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Abstract 
In this paper we show cache-friendly implementations of 
the Floyd-Warshall algorithm for the All-Pairs Shortest-
Path problem.  We first compare the best commercial 
compiler optimizations available with standard cache-
friendly optimizations and a simple improvement 
involving a block layout, which reduces TLB misses.  We 
show approximately 15% improvements using these 
optimizations.  We also develop a general representation, 
the Unidirectional Space Time Representation, which can 
be used to generate cache-friendly implementations for a 
large class of algorithms.  We show analytically and 
experimentally that this representation can be used to 
minimize level-1 and level-2 cache misses and TLB misses 
and therefore exhibits the best overall performance.  
Using this representation we show a 2x improvement in 
performance with respect to the compiler optimized 
implementation.  Experiments were conducted on Pentium 
III, Alpha, and MIPS R12000 machines using problem 
sizes between 1024 and 2048 vertices.  We used the 
Simplescalar simulator to demonstrate improved cache 
performance. 
 
1. Introduction 

 
The topic of cache performance has been well studied 

in recent years.  It has been clearly shown that the amount 
of processor-memory traffic is the bottleneck for 
achieving high performance in most applications [3, 17].  
While the topic of cache performance has been well 
studied, much of the focus has been on dense linear 
algebra problems, such as matrix multiplication and FFT 
[3, 10, 14, 21].  All of these problems possess very regular 
access patterns that are known at compile time.  In this 
paper, we take a unique approach to this topic by focusing 
on the fundamental irregular problem of transitive 
closure. 

Optimizing cache performance to achieve better 

overall performance is a difficult problem.  Modern 
microprocessors are including deeper and deeper memory 
hierarchies to hide the cost of cache misses.  The 
performance of these deep memory hierarchies has been 
shown to differ significantly from predictions based on a 
single level of cache [16].  Different miss penalties for 
each level of the memory hierarchy as well as the TLB 
also play an important role in the effectiveness of cache-
friendly optimizations.  These miss penalties vary from 
processor to processor and can cause large variations in 
experimental results. 

The All-Pairs Shortest-Path problem (hereafter referred 
to as transitive closure) is a fundamental problem in a 
wide variety of fields, most notably network routing and 
distributed computing.  Transitive closure, as an irregular 
problem, poses unique challenges to improving cache 
performance, challenges that often cannot be handled by 
standard cache-friendly optimizations [8].  The Floyd-
Warshall algorithm involves updating N2 elements at each 
step.  Simple tiling cannot be used to optimize these steps 
due to data dependencies from one step to the next. 

In this paper we develop the Unidirectional Space 
Time Representation (USTR) and show that using this 
representation we can develop cache-friendly 
implementations for a large class of algorithms.  This 
representation is very similar to the space-time 
representation used in systolic array design, which also 
deals with partitioning the space as we do [7].  However, 
such systolic array designs do not have the added 
challenge of dealing with cache conflicts and multiple 
levels of memory hierarchy.  We also show how this 
representation can be used to uniquely face the challenges 
posed by the transitive closure problem.  Using this 
representation we show up to a factor of 2 improvement 
over a state of the art cache-friendly optimization, 
including those available in a research compiler [12]. 

The remainder of this paper is organized as follows:  In 
Section 2 we give the background and briefly summarize 
some related work in the areas of cache optimization and 
compiler optimizations.  In Section 3 we discuss each 
optimization that we consider and give Simplescalar 
results to substantiate our claims.  In Section 4 we present 
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experimental data gathered from the three machines we 
used.  In Section 5 we draw conclusions and gives some 
direction for future work. 

 
2. Background and Related Works 

 
In this section we give the background information 

required in our discussion of various optimizations in 
Section 3.  In Section 2.1 we give a brief outline of the 
Floyd-Warshall algorithm.  Those readers comfortable 
with this algorithm can skip this.  In Section 2.2 we 
discuss some of the challenges that are faced in making 
the transitive closure problem cache-friendly.  Finally, in 
Section 2.3 we give some information regarding other 
work in the fields of cache analysis, cache-friendly 
optimizations, and compiler optimizations and how they 
relate to our work. 

 
2.1. The Floyd-Warshall Algorithm 

 
For the sake of discussion, suppose we have a directed 

graph G with N vertices labeled 1 to N and E edges.  The 
Floyd-Warshall algorithm is a dynamic programming 
algorithm, which computes a series of N, NxN matrices 
where Dk is the kth matrix and is defined as follows: Dk

(i,j) 
= shortest path from vertex i to vertex j composed of the 
subset of vertices labeled 1 to k.  The matrix D0 is the 
original graph G.  We can think of the algorithm as 
composed of N steps.  At each kth step, we compute Dk 
using the data from Dk-1 in the manner shown in Figure 
1[6]. 

 
2.2. Challenges 

 
Transitive closure presents a very different set of 

challenges from those present in dense linear algebra 
problems such as matrix multiply and FFT.  In the Floyd-
Warshall algorithm, the operations involved are 
comparison and add operations.  There are no floating-
point operations as in matrix multiply and FFT.  We are 

also faced with dependencies that require us to update the 
entire NxN array Dk before moving on to the (k+1)th step.  
This data dependency from one kth loop to the next 
eliminates the ability of any commercial or research 
compiler to improve data reuse.  We have explored using 
the research compiler SUIF to optimize transitive closure 
and found that the optimization discussed in Section 3.1, 
namely tiling of the i and j loops, is the best it can 
perform without user provided knowledge of the 
algorithm [8].  These challenges mean that although the 
computational complexity of the Floyd-Warshall 
algorithm is O(N3), equivalent to matrix multiply, often 
transitive closure displays much longer running times. 

