Some Matching Problems for Bipartite Graphs

ALON ITAI

Technion-Israel Institute of Technology, Haifa, Israel

MICHAEL RODEH

IBM Israel Scientific Center, Haifa, Israel
AND

STEVEN L. TANIMOTO

University of Connecticut, Storrs, Connecticut

ABSTRACT Certain apphcations require finding a perfect matching 1n a biparute graph that satisfies some
additional properties For one such type of restriction the problem 1s proven to be NP-complete. If for a single
subset of edges no more than r edges may be included in the matching then an O(ne) algorithm is given

An efficient algonthm for finding all perfect matchings 1s presented It requires O(e) time per matching and
a total of O(e) space This algorithm may be used to calculate the permanent of a matrix Finally, the algorithm
1s generalized to find all maximum matchings

KEY WORDS AND PHRASES ~matching, labeling, btpartite graph, maximum maitching, restricted matching, flow
network, permanent of a matrix, NP-complete, maximum matchings generator

CR CATEGORIES 525,532

1. Introduction

Matching problems arise in several areas of automatic data processing, including analysis
of images, artificial intelhgence, and the solution of school scheduling problems. In
attempts to find practical solutions to problems of interpreting chest X-ray images,
matching problems may be posed in terms of pairing labels (designating organ names—
lungs, heart, ribs, etc.) with regions (detected by a segmentation algorithm). In such an
approach a bipartite graph is constructed that describes feasible pairings between labels
and regions [19). For example, for region r and label heart the edge (r, heart) is included
1if the size s, of r satisfies @nears < 5r < bnears. A solution to the image analysis problem can
be considered as a maximum matching (in the constructed graph) which satisfies some
additional constraints (based upon relationships among interpreted regions).

In the artificial intelligence literature, solution methods based on a labeling techmque
have been described for several problems, including the n-queens problem, detecting graph
isomorphism, and finding consistent labelings for the junctions i line drawings. The
technique used is commonly referred to as relaxation labeling (also Waltz filtering or

Permission to copy without fee all or part of this matenal is granted provided that the copies are not made or
distnibuted for direct commercial advantage, the ACM copyright notice and the title of the publication and 1ts
date appear, and notice 1s given that copying 1s by permission of the Assoctation for Computing Machinery To
copy otherwise, or to republish, requires a fee and/or specific permission

The work of the third author was supported by the National Science Foundation under Grant ENG76-09924
Authors’ present addresses A ltai, Computer Science Department, Technion-Israel Institute of Technology,
Haifa, Israel, M Rodeh, IBM Israel Scientific Center, Haifa, Israel, S L Tanimoto, Department of Computer
Science, Umiversity of Washington, Seattle, WA 98195

© 1978 ACM 0004-5411/78/1000-0517$00 75

Journai of the A for Computing Machinery, Voi 25, No 4, October 1978 pp 517-525

518 A. ITAI, M. RODEH, AND $. L. TANIMOTO

constraint propagation) [21, 17, 9]. Relaxation labeling is a technique whereby the sets of
potential labels for each entity are successively replaced with smaller sets according as
some labels are found to be inconsistent with neighboring entities. Relaxation labeling is
efficient when the constraints to be satisfied are local (e.g. the constraints involve at most
two entities at a time). However, the enforcement of certain global constraints cannot be
done efficiently using relaxation labeling. For example, determination of a labeling
satisfying the global constraint “exactly m of the n entities shall be labeled x> (where x is
one of d possible labels) requires O((7.)d™) space using the general algorithm of Freuder
for any m =< n/2, since all partial solutions of size m are consistent with the global
constraint and must be carried forward toward computing a complete solution [9]. Such a
constraint may arise when an industrial robot is given knowledge that m out of n parts
appearing on the conveyor belt are piston rods, for example. Global constraints on the
number of objects receiving a given label can often be handled efficiently with matching
techniques by simply providing exactly m labels of type x. In any perfect matching, the m
labels will all be assigned. Consequently matching techniques are sometimes to be preferred
over relaxation techniques for solving problems in artificial intelligence.

