
 1

Cache-Friendly Implementations of Transitive Closure*

Michael Penner and Viktor K Prasanna
University of Southern California

(mipenner@usc.edu, prasanna@usc.edu)
http://advisor.usc.edu

Abstract
In this paper we show cache-friendly implementations of
the Floyd-Warshall algorithm for the All-Pairs Shortest-
Path problem. We first compare the best commercial
compiler optimizations available with standard cache-
friendly optimizations and a simple improvement
involving a block layout, which reduces TLB misses. We
show approximately 15% improvements using these
optimizations. We also develop a general representation,
the Unidirectional Space Time Representation, which can
be used to generate cache-friendly implementations for a
large class of algorithms. We show analytically and
experimentally that this representation can be used to
minimize level-1 and level-2 cache misses and TLB misses
and therefore exhibits the best overall performance.
Using this representation we show a 2x improvement in
performance with respect to the compiler optimized
implementation. Experiments were conducted on Pentium
III, Alpha, and MIPS R12000 machines using problem
sizes between 1024 and 2048 vertices. We used the
Simplescalar simulator to demonstrate improved cache
performance.

1. Introduction

The topic of cache performance has been well studied

in recent years. It has been clearly shown that the amount
of processor-memory traffic is the bottleneck for
achieving high performance in most applications [3, 17].
While the topic of cache performance has been well
studied, much of the focus has been on dense linear
algebra problems, such as matrix multiplication and FFT
[3, 10, 14, 21]. All of these problems possess very regular
access patterns that are known at compile time. In this
paper, we take a unique approach to this topic by focusing
on the fundamental irregular problem of transitive
closure.

Optimizing cache performance to achieve better

overall performance is a difficult problem. Modern
microprocessors are including deeper and deeper memory
hierarchies to hide the cost of cache misses. The
performance of these deep memory hierarchies has been
shown to differ significantly from predictions based on a
single level of cache [16]. Different miss penalties for
each level of the memory hierarchy as well as the TLB
also play an important role in the effectiveness of cache-
friendly optimizations. These miss penalties vary from
processor to processor and can cause large variations in
experimental results.

The All-Pairs Shortest-Path problem (hereafter referred
to as transitive closure) is a fundamental problem in a
wide variety of fields, most notably network routing and
distributed computing. Transitive closure, as an irregular
problem, poses unique challenges to improving cache
performance, challenges that often cannot be handled by
standard cache-friendly optimizations [8]. The Floyd-
Warshall algorithm involves updating N2 elements at each
step. Simple tiling cannot be used to optimize these steps
due to data dependencies from one step to the next.

In this paper we develop the Unidirectional Space
Time Representation (USTR) and show that using this
representation we can develop cache-friendly
implementations for a large class of algorithms. This
representation is very similar to the space-time
representation used in systolic array design, which also
deals with partitioning the space as we do [7]. However,
such systolic array designs do not have the added
challenge of dealing with cache conflicts and multiple
levels of memory hierarchy. We also show how this
representation can be used to uniquely face the challenges
posed by the transitive closure problem. Using this
representation we show up to a factor of 2 improvement
over a state of the art cache-friendly optimization,
including those available in a research compiler [12].

The remainder of this paper is organized as follows: In
Section 2 we give the background and briefly summarize
some related work in the areas of cache optimization and
compiler optimizations. In Section 3 we discuss each
optimization that we consider and give Simplescalar
results to substantiate our claims. In Section 4 we present

* Supported by the US DARPA Data Intensive Systems
Program under contract F33615-99-1-1483 monitored by
Wright Patterson Airforce Base and in part by an equipment
grant from Intel Corporation.

 2

experimental data gathered from the three machines we
used. In Section 5 we draw conclusions and gives some
direction for future work.

2. Background and Related Works

In this section we give the background information

required in our discussion of various optimizations in
Section 3. In Section 2.1 we give a brief outline of the
Floyd-Warshall algorithm. Those readers comfortable
with this algorithm can skip this. In Section 2.2 we
discuss some of the challenges that are faced in making
the transitive closure problem cache-friendly. Finally, in
Section 2.3 we give some information regarding other
work in the fields of cache analysis, cache-friendly
optimizations, and compiler optimizations and how they
relate to our work.