 
2.3. Related Work 

 
A number of groups have done research in the area of 

cache performance analysis in implementing algorithms 
in recent years.  Detailed cache models have been 
developed by Weikle, McKee, and Wulf in [20] and Sen 
and Chatterjee in [16].  Instead of eliminating cache 
misses, some groups develop methods to tolerate these 
misses.  Multithreading has been discussed as one method 
of accomplishing this.  Kwak and others discuss the 
effects of multithreading on cache performance in [11]. 

A number of papers have discussed the optimization of 
specific problems with respect to cache performance.  The 
majority of these problems are in the area of dense linear 
algebra problems.  Whaley and others discuss optimizing 
the widely used Basic Linear Algebra Subroutines 
(BLAS) in [21].  Chatterjee and Sen discuss a cache 
efficient matrix transpose in [4].  Frigo and others discuss 
the cache performance of cache oblivious algorithms for 
matrix transpose, FFT, and sorting in [9].  Park and 
Prasanna discuss dynamic data remapping to improve 
cache performance for the DFT in [13].  One 
characteristic that these problems share is a very regular 
memory accesses that are known at compile time. 

Another area that has been studied is the area of 
compiler optimizations (see for example [15, 16, 26]).  
Optimizing blocked algorithms has been extensively 
studied (see for example [12]).  The SUIF compiler 
framework includes libraries for performing data 
dependency analysis and loop transformations among 
other things.  In this context, it is important to note that 
SUIF does not handle the data dependencies present in the 
Floyd-Warshall algorithm in a manner that improves the 
processor-memory traffic.  It will perform the tiling 
optimization discussed in Section 3.1; however, it will not 
perform the transformation discussed in Section 3.4 
without user intervention [8]. 

Although much of the focus of cache optimization has 
been on dense linear algebra problems, there has been 
some work that focuses on irregular data structures.  
Chilimbi discusses making pointer-based data structures 

i

j
k

Dk
(i,j) = min[Dk-1

(i,j) , Dk-1
(i,k)+Dk-1

(k,j)]

Figure 1:  kth step of Floyd-Warshall 
Algorithm 
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cache-conscious in [5].  He focuses on providing structure 
layouts and structure definitions to make tree structures 
cache-conscious.  Gao has also looked at optimizations 
for a heap data structures in [18].  The difference between 
this work and ours is that we focus on optimizing an 
algorithm instead of a data structure. 

 
3. Cache-Friendly Optimizations 

 
In this section we explore three different optimizations 

of transitive closure.  In Section 3.1, we show the usual 
implementation of the Floyd-Warshall algorithm, as well 
as a standard compiler technique for optimizing loop 
nests.  We use these throughout the paper as our baseline.  
Section 3.1 also includes many of the definitions and 
assumptions that we use throughout Section 3 for our 
analysis.  In Section 3.2 we show a data layout 
optimization that is used to compliment the compiler 
optimization.  Finally, in Section 3.3 we introduce the 
Unidirectional Space Time Representation and how it can 
be used to generate cache-friendly optimizations.  
Throughout the sections we use result from the 
Simplescalar simulator to verify our analytical analysis.  
We show actual running times of the optimizations on our 
three machines in Section 4. 

 
3.1. Standard Optimization of the Floyd-

Warshall Algorithm (Baseline 
Implementation) 

 
As stated earlier, improving cache performance has 

been well studied in recent years in the area of dense 
linear algebra problems.  Most of the optimizations 
developed deal with dense array structures.  This dense 
array is present in the standard Floyd-Warshall algorithm.  
The purpose of this section is to introduce and analyze the 
baseline implementation as well as a fairly standard 
optimizations to improve cache performance.  This 
optimizations produced less than 20% improvement over 
the baseline.  The baseline that we use throughout our 
discussion is a usual implementation that is compiled 
using the state of the art compiler optimizations available.  
The compilers we used for our experiments were GNU 
C++ (gcc) and Microsoft Visual C++ (MS VC++).  We 
have verified that these compilers do not do loop 
transformation or copying.  They do perform such 
optimizations as inline functions and code reordering to 
hide miss latency. 

In order to simplify the analysis we make a few 
assumptions.  Suppose we have a graph with N vertices.  
The size of the adjacency matrix is then N2.  We are 
interested in optimizing performance as the problem size 
increases; the problem and intermediate data do not fit in 
the cache.  We assume that the cache size is less than N2 
and the TLB is much smaller than N.  We define 

processor-memory traffic as the traffic between the last 
level of the memory hierarchy that cannot contain the 
problem size (referred to as the cache) and the first level 
of the memory hierarchy that can contain the problem 
data (referred to as memory).  On most traditional 
architectures, this would be between the level-2 cache and 
main memory.  We also assume that the problem fits into 
some level of the main memory hierarchy.  To 
experimentally validate our approaches and their analysis, 
the actual problem sizes that we are working with are 
between 1024 and 2048 nodes (1024 ≤ N ≤ 2048).  Each 
data element is 8 bytes.  Many processors currently on the 
market have in the range of 16 to 64 KB of level-1 cache 
and between 256 KB and 4 MB of level-2 cache.  Many 
processors have a TLB with approximately 64 entries and 
a page size of 4 to 8KB.  All of these parameters match 
closely with our assumptions. 