Another source of matching problems arises in attempts to find practical solutions to the
school-scheduling problem (the timetable problem). This problem is known to be NP-
complete [6]. (A discussion of NP-completeness appears in [1}.) A solution can be
considered as a matching between classes and teachers that satisfies certain restrictions
(e.g. not more than two labs at the same time). Having this in mind, we look for a
maximum matching in a bipartite graph with restrictions. (See [5] for the properties of
graphs and matchings.) This problem is shown to be NP-complete, and offers an expla-
nation why matching approaches to scheduling are unsuccessful. If no restrictions are
present, then a maximum matching may be found in O(n'/%e) time [13] (n is the number
of vertices and e the number of edges). For the case of a single restriction, an O(ne)
algorithm is presented. The algorithm finds a minimum cost maximum flow for an
auxiliary network by augmenting along minimum weight paths [8]. In our case the
algorithm due to Edmonds and Karp [4] may be simplified and implemented more
efficiently using the shortest path finding techniques of Wagner [20].

The restricted matching problem and also certain matching problems which result from
image analysis may be solved by enumeration. Hence, an algorithm is presented for
producing a sequence of all perfect matchings. It has the property that at most O(e) time
passes between the emission of two successive matchings. This compares favorably with
Gal and Breitbart’s algorithm [12] where O(n’) time may elapse without getting a new
solution. The third author has developed a method for enumeration of maximum matchings
for a general graph in order to analyze some biomedical images [19]. However, that
algorithm may require exponential space and need not produce a new maximum matching
within polynomial time.

The above enumeration technique may be used to obtain an algorithm for finding the
permanent of a matrix. See Ryser [18] for the properties of the permanent.

Finally, we generalize the enumeration algorithm to yield an algorithm for finding all
maximum matchings in a bipartite graph. The behavior of this generalized algorithm is
similar to that of finding perfect matchings.

2. The Restricted Matching Problem Is NP-Complete

A graph B = (V, E) is bipartite if V is partitioned into two disjoint sets, X and Y; all edges
have one endpoint in X and one endpoint in Y. A set M C E is a matching 1f no vertex is
incident with more than one edge of M. The size of a matching M is the number of its
edges. If | X| =< | Y| and every vertex x € X is incident with an edge of M then the matching
is complete. If in addition | X| = | Y| then the matching is perfect. Hopcroft and Karp [13]
find a maximum matching (a matching of maximum size) in O(n'%¢) time.

Let Ey, ..., E; be subsets of E, ry, ..., r, positive integers. The restricted complete

Some Matching Problems for Bipartite Graphs 519

maiching problem (RCM) 1s to determine whether there exists a complete matching M for
B which also satisfies the restrictions:

IMNE|=<r forj=1,. .k

THEOREM 1. RCM is NP-complete

PROOF. It is easy to see that RCM belongs to the class NP. We show a reduction from
the satisfiability problem of Boolean expressions to RCM. Let ¢ = C; --- C, be a Boolean
expression in conjunctive normal form the variables of which are (x,, ... , x7). Define the
bipartite graph B = (X U Y, E) as follows:

X={C, .., GC};
Y=1{x, ., x5 X1, ., X%} X {1, .., p}
E = {(C,, (x,))) | x appears n G} U {(G;. (., /)| % appears i C,).

Let M be a complete matching mm B If M does not include two edges (C,, (x., f)),
(Cr. (X, k)) then it corresponds to an assignment which satisfies 1. Therefore, the following
restrictions are imposed:

Eyr = {(G (X0) (G, (X, KD} N E,

ryr = 1

Those E,» whose cardinality is less than 2 may be 1gnored.

We now show that the RCM problem B with the restrictions E, has a solution if and
only if y 1s satisfiable.

(i) Assume that ¢ is satisfiable. For each clause C; choose a single literal y (y = x, or
y = X;) such that y 1s true If y = x, then include the edge (C,, (x., j)) in the matching M.
If y = X, then include (C,, (X., 7)) in M. Thus, M is a complete matching. Since either x, or
X: 18 true but not both |M N E,;.| < 1.

(1) Let M be a solution to the RCM problem. The truth value of x, is assigned as
follows If (C,, (x..j)) € M for some j then x, 1s given the value true. Otherwise, x, is given
the value false. The restrictions imply that the value of x, 1s well defined (x, and X, cannot
both be true) Every vertex C, is matched in M with some vertex y. From the construction,
the literal y is true and the clause C, 1s satisfied. Thus, ¢ is satisfiable. Q.E.D.

