchings  are close to one another.  This  may  be done  by using m i n i m u m  length 
al ternat ing circuits [ 14]. 

It is unknown  whether  the m a x i m u m  matchings  genera tor  for bipart i te graphs can be 
extended for arbi t rary graphs with the t ime delay still bounded  by O(e) The  fol lowing 
techniques of  the bipart i te  case are appl icable  also for arbi t rary graphs: 

(i) An  initial match ing  may  be found in O(n 2 .5) t ime [7]. 
(ii) An  M-transposi t ion may  be found in O(n) t ime 
(iii) The  procedures  A L L _ _ S O L U T I O N S  and N E ~ _ _ S O L U T I O N S  are valid. 

However ,  the missing hnk in the process is f inding an M-al te rna t ing  o r c m t  in O(e) time. 
Such a circuit  can be found in O(ne) time: Choose  a matched  edge (x, y)  and delete it. 
T h e n  try to f ind an augment ing  pa th  f rom x to y. I f  a pa th  P is found,  P,,(x, y )  is an 
al ternat ing cycle; otherwise repeat  the procedure  for the other  matched  edges. F ind ing  an 
augment ing  path is O(e) [10], using breath-first  search, or  [15]. 
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