Let us first examine the usual implementation of the 
Floyd-Warshall algorithm.  The basic step (kth loop) in 
this algorithm is to take the outer product of the kth row 
and the kth column and update the entire matrix.  We 
assume the matrix is laid out in row major order.  By 
definition of the algorithm then we are going to update N2 
elements in each kth loop.  Since our cache is strictly less 
than N2, this will generate Θ(N3) total processor-memory 
traffic.  Now suppose we want to update the entire ith row 
during some kth loop.  In the worst case, this could conflict 
exactly with the kth row of the matrix and cause an extra 
O(N) conflict misses for that kth loop.  We also want to 
consider TLB misses.  In order to understand the TLB 
issues, suppose our page size is N*l for some small l, 
possibly less than 1.*  Then the adjacency matrix sits 
inside N/l different pages.  Each one of these must be 
accessed during every kth loop and all of them will not fit 
into the TLB.  So, we will generate O(N/l) TLB misses 

                                                 
*  The Pentium III page size is 4 KB = 512 * d, where d is 

our data element size.  The Alpha page size is 8 KB = 
1024 * d. 
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Figure 2:  Basic step (kth loop) in 
Floyd-Warshall algorithm 
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during each kth loop.  Therefore the total number of TLB 
misses will be O(N2/l). 

The first optimization that we examine is a basic tiling 
approach combined with copying (Figure 3).  Tiling is a 
loop transformation that attempts to reduce the working 
set size.  It solves many small problems and combines the 
solutions into the solution for the original problem.  
Copying is used to reduce conflict misses within the tile 
by placing all the elements in contiguous memory 
locations.  Due to data dependencies, the Floyd-Warshall 
algorithm can only be tiled for the i and j loops.  In order 
to find the optimal tile size for each architecture, it is best 
to experiment with various tile sizes (see Section 4).  For 
the sake of analysis, suppose that the tile size is βxβ, 
where β2 < cache size.  Since the dependencies still 
require updating all N2 elements in each kth loop (1 ≤ k ≤ 
N), as in the original case, we will have O(N3) overall 
processor-memory traffic.  However, the tiled 
computation does reduce the working set size.  Where we 
used to have an extra O(N) traffic when the ith row 
conflicted with the kth row, there is now an extra O(β) 
traffic when a row of the tile conflicts with the kth row.  
This reduction in conflict misses can be seen in the level-
1 cache misses from Simplescalar (see Table 1). 

In order to understand the number of TLB misses, 
examine the problem of solving a single tile.  Since the 
elements are laid out row-wise for the matrix, each row is 
on a different page, recall that page size is approximately 
N.  This is true even with copying, since the tile in the 
original matrix must be accessed in order to copy it into 
contiguous locations.  Therefore, this requires β + 1 pages 
to update each tile.  For the baseline, the TLB working set 
is O(1), exactly 2 rows of the matrix.  If the TLB is 
smaller than β + 1, we will have O(β) misses per tile, and 
O(N3/β) total TLB misses.  In fact, this increase in TLB 
misses can be seen in our results from Simplescalar (see 
Table 1).  In our experiments, this optimization gave 
performance improvements ranging from 0% to 40% over 
the baseline. 

 
3.2. Data Layout Optimization of the Floyd-

Warshall Algorithm 
 
The first optimization that we propose is a change in 

data layout.  The theory behind this change in data layout 
is that in order to show spatial locality, and therefore good 
cache performance, the data layout must match the data 
access pattern.  In our tiled optimization, the access is 
naturally tile-by-tile, row-wise through the matrix.  
Within each tile, the data is also accessed row-wise.  In 
order to match this data access pattern, the Block Data 
Layout (BDL) should be used.  The BDL is a two level 
mapping that maps a tile of data, instead of a row, into 
contiguous memory.  These blocks are laid out row-wise 
in the matrix and data is laid out row-wise within the 
block (see Figure 4).  When the block size is equal to the 
tile size in the tiled computation, the data layout will 
exactly match the data access pattern.  Also note that with 
this layout, copying is not necessary, since the elements in 
the tile are already in contiguous memory locations. 

The analysis of this optimization is very similar to that 
of the tiled and copied optimization.  Since the 
dependencies still require updating the entire matrix in 
each kth loop, the total processor-memory traffic will be 
O(N3).  However, the working set is reduced by the tiled 
computation and the level-1 cache misses are reduced as 
shown in Table 2.  This is the same phenomenon that was 
shown in the tiling with copying optimization.  Since each 
tile is in contiguous memory locations and is equal to 
O(1) TLB pages, this only requires O(1) TLB misses for 
each tile of computation.  This gives a total of O(N3/β2) 
TLB misses and a working set of O(1) pages.  Recall that 
in the usual implementation, the working set was a row of 
the adjacency matrix.  This was laid out in contiguous 
memory locations, so the working set of pages is O(1).  In 
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������������������������������������������������
������������������������������������������������

kth row

kth column

copied
(i,j) tile

β

β

 
Figure 3:  Tiling plus copying for 

Floyd-Warshall algorithm 

Data level-1 cache misses 
N Baseline Tiled, ββββ=32 

1024 0.81 0.63 
1536 2.72 2.13 

(billions) 
 

Data TLB misses 
N Baseline Tiled, ββββ=32 

1024 5.29 86.71 
1536 17.76 218.08 

(millions) 