The restricted perfect matching problem (RPM) 1s a special case of RCM when the graph
B = (XU Y, E) saunsfies | X| = | Y|.

THEOREM 2. RPM is NP-complete.

ProorF We show a reduction from RCM to RPM.

Let B= (XU Y, E)and Ey, ..., Ex, 11, .., rr be an instance of RCM Define the
bipartite graph B’ = (XU X')U Y, EU E’) as follows: X’ = {vy, ..., v} is a set of new
vertices where t = | Y| — | X| and E' = {(v,, y)|v. € X', y € Y). It 1s easy to see that B has
a complete matching if and only if B’ has a perfect matching Q.E.D.

Given an integer p < | X|, the restricted maximum matching problem (RMM) is the
problem of determining whether there exists a matching M such that

IM|zp, IMNE|=r, y=1, .,k
It is easy to see that RMM is also NP-complete

3. Finding a Complete Matching with a Single Restriction

The general RCM problem 1s NP-complete. However, 1if there exists only one restriction
(the RCM 1 problem) a solution can be found in O(ne) time. Let B = (XU Y, E) and E,,
ry be an nstance of RCMI1. We reformulate the problem in terms of a network N for
which a maximum flow of cost less than or equal to r, 1s sought [8]. N consists of a directed
graph G = (V, A), capacities c(u, v), and costs d(u, v) assigned to the edges:

i) V=XUYU/{st)wheres,t&€ XU Y,
() A={(xeX}U{piyeYIU{x,nNix.WEEXEX, yEY);

520 A. ITAI, M. RODEH, AND S. L. TANIMOTO

(iii) c(u, v) = 1 for (u, v) € 4;

) douwy=]l @VEE,
(@iv) d(u, v) {0 otherwise.

Let f'be a flow function; its value | f| is Yzexf(s, x) and its cost is Y umea f(u, V)d(u, v).

A complete matching corresponds to a flow of value | X| from s to ¢. The cost of the flow
is equal to the number of edges of E; in the matching. Therefore, a minimum cost
maximum flow for the network N yields a matching which uses the minimum number of
edges of E;. This number is less than or equal to r; if and only if there exists a solution to
the given RCM1 problem.

In order to solve the minimum cost maximum flow problem we follow [8] and [4].

A flow f'is extreme if its cost is minimum among all flows of the same value. The zero
flow is extreme.

For a given flow f; the network N’ 1s defined as follows:

(i) G'=V, A
A’ = {(u, v)|(u, v) € A, f(u, v) = 0} U {(u, v)| (v, u) E A, f(v,u) = |};
(i) ¢'(u, v) =1, (u, v) € 4",
.. _ldu, vy (@mveEA,
(i) Adw, v) = {—d(v, u) (v, u) € A.

THEOREM 3 ({8, p. 121]). Iff is extreme and P a path of minimum weight in N/ from s
to t then a flow f* obtained by augmenting along P is extreme.

The above theorem suggests a method for solving the minimum cost maximum flow
problem: Start with an extreme flow f° = 0; compute f**' from f* (k = 0, 1, ...) by
augmenting along any one of the shortest paths from s to ¢ in N/ (with respect to the
weights A). N’ might contain negative weights. Since it is more efficient to find shortest
paths in a graph with nonnegative weights, Edmonds and Karp [4] introduce auxiliary
weights A*(u, v) = 0. These weights are obtained from the original weights A(u, v) and a
vertex labeling function 7*(u) to be defined in the following algorthm:

procedure MIN__COST_MAX__FLOW_FOR__RCMI,
begin f* = zero flow; =" = zero labeling function,
for k = 0 step 1 umtil n — 1 do
begin determne f**' by augmenting along any one of the shortest paths from s to { in N* with respect to the
(nonnegative) weights

AMu, vy = 7 (u) + A(u, v) — 7H(v);

forve Vdo
begin o *(v) = the weight of the shortest path from s to v,
7 () = 7 *(u) + o*(w),
comment if u is inaccessible from s then o*(u) =
end
end
end

Finding shortest paths is the most time consuming part of the algorithm. Edmonds and
Karp [4] present an O(n?) solution. The following discussion leads to an O(e) algorithm.

THEOREM 4 [4). For each k and u, 7*(u) is the weight of a shortest path from s to u in
N'* with respect to the weights A(u, v) and ="*'(u) = =*(u).

COROLLARY. During the execution of MIN__COST_MAX__FLOW__FOR_RCM1
the weights of shortest paths (6*) are bounded by n.

Proor. By Theorem 4, 7*(u) may be expressed as a sum of at most n weights A. Since
A(w, v) < 1, 7*(u) < n. Moreover, 0 < 7*(u). By the construction o *(u) = 7**'(u) — 7*(u)
Thus 0 < o*(u) =n. Q.E.D.

Following Dijkstra’s algorithm [3], let S be a set of vertices whose distance from s is
known. For the remaining vertices S only a tentative distance is known To start S := &;

Some Matching Problems for Bipartite Graphs 521

S:=V, 8s):=0; 8) = oo for v € § — {s} At each stage, we find a vertex v € § whose
tentative distance 8(v) is minimum and transfer it to S. Then we use §(v) to update the
tentative distances of the vertices of S adjacent to v.

If the weights are nonnegative, then 8(x) is the weight of a minimum path from s to u.
The main problem is to find a vertex v € S whose tentative distance is minimum. Dijkstra
suggested searching sequentially through S. This yields an O(n®) algorithm. Using a
balanced tree for keeping the tentative distances leads to an O(e log n) algorithm [16]. We
take advantage of the fact that in our case the distances are integers between 0 and n.
Following Wagner [20] we keep the vertices of S in a vector of buckets (the ith bucket
contains a list of vertices whose tentative distance is equal to 7). We search through the
vector for the first nonempty bucket. A vertex v of minimum tentative distance is found in
that bucket. Since the distances are nonnegative the mndex of the first nonnegative bucket
does not decrease. Therefore, the entire search through the vector requires O(n) time.
Updating tentative distances is done by moving vertices from buckets, an operation which
takes constant time and occurs at most e times. Hence, the algorithm requires at most
O(e + n) time and O(n) space in addition to the input.

Once the distances to all vertices are known, a shortest path from s to ¢ may be found in
linear time. Since there may be no more than | X| augmenting paths we have:

THEOREM 5. MIN_COST__MAX_FLOW__FOR_RCM]! requires at most O(ne)
time.

RCM may be defined for general graphs. For such graphs RCM1 can be solved in O(n*)
time by finding a maximum matching with a minimum cost [11].

4. Finding All Perfect Matchings

Let B = (XU Y, E) be a bipartite graph such that | X| = | Y] = n. A maximum matching
may be found in O(n'/%¢) time [13]. A matching 1s perfect if 1t contains n edges. We use
arcuits to produce all perfect matchings one by one. A circuit C in B is an M-alternating
circuit if for any two adjacent edges of C exactly one is in M.

LEMMA 1. A perfect matching M 1s not unique if and only if there exists an M-alternating
circuit.

Proor. Let M’ be another perfect matching. Consider the graph H = (X U 7Y,
M @ M) (® denotes the symmetric difference). Since M 5 M’ there exists a vertex v of
positive degree in H. The degree of v is at most two (each perfect matching can contribute
at most one to the degree of v). If the degree of v in H is one then only one edge in M ®
M’ is incident with v. Assume that this edge belongs to M. Then it does not belong to M'.
Moreover, none of the edges of M’ is incident with v. This contradicts the hypothesis that
both matchings are perfect. Consequently, the nontrivial connected components of H
consist of disjoint M-alternating circuits.

If M 1s a perfect matching and C an M-alternating circuit then M’ = M ® C is another
perfect matching. Q.E.D.

We use the auxiliary directed graph D = (X, E’) to find an M-alternating circuit in B
where E' = {(u, v)|u,vE X,AwE Y: (u, w) € M and (v, w) € E}. (An edge in E’ originates
from two adjacent edges in E, the first of which belongs to M.) A bipartite graph B with
a perfect matching M and the corresponding directed graph D are illustrated in Figure 1.