Table 1:  Simplescalar results for tiled and 
copied Floyd-Warshall algorithm.  
Architectural parameters used were from 
Pentium III architecture; see Section 4 for 
specific parameter values. 
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the tiled version, we showed the working set of pages was 
O(β).  This difference can be seen in the Simplescalar 
simulation results for TLB misses (see Table 2).  The 
experimental results for the BDL optimization showed 
performance increases in the range of 5% to 15% on the 
Pentium III and approximately 40% on the Alpha (see 
Section 4) 

 
3.3. The Unidirectional Space Time 

Representation and Cache-Friendly 
Algorithms 

 
In this Section we introduce the Unidirectional Space-

Time Representation (USTR).  We show that this 
representation can be used to generate cache-friendly 
implementations of many algorithms.  In Section 3.3.1 we 
introduce the basic idea of a space-time representation 
and the difference between this representation and the 
iteration space.  In Section 3.3.2 we show how the USTR 
can be used to generate cache-friendly implementations.  
We also show analytical bounds on processor-memory 
traffic and show a technique to find an optimal partition 
size.  Finally, in Section 3.3.3 we show one instance of 
how the USTR can be applied to transitive closure using 
results from Simplescalar to illustrate performance gains.  
Running times for this optimization can be found in 
Section 4.  Throughout this Section we use matrix 
multiply as an example application; however, these 
techniques can be applied to many algorithms.  For the 
sake of clarity we will skip a formal definition of the 
USTR and focus on the key ideas. 

 
3.3.1. Unidirectional Space Time Representation.  Let 
us first explain what we mean by a space-time 
representation.  Similar notions have been used by the 
systolic array designs and VLSI signal processing 
community ([7, 19]).  Consider a problem in which the 
result is an NxN matrix.  We divide the problem in space 
by representing the computation required to calculate each 
result as a computational element (CE) in an NxN array, 

for example, the multiply-add operations required in a 
matrix multiply.  Referring to Figure 6, each circle in the 
space represents the computation required for the (i,j)th 
result.  The notion of time comes from the data flowing 
through this NxN array of CEs.  Referring to Figure 6 
again, the data A would flow row-wise into the array from 
the left and the data B would flow column-wise into the 
array from the top.  As the data flows through the array, 
each element does some simple computation on the data 
inside it and passes on the data.  Once the data has flowed 
completely through the array, the (i,j) result lies in the 
corresponding CE.  The space-time representation is 
much like a systolic array design.  If each CE were 
viewed as a processor, the result would be an NxN 
systolic array [19].  The distinction that we add is the 
notion of unidirectional data flow.  We only allow data to 
flow in the forward direction, either down or to the right.  
This allows us to generate a cache-friendly 
implementation. 

Consider, for example, the simple systolic array 
implementation for multiplying 2, 4x4 matrices (see 
Figure 5).  During t=1, the CE (1,1) receives A11 from the 
left and B11 from the right and computes C11 = A11*B11.  
During times t=2, 3, & 4, the CE will receive A1t and B1t, 
and will compute C11 = A1t*B1t + C11.  In general, CE (i,j) 
will receive data elements Aik and Bkj at time [(i-1) + (j-1) 
+ k] and will compute Cij = Cij + Aik*Bkj.  The 
computation will be complete at time t=12, when element 
(4,4) updates C44=C44 + A44*B44 [19]. 

The key difference between this and the iteration space 
is the idea of scheduling operations in space.  The 
iteration space actually deals only with scheduling 
operations in time, whereas the USTR represents 
operations divided in space as well as time [15].  As we 
will show in the next section, this fact allows us to 
generate implementations that are cache-friendly. 
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1 page/block

Blocks laid out 
row-wise.

Elements laid 
out row-wise 
inside blocks.

√N
Data level-1 cache misses 
N Baseline BDL 

1024 0.81 0.58 
1536 2.72 1.95 

(billions) 
 

Data TLB misses 
N Baseline Tiled BDL 

1024 5.29 86.71 5.80 
1536 17.76 218.08 19.20 

(millions) 

Figure 4:  The Block Data Layout Table 2:  Simplescalar results for BDL 
optimization of Floyd-Warshall algorithm.  
Architectural parameters used were from 
Pentium III architecture; see Section 4 for 
specific parameter values. 
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In summary, what we mean by a USTR is an NxN 
array of computational elements (CEs) where each 
element performs O(N) computations.  Thus, when 
implemented on a uniprocessor the algorithm requires 
O(N3) time.  If the CEs are scheduled in a row-wise 
fashion, this would produce the baseline implementation 
cooresponding with a usual 3-level perfectly nested loop. 

 
3.3.2. From the USTR to a Cache-Friendly 
Implementation.  In order to predict cache performance 
when we implement the above representation on a 
uniprocessor, we need to make a few assumptions 
regarding the CEs.  We first assume that a fixed amount 
of computation is done at each CE during each time and 
the amount is relatively small.  For the sake of simplicity, 
we also assume that each CE is performing exactly the 
same computation.  We refer to this as a single operation.  
In the matrix multiply example each element performed 
one multiply and add during each time unit.  Finally, we 
assume that the local memory required within each CE is 
constant, for example each CE in the matrix multiply 

array required local storage for one accumulated value.  
These assumptions are common to most systolic array 
designs.  Note that the cache performance analysis does 
not depend on the type of operations being performed, 
making it applicable to any algorithm expressed in a 
USTR.  All assumptions regarding cache size and 
problem size from Section 3.1 still hold.  Recall that data 
flow has been limited to the forward direction, i.e. either 
down or to the right.  Again, for the sake of clarity we will 
skip formal proofs and focus on the key ideas. 

Examining a single CE, note that the computation 
required is N operations.  In the matrix multiply example, 
each CE required four operations to compute the final 
result.  Each operation requires 2 new data elements as 
well as any locally stored values.  This will subsequently 
result in 2*N processor-memory traffic on a traditional 
architecture.  In a usual implementation, each CE could be 
executed in a row-wise fashion.  For the matrix multiply 
USTR, this corresponds to the usual 3-level nested loop 
code (without tiling).  Based on the above calculation, this 
would result in Θ(N3) processor-memory traffic. 

Now let us define a tiled order of computations as 
follows.  First tile the array of CEs into tiles of size βxβ 
(see Figure 6).  Within each tile, operate on CEs in a row-
wise fashion.  Within each CE, process β elements of the 
row and column that will pass through it before moving 
on to the next CE.  We define a pass through a tile as 
executing each CE for β elements.  Repeatedly pass 
through each CE in the tile until all input data has been 
processed.  Returning to the matrix multiply example, this 
implementation would match with a 6-level nested loop 
implementation of matrix multiply. 

Another method of tiling would be to first tile the array 
of CEs into tiles of size βxβ.  Within each tile, instead of 
processing β elements at each CE at a time, process the 
entire array for t=1, then process it for t=2, and so for t≤β.  
This then would be defined as a single pass through the 
tile. 

Between each CE and between tiles we place a First-
In-First-Out (FIFO) buffer.  When the adjacent CE or tile 
begins, it receives data from this buffer in the same 
manner as if all CEs were processing data simultaneously. 

As we saw in Section 3.2, it is also beneficial to match 
our data layout to the data access pattern.  Recall that we 
demonstrated large improvements in TLB misses when 
we used the BDL on a tiled access pattern compared with 
a row-wise data layout for the same access pattern.  Since 
the access to the input data in the USTR is also in a tiled 
fashion, it is beneficial to again use the BDL to minimize 
TLB misses.  Throughout this section we assume a BDL 
when implementing the USTR to eliminate self 
interference misses and minimize cross interference 
misses between blocks of data. 

When the computation is tiled as shown earlier in 
Figure 6, we can take advantage of data locality and 
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B21 B12

B13

B14

B22B31

B41 B32B23

…

A41

A32 A31

A21

A11
A22A23

A14 A13A12

…

Figure 5:  USTR for 4x4 matrix multiply 

A ⊗ B for N x N matrices

B11

B12 B1N

A11
A12

A1N

= computation for result (i,j)

β

β

…

…

…

…

i

j

Figure 6:  Unidirectional Space 
Time Representation. 

Note:  ⊗⊗⊗⊗ refers to a generic 
matrix operation. 
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reduce the processor-memory traffic.  Examining the first 
pass through a tile of the array of CEs, each CE performs 
β operations, requiring the first β data elements of one 
row and one column of the input as well as its locally 
stored value.  Note that the CE directly below it requires 
exactly the same column elements and β data elements 
from the next row.  When this is extended to the entire 
tile, it requires 2*β 2 data elements of the input, β 2 locally 
stored values, and performs β 3 operations.  In order to 
complete each tile, it must be passed through N/β times.  
This requires 2*(N/β)*β 2 data elements of the input, β 2 
locally stored values, and performs (N/β)*β 3 total 
operations.  From this discussion we have the following 
theorem. 

Theorem 1:  Given an USTR of an algorithm, 
we can reduce the amount of processor-memory 
traffic by a factor of β, where cache size is O(β2), 
compared with a baseline implementation. 

Proof sketch: Each pass through a tile requires 2*β 2 
elements of the input and β 2 locally stored elements and 
performs β 3 operations.  If we choose β 2 to be O(C) 
where C is the cache size, all locally stored values will 
reside in the cache.  Also, the current 2*β 2 tiles of the 
input will remain in the cache for the duration of the pass.  
Each pass through a tile then results in 2*β 2 processor-
memory traffic.  There is a total of (N/β)x(N/β) tiles.  
Each tile requires N/β passes.  The total number of 
operations is given by: 

33*** NNNN =
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Therefore the processor-memory traffic is reduced by a 
factor of β. 

In order to implement the USTR we must also consider 
the schedule for computing each tile.  Recall from Figure 
6 that in the USTR all data flow is in the forward 
direction.  Therefore, in order to satisfy these data 
dependencies, a valid schedule will have the following 
characteristic: 

• When computing tile (i,j), all tiles (k,l), where {k ≤ i 
and l < j} or {k < i and l ≤ j}, must have already been 
computed; where the tile (1,1) is the upper left most 
tile. 

For example, a row-wise schedule of tiles would satisfy 
this requirement.  One could also use a more complex 
schedule such as a wavefront.  

When faced with a multi-level memory hierarchy, one 
could consider a multi-level tiling method for both the 
schedule and the data layout in the USTR.  Consider a 

multi-level tiling method such as the method shown in 
Figure 7.  In this method β would be chosen to minimize 
the traffic between level-1 and level-2 cache.  This is 
exactly what we have shown thus far in our discussion.  
The traffic between the level-2 cache and the next level of 
the memory hierarchy would then be minimized by 
choosing β’ such that β’ 2 is equal to the size of the level-2 
cache.  We could use a simple row-wise layout of tiles 
within this larger β’xβ’ tile.  This could be repeated until 
we reach a level that is larger than our problem size.  
Using this multi-level tiling method, we can gain an 
improvement of ic  in traffic at each level of the 
memory hierarchy, where ci is the size of the memory at 
the corresponding level of the memory hierarchy.   In this 
case the schedule of βxβ tiles and β’x β’ tiles becomes 
important.  In order to take advantage of the most data 
reuse possible the schedule of operations must match the 
data layout while still satisfying the unidirectional data 
flow properties of the USTR. 