B contains an M-alternating circuit through (x, y) € M if and only if D contains a
directed circuit through x. We may find a directed circuit in D in O(e) time. (The algorithm
for finding strongly connected components may be employed [1].)

The procedure NEW__SOLUTIONS(G, M, C, L) below accepts a bipartite graph G
which is a subgraph of B, a perfect matching M of G, and an M-alternating circuit C. It
finds all the additional perfect matchings of G A perfect matching of B is obtained by
adding the set of edges L to a perfect matching of G. Note that NEW_SOLUTIONS is
invoked only when M is not unique.

Method of Operation. Let (x, y) € M be an edge of the M-alternating circuit C. The

522 A. ITAI, M. RODEH, AND S. L. TANIMOTO

Fic 1

perfect matchings of G fall into two disjoint categores:

(a) Matchings which do not contan (x, y): The perfect matching M, = M ® C does not
contain the edge (x, y). Let G. = G — {(x,)}. There exist additional matchings which do
not contain (x, y) if and only if there exists an M.-alternating circuit C. 1n G.. These
matchings are found by invoking NEW__SOLUTIONS(G., M., C., L) recursively.

(b) Matchings which contain (x, y). Let M, = M — {(x, y)}. Then there exist additional
matchings which contain the edge (x, y) if there exists an M, -alternating circuit C, in
G, = G — {x, y}. (M, is a perfect matching in G,) These matchings are found by invoking
NEW__SOLUTIONS(G., M., C,, L U {(x, y)}) recursively.

procedure NEW__SOLUTIONS(G, M, C, L),
begin comment M., G., C., M., G, C. are local vanables,
1 Let (x,) EMNC,
M.=M®C,
2 G. = G = {(x, y)}, (delete the edge (x, y) from G). Find an alternating circurt C. in G. with respect to M., if
none exists then C, = nil,
3 Mo=M-{(x.ph
G, =G— {x»y}'
Find an alternating circunt C., in G, with respect to M..; if none exists then C, = nil.
4 Output M. U L,
5 if C. % nil then cal NEW__SOLUTIONS(G., M., C., L),
6 if C, 5 nil then call NEW__SOLUTIONS(G., M., C., LU {(x. »)})
end

} (delete the veruces x. y from G and M)

LeEMMA 2. The procedure NEW__SOLUTIONS finds a new matching in O(e) time.

PrROOF. On entering NEW__SOLUTIONS, lines 1-3 are executed requiring at most
O(e) time A new matching is output m line 4. Consequently, a new matching is output
O(e) time after entering NEW_SOLUTIONS 1If C. % nil or C. ¥ nil then
NEW__SOLUTIONS 1s called recursively and a new matching 1s found in O(e) time. If
both C. and C, are equal to nil then a return from the recursion occurs without finding a
new matching. Checking C. # nil and C, nil takes constant time. Thus the total time to
exit the recursion is bounded by a constant times the depth of the recursion, which is at
moste. QED

The procedure ALL__SOLUTIONS finds all perfect matchings using
NEW_SOLUTIONS.

procedure ALL__SOLUTIONS(B),
begin Find a perfect matching M,
if none exists then return,
Output M;
Find an alternating circust C in B with respect to M,
if none exists then return,
call NEW_SOLUTIONS(B. M, C, ©)
end

Note that the algorithm halts at most O(e) time after the last matching is found

Some Matching Problems for Bipartite Graphs 523

We may summarize:

THEOREM 6. (a) The procedure ALL__SOLUTIONS finds all perfect matchings; (b) the
time delay to find a new matching is O(e); (c) if a bipartite graph contains m perfect matchings
they are found by ALL__SOLUTIONS in O(e(n'* + m)) time

Since the depth of the recursion is at most e and each circuit may have at most n edges,
the space requirements in the above formulation are bounded by O(ne), provided G. and
G, are produced by deleting edges and vertices and restoring them later. By recomputing
the alternating circuits instead of storing them then the algonithm may be implemented
within O(e) space. (The execution time may be doubled.)