One of the key factors in Theorem 1 holding is that β 2 
is chosen to be on the order of cache size.  The simplest 
and possibly the most accurate method of choosing β is to 
experiment with various tile sizes.  This is the method that 
the Automatically Tuned Linear Algebra Subroutines 
(ATLAS) project employs [21].  However, it is beneficial 
to find an estimate of the optimal tile size.  The following 
is a method to generate approximate bounds on the 
optimal tile size. 

Note that the working set is composed of 3 βxβ tiles of 
data.  We can classify cache misses into three categories; 
compulsory misses, conflict misses, and capacity misses.  
Compulsory misses, by definition, cannot be avoided.  
Here we provide a heuristic for choosing a tile size, such 
that conflict and capacity misses are minimized. 

• Use the 2:1 rule of thumb from [14] (see below) to 
adjust the cache size to that of an equivalent 4-way 
set associative cache.  This minimizes conflict 
misses since our working set consists of 3 
contiguous tiles of data.  Self interference misses 

������������
������������
������������

β

…
…

β’

…

…

 
Figure 7:  Multi-level tiling for USTR 

schedule and/or layout. 
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are eliminated by the data being in contiguous 
locations and cross interference misses are 
eliminated by the associativity. 

• Choose β by Equation 1, where d is the size of one 
element and C is the adjusted cache size.  This 
minimizes capacity misses. 

 Cd =**3 2β  
The 2:1 rule of thumb states that a direct mapped cache 

of size C has approximately the same miss ratio as a 2-
way set associative cache of size C/2.  Based on the 
results published in [14] this rule of thumb holds loosely 
for any k and 2*k way set associative caches.  For 
example, if the cache is a 2-way set associative cache of 
size C, the equation to solve would be 3*β2*d = C/2.  
Also note that this does not calculate an exact value for 
the optimal β, it simply finds a loose bound on the desired 
search space. 

It is also important to note that the search space must 
take into account each level of cache as well as the size of 
the TLB.  Given these various solutions for β the best tile 
size can be found experimentally.  In order to validate this 
method, calculate the best tile size for the Pentium III 
machine based on the level-2 cache.  The level-2 cache is 
a 256 KB, 8-way set associative cache.  Use the 2:1 rule 
of thumb and base the calculations on a 512 KB, 4-way 
set associative cache.  The element size d is 8 bytes.  
Solving Equation 1 gives β = 147.8.  Experimentally, the 
best tile size for the USTR optimization of transitive 
closure on our Pentium III was found to be β = 140. 

 
3.3.3. A Cache-Friendly Algorithm for Transitive 
Closure.  As we stated in Section 3.4.1, the USTR is 
similar to notations used in the systolic array and VLSI 
signal processing communities.  A standard systolic array 
implementation of the Floyd-Warshall algorithm is as 
follows [19]. 

• Given a graph with N vertices in the adjacency 
matrix representation, feed the matrix A into an 
NxN systolic array of processing elements (PEs) 
both row-wise from the top and column-wise from 
the left as shown in Figure 8. 

• At each PE (i,j), update the local variable C(i,j) by 
the following formula: 

),min( ),(),(),(),( jkkijiji AACC +=  
Where A(i,k) is the value received from the top and 
A(k,j) is the value received from the left. 

• If i=k, pass the value C(i,j) down, otherwise pass 
A(k,j) down.  If j=k, pass the value C(i,j) to the right, 
otherwise pass A(i,k) to the right. 

• Finally, when data elements reach the edge of the 
matrix, a loop around connection should be made 
such that A(i,N) passes data to A(i,1) and A(N,j) passes 
data to A(1,j) (see Figure 8). 

Lemma 1 [19]: The above computation results 
in the transitive closure of the input once all 
input data elements have been passed through the 
entire array exactly 3 times. 

Without a transformation, this implementation does not 
fit in the USTR due to the loop around connections.  
Recall that in order to fit in our USTR, all data must flow 
in the forward direction, namely either down or to the 
right (see Section 3.4.1).  However, based on the above 
Lemma 1 we can expand the original representation in the 
following manner. 

Copy the entire array twice so that we have three NxN 
arrays of PEs.  Make a connection from the end of the ith 
row in one array to the beginning of the ith row in the next 
and from the end of the jth column in one array to the 
beginning of the jth column in the next as shown in Figure 
9.  These connections replace the loop around connections 
in the original systolic array implementation (see Figures 
8 & 9). 

This new representation qualifies as unidirectional and 
therefore is an USTR of the Floyd-Warshall algorithm.  

…

A11
A12

A1N

A11
A21

A1N

A21

A12

…

…

…

Figure 8:  Systolic Array 
implementation of Floyd-
Warshall algorithm 

Figure 9:  Unidirectional Space 
Time Representation of 
Systolic Array algorithm 
for transitive closure. 

1 

2 
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Note that each PE in the systolic array implementation 
becomes a Computational Element (CE) in our USTR.  
Also note, that although the representation visually 
requires 3*N2 space, no additional memory is required 
compared with the baseline implementation.  Based on the 
results in Section 3.3.2 we can execute each CE on a 
uniprocessor architecture.  We can also tile the 
computation in the manner shown in Section 3.4.2 and 
based on Theorem 1 we have: 

Theorem 2:  The Floyd Warshall algorithm can 
be implemented on a uniprocessor such that the 
processor-memory traffic is reduced by a factor 
of β, where cache size is on the order of β2 
compared with the baseline implementation. 

The maximum reduction factor in processor-memory 
traffic to perform ordinary matrix multiplication given a 
limited internal memory is O( M ) where M is the size of 
the internal memory [10].  Using the structure of the 
Floyd-Warshall dependency graph, it can be shown: 

Theorem 3:  Our USTR implementation of the 
Floyd-Warshall algorithm is (asymptotically) 
optimal with respect to processor memory traffic. 

To illustrate this reduction in processor-memory traffic 
we show results from Simplescalar experiments for the 
number of cache misses (see Table 3).  Even though this 
algorithm performs a total of 3*N3 operations, 
Simplescalar results show a 30x improvement in level-2 
cache misses.  Note that it was found experimentally that 
the best tile size for the USTR algorithm on the Pentium 
III architecture essentially ignores the level-1 cache and 
focuses on the level-2 cache misses.  This is due to the 
level-2 cache being on-chip, and therefore the miss 
penalty for a level-2 miss is much higher than a level-1 
miss.  For more information regarding experimental 
results see Section 4. 

 
3.4. Summary 

 
In summary, we show 

Table 4 comparing the 
optimizations we have 
discussed in Section 3 for 
computation complexity, 
processor-memory traffic, 
and Simplescalar results.  
Cache size is less than N2.  
Experimental results are 
shown in Section 4. 

 
4. Experimental 

Results 

 
For our experiments we used two 933 MHz Pentium 

III machines.  These have separate instruction and data 
level-1 caches, each 16 Kilobytes (KB), 4-way set 
associative with 32 Byte (B) lines.  The processors have a 
unified on-chip level-2 cache, which is 256 KB, 8-way set 
associative with 32 B lines.  The TLB is split for data and 
instructions.  The instruction TLB has 32 entries and is 4-
way set associative with LRU replacement.  The data 
TLB has 64 entries and is 4-way set associative with LRU 
replacement.  The page size for both TLBs is 4 KB.  The 
operating system was Windows 2000 professional (used 
MSVC++ compiler, version 6.0) on one and Mandrake 
Linux on the other (used gcc compiler, version 2.95.2). 

Data level-1 cache misses 
N Baseline USTR 

1024 0.81 8.16 
1536 2.72 2.76 

(billions) 
 

Data level-2 cache misses 
N Baseline USTR 

1024 538 18 
1536 1,814 57 

(millions) 
 

Data TLB misses 
N Baseline USTR 

1024 5.29 4.08 
1536 17.76 15.61 

(millions) 

Table 3:  Example Simplescalar results for 
USTR Floyd-Warshall algorithm, ββββ = 140. 
Architectural parameters used were 
from Pentium III architecture; see 
Section 4 for specific parameter values. 

Summary of analytical and simulation results 
 Baseline Tiled BDL USTR 

Computational 
complexity 

N3 N3 N3 N3 

Processor-memory 
traffic 

N3 N3 N3 N3/β 

Data Level-1 cache 
misses 

2.72 2.13 1.95 2.76 

Data Level-2 cache 
misses 

1.81 1.85 1.84 0.057 

Data TLB misses 0.018 0.218 0.019 0.016 
(billions) 

Table 4:  Summary of results from Section 3.  Architectural parameters used 
were from Pentium III architecture; see Section 4 for specific 
parameter values. 
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We also used a 500 MHz Alpha machine for our 
experiments.  This machine has split data and instruction 
level-1 caches each 64 KB, 2-way set associative with 64 
B lines.  The level-2 cache is a unified off-chip cache of 
size 4 Megabytes (MB), direct mapped with 64 B lines.  
Along with these, the Alpha also has an 8-element fully 
associative victim data buffer used for both instructions 
and data.  The TLB on the Alpha has 128 entries and is 
fully associative.  The page size is 8 KB.  The operating 
system is Linux and we used the gcc compiler (version 
2.91.66). 

Finally, we used a 300 MHz MIPS R12000.  This was 
part of a 64 processor SMP Origin 2000, although our 
implementations ran only on one processor.  This 
processor also has split instruction and data level-1 cache; 
each 32 KB, 2-way set associative, with 32 B lines.  The 
level-2 cache is a unified 8 MB cache, direct mapped, 
with 64 B lines.  The TLB has 64 entries, is fully 
associative, with a page size of 4 KB.  The operating 
system was IRIX64 version 6.5 and we used the gcc 
compiler (version 2.8.1). 

The simulator that we used was from the Simplescalar 
Architectural Research Toolkit, version 2.0 [3].  The 
Simplescalar architecture is derived from the MIPS-IV 
ISA.  The tool we used was sim-cache, which simulates 
the cache performance of a given executable.  Parameters 
that are customizable include level-1 and level-2 
instruction and data cache parameters as well as 
instruction and data TLB parameters.  Parameters for 
these include the number of sets, block size, associativity, 
and replacement policy. 

Figures 10-13 show the actual running times of the 4 
implementations on the 4 different machines; compiler-
optimized, tiled and copied, block data layout (BDL), and 
the USTR optimization. 