The procedure ALL__SOLUTIONS may be used to compute the permanent of a matrix.
Let A = (a,) be a real matnix; then its permanent is defined by perm(4) =Y. [liL1 @-o-
The summation is over all permutations 7 on n letters. Let B = (X U Y, E) be a bipartite
graph where X = {x,, ..., x»}, Y= {y, .., yu}, and (x,, ;) € E if and only if a, # 0.
S» = [Ii=1 @.n» is nonzero if and only if M, = {(x., y.0)|i = I, ..., 0} N E is a perfect
matching. The value of the permanent is equal to the sum of S, over all permutations
which correspond to perfect matchings. Thus, we may use ALL__SOLUTIONS to find
the value of the permanent in O(e(n"/* + m)) time, and (n — 1)m multiplications (m is the
number of perfect matchings). The standard way to compute the permanent requires O(2")
time [18].

5. Finding All Maximum Matchings

In the previous section the problem of finding all perfect matchings in a bipartite graph
was considered. Now we turn to generalize the techniques and find all maximum matchings
mstead of just perfect matchings. As before an initial maximum matching may be found
in O(n'%e).

If the matching M 1s maximum but not perfect then there exist exposed vertices—vertices
which are not incident with any edge of M. Let z be an exposed vertex and (z, y) an edge;
then y is matched since otherwise M is not maximum. Let (x, y) € M. Then other maximum
matchings can be found from M not only by alternating circuits but also by replacing
(x, y) by (1, 2). A path (x, y, z) 15 an M-transposition if (x, y) € M and z is an exposed
" vertex. The following lemma is a generalization of Lemma 1 and 1s proven similarly.

LEMMA 3. A maximum matching M 1s not unique if and only if there exists either an M-
alternating circuit or an M-transposition.

M-alternating circuits are found as before.

As in the case of perfect matchings, B contains an M-alternating circuit through (x, y)
€ M if and only if D contains a directed circuit through x.

To find an M-transposition choose any nonsolated exposed vertex z, a vertex y adjacent
to z, and that vertex x to which y 1s matched. (Such a vertex x always exists since M is a
maximum matching.) Searching for an M-transposition takes at most O(n) time.

Now we outline the method of operation of an algorithm for finding all maximum
matchings of a bipartite graph B. First find an mitial maximum matching. Then search for
an M-transposition (x, y, z). If the search succeeds then define M. = M U {(y, 2)} —
{(x, y)}, Be= B — {(x,)} and proceed recursively to look for new maximum matchings
in B.. Also define M, = M — {(x,)}, B.= B — {x, y} and check whether M, is a umque
maximum matching in B.. Appending (x, y) to these matchings yields maximum matchings
of B. If no M-transposition exists, search for an M-alternating circuit and proceed as in
NEW_SOLUTIONS

We have omitted the bookkeeping details but it is quite obvious that the behavior of the
generalized algorithm is similar to that of ALL__SOLUTIONS.

We summarize:

THEOREM 7. All maximum matchings in a bipartite graph may be found such that the
time delay to find a new matching 1s at most O(e). The entire algorithm requires O(e) space

524 A. ITAIL, M. RODEH, AND S. L. TANIMOTO

6. Conclusions

For the case of a single restriction an O(ne) solution has been presented. However, it is not
known whether there exists a polynomial solution even for two restrictions. One of the
referees suggested a variant to Theorem 1, in which the number of restrictions is O(n), the
maximum degree is two, and the restriction on the number of edges that may appear in a
matching is either greater than or equal or less than or equal to one. His proof is similar
to ours.

If M is a matching which satisfies most of the restrictions, then in many cases there
exists a matching M’ such that M and M’ have many edges in common and M’ satisfies all
the requirements. Therefore, it might be worthwhile to find all matchings such that
successive matchings are close to one another. This may be done by using minimum length
alternating circuits [14].

It is unknown whether the maximum matchings generator for bipartite graphs can be
extended for arbitrary graphs with the time delay still bounded by O(e) The following
techniques of the bipartite case are applicable also for arbitrary graphs:

(i) An initial matching may be found in O(n*”) time [7].
(i) An M-transposition may be found in O(n) time
(iii) The procedures ALL__SOLUTIONS and NEW__SOLUTIONS are valid.