On both Pentium III’s, we show small improvements 
in the tiled optimization and the BDL, while the USTR 
implementation gave better than 2x improvement over the 
compiler optimized implementation (see Figures 10&11).  
This is quite consistent with the simulation results 
presented in earlier sections (see Table 4).  The number of 
cache misses for the tiled and copied and the BDL 
optimization were both within 30% of the baseline for 
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Figure 10:  Execution times for 
implementations on Pentium III 
running Windows 2000. 

Figure 11:  Execution times for 
implementations on Pentium III 
running Linux. 
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Figure 12:  Execution times for 
implementations on Alpha running 
Linux. 
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implementations on MIPS R12000 
running IRIX64. 
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level-1 and within 2% for level-2.  The BDL had the best 
level-1 cache performance and this shows up as the best 
execution time in all but one specific case (N=1536 on 
the Pentium III running Windows).  One difference to 
note is the difference in execution time for the baseline, 
relative to the tiled and copied and the BDL, on the two 
machines.  This difference is probably due to the different 
compilers being used and the level of optimization done 
by those compilers.  The USTR optimization’s 
improvement matches very nicely with the 97% decrease 
in level-2 cache misses.  Recall that the memory 
hierarchy on the Pentium III behaves more like a two 
level memory hierarchy due to the level-2 cache being on-
chip.  This performance led us to use a block size that 
essentially ignored the level-1 cache.  In fact our level-1 
cache misses increased slightly from the baseline.  This 
drastic decrease in level-2 cache misses as well as a slight 
decrease in TLB misses gave us an overall 2x 
improvement in performance. 

The Alpha machine showed significantly different 
results.  The tiled optimization and the BDL optimization 
showed much larger performance improvements, while 
the USTR implementation showed similar improvements 
as what we saw on the Pentium III’s, approximately 2x 
improvement.  One reason for this may be that the Alpha 
has an off-chip level-2 cache and a victim cache.  This 
would show very different miss penalties, than we saw on 
the Pentium III.  In order to take full advantage of the two 
levels of cache on the Alpha a two level tiling of the 
USTR should be employed (see Section 3.3.2, Figure 7).  
At the time of this writing we have not performed these 
experiments. 

The MIPS R12000 showed surprisingly poor 
performance for the baseline or compiler optimized code.  
This led to almost a 2x improvement for the tiled and 
copied optimization.  The BDL optimization showed 
approximately 15% improvement over the tiled and 
copied optimization.  The USTR optimization showed a 
3x improvement over the baseline and almost a 2x 
improvement over the tiled and copied optimization.  
Apart from the poor performance of the baseline, these 
results match roughly with the results from our other 
architectures. 

For each of the tiled optimizations (tiled and copied, 
BDL, and USTR) we used experimentation to find an 
optimal tile size for each machine.  These results are 
shown in Figure 14 and Table 5.  For the USTR 
optimization, we expanded our search space based on the 
results from our block size selection heuristic (see Section 
3.4.2, equation 1).  We experimented with block sizes in 
the range of 30 to 180 (see Figure 14).  The best block 
sizes for each machine and optimization are given in 
Table 5. 

 
5. Conclusions and Future Work 

 
We examined a number of different optimizations for 

the Floyd-Warshall algorithm.  We noted that this 
algorithm poses very different challenges from those seen 
in dense linear algebra problems.  In order to address 
these challenges in a unique fashion, we proposed the 
Unidirectional Space Time Representation (USTR).  We 
showed analytically that this representation could be used 
to generate cache-friendly optimizations for a large class 
of algorithms and we demonstrated the improvements in 
cache performance for Transitive Closure using the 
Simplescalar simulator.  Using this representation, we 
showed up to a 2x improvement in the performance of the 
Floyd-Warshall algorithm on 3 different architectures. 

Using the USTR representation it is also possible to 
generate cache-friendly implementations of both the 
Algebraic Path Problem and LU-Decomposition without 
pivoting.  The Algebraic Path Problem is essentially a 
generalization of the Floyd-Warshall algorithm, so our 
USTR implementation can be generalized in the same 
fashion.  For LU-Decomposition without pivoting the data 
dependencies exist only in the forward direction and this 
therefore fits nicely in a USTR. 

The deep memory hierarchy of modern uniprocessors 
poses new challenges and new opportunities for cache-
friendly optimization.  Future work on the USTR will 
address these new opportunities by developing multi-level 

Optimal Tile Sizes 
 P III, 

W2K 
PIII, 

Linux 
Alpha MIPS 

Tiled and 
Copied 

36 32 42 42 

BDL 38 40 40 40 
USTR 140 140 70 70 
USTR 
Range 

(26,148) (26,148) (36,209) (26,295) 

Table 5:  Optimal tile sizes for tiled 
algorithms for each machine and 
range given by tile size heuristic 

250

270

290

310

330

350

0 100 200
Tile Size (N=2048)

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Figure 14:  USTR Optimization, 
tile size selection 
Pentium III, Linux 



 12 

tiled data layouts and schedules that can be tuned to the 
multiple levels of cache memory. 

This work is part of the Algorithms for Data IntensiVe 
Applications on Intelligent and Smart MemORies 
(ADVISOR) Project at USC [1].  In this project we focus 
on developing algorithmic design techniques for mapping 
applications to architectures.  Through this we understand 
and create a framework for application developers to 
exploit features of advanced architectures to achieve high 
performance. 
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