However, the missing link in the process is finding an M-alternating circuit in O(e) time.
Such a circuit can be found in O(ne) time: Choose a matched edge (x, y) and delete 1t.
Then try to find an augmenting path from x to y. If a path P is found, P.(x, y) is an
alternating cycle; otherwise repeat the procedure for the other matched edges. Finding an
augmenting path is O(e) [10], using breath-first search, or [15].

ACKNOWLEDGMENT. The authors wish to thank Dr. O. Kariv for helpful discussions, and
the referees for many useful suggestions

REFERENCES

(Note Reference [2] 1s not cited in the text)
I AnO, AV, HoPCROFT, J E, AND ULLMAN, J D The Design and Analysis of Computer Algorithms Addison-
Wesley, Reading, Mass , 1974
2 BERGE, C Graphs and Hypergraphs North-Holland, Amsterdam, 1973.
3 DDkSTRA, EW A note on two problems in connexion with graphs Numer Math 1 (1959), 269-271
4 EpmonDs, J, AND KArRP, R M Theoretical improvements in algorithmic efficiency for network flow
problems. J ACM 19, 2 (Apnl 1972), 248-264
EVEN, S Algorithmic Combinatorics MacMillan, New York, 1973
6 EvEN, S, ITal, A, AND SHAMIR, A On the complexity of timetable and multi-commodity flow SIAM J
Comping. 5 (1976), 691-703
7 EVEN, S, aND KARIY, O An O(n*°) algonthm for maximum matchings in general graphs Proc 16th Symp
on Foundations of Comptng , 1975, pp. 382-399
8 Forp Jr, CR, AnND FULKERSON, D R Flows in Networks Princeton U. Press, Princeton, N J, 1962
9 FREUDER, E C Synthesizing constraint expressions A 1 Memo 370, Artf Intell Lab, M1 T, Cambndge,
Mass , July 1976 :
10 Gasow, HN An efficient implementation of Edmonds’ algorithm for maximum matching on graphs J
ACM 23,2 (Apnil 1976), 221-234
11 Gapow, HN, AND LAWLER, E An efficient implementation of Edmonds’ algorithm for maximum matching
on graphs Rep CV-CS-075-75, Dept Comptr Sc1, U of Colorado, Boulder, Colo, 1975
12 GAL, S, AND BREITBART, Y A method for obtaming all the solutions of a perfect matching problem TR-16,
IBM Israel Scientific Cir, Hatfa, Israel, 1974
13 HOPCROFT, } E, AND KARP. RM An n*? algonthm for maximum matching 1n bipartite graphs SIAM J
Comptng 2 (1973), 225-231
i4 Ita1, A, AND Ropen, M Finding a minimum circmt in a graph Proc 1977 ACM Symp Theory of
Comptng , Boulder, Colo, May 1977, pp 1-10
15 KaMepa, T, aNp MuNrO, 1 A O(| V| | E|) algonthm for maximum matchings of graphs Computing 12
(1974), 91-98
16 LANG, L L, AND STARKEY, J D An O(e log n) shortest path algonthm for sparse graphs (abstract) In Traub.
JF.(Ed), Proc Symp Algorithms and Complexity, Carnegie-Mellon U , April 1976, p 476

v

Some Matching Problems for Bipartite Graphs 525

17 MackworTH, A K Consistency in networks of relatons TR 75-3, Comptr Sci Dept, U. of British
Columbia, Vancouver, B C, Canada, 1975

18 RYSER, J R Combinatorial Mathematics Math Assoc Amer, dist John Wiley, New York. 1963

19 TanmMoTO, S L Analysis of biomedical images using maximal matching Proc 1976 IEEE Conf Decision
and Control Adaptive Processes, Clearwater Beach, Fla . Dec 1976, pp 171-176

20 WAGNER, R A A shortest path algorithm for edge-sparse graphs J ACM 23, 1 (Jan 1976). 50-57

21 Wartz, D Understanding hine drawings of scenes with shadows In The Psychology of Computer Vision,
PH Winston, Ed, McGraw-Hill, New York, 1975, pp 19-91

RECEIVED JULY 1977, REVISED DECEMBER 1977

Journal of the Association for Computing Machinery, Vol 25, No 4, October 1978