2.1. The Floyd-Warshall Algorithm

For the sake of discussion, suppose we have a directed

graph G with N vertices labeled 1 to N and E edges. The
Floyd-Warshall algorithm is a dynamic programming
algorithm, which computes a series of N, NxN matrices
where Dk is the kth matrix and is defined as follows: Dk

(i,j)
= shortest path from vertex i to vertex j composed of the
subset of vertices labeled 1 to k. The matrix D0 is the
original graph G. We can think of the algorithm as
composed of N steps. At each kth step, we compute Dk
using the data from Dk-1 in the manner shown in Figure
1[6].

2.2. Challenges

Transitive closure presents a very different set of

challenges from those present in dense linear algebra
problems such as matrix multiply and FFT. In the Floyd-
Warshall algorithm, the operations involved are
comparison and add operations. There are no floating-
point operations as in matrix multiply and FFT. We are

also faced with dependencies that require us to update the
entire NxN array Dk before moving on to the (k+1)th step.
This data dependency from one kth loop to the next
eliminates the ability of any commercial or research
compiler to improve data reuse. We have explored using
the research compiler SUIF to optimize transitive closure
and found that the optimization discussed in Section 3.1,
namely tiling of the i and j loops, is the best it can
perform without user provided knowledge of the
algorithm [8]. These challenges mean that although the
computational complexity of the Floyd-Warshall
algorithm is O(N3), equivalent to matrix multiply, often
transitive closure displays much longer running times.

2.3. Related Work

A number of groups have done research in the area of

cache performance analysis in implementing algorithms
in recent years. Detailed cache models have been
developed by Weikle, McKee, and Wulf in [20] and Sen
and Chatterjee in [16]. Instead of eliminating cache
misses, some groups develop methods to tolerate these
misses. Multithreading has been discussed as one method
of accomplishing this. Kwak and others discuss the
effects of multithreading on cache performance in [11].

A number of papers have discussed the optimization of
specific problems with respect to cache performance. The
majority of these problems are in the area of dense linear
algebra problems. Whaley and others discuss optimizing
the widely used Basic Linear Algebra Subroutines
(BLAS) in [21]. Chatterjee and Sen discuss a cache
efficient matrix transpose in [4]. Frigo and others discuss
the cache performance of cache oblivious algorithms for
matrix transpose, FFT, and sorting in [9]. Park and
Prasanna discuss dynamic data remapping to improve
cache performance for the DFT in [13]. One
characteristic that these problems share is a very regular
memory accesses that are known at compile time.

Another area that has been studied is the area of
compiler optimizations (see for example [15, 16, 26]).
Optimizing blocked algorithms has been extensively
studied (see for example [12]). The SUIF compiler
framework includes libraries for performing data
dependency analysis and loop transformations among
other things. In this context, it is important to note that
SUIF does not handle the data dependencies present in the
Floyd-Warshall algorithm in a manner that improves the
processor-memory traffic. It will perform the tiling
optimization discussed in Section 3.1; however, it will not
perform the transformation discussed in Section 3.4
without user intervention [8].

Although much of the focus of cache optimization has
been on dense linear algebra problems, there has been
some work that focuses on irregular data structures.
Chilimbi discusses making pointer-based data structures

i

j
k

Dk
(i,j) = min[Dk-1

(i,j) , Dk-1
(i,k)+Dk-1

(k,j)]

Figure 1: kth step of Floyd-Warshall
Algorithm

 3

cache-conscious in [5]. He focuses on providing structure
layouts and structure definitions to make tree structures
cache-conscious. Gao has also looked at optimizations
for a heap data structures in [18]. The difference between
this work and ours is that we focus on optimizing an
algorithm instead of a data structure.

3. Cache-Friendly Optimizations

In this section we explore three different optimizations

of transitive closure. In Section 3.1, we show the usual
implementation of the Floyd-Warshall algorithm, as well
as a standard compiler technique for optimizing loop
nests. We use these throughout the paper as our baseline.
Section 3.1 also includes many of the definitions and
assumptions that we use throughout Section 3 for our
analysis. In Section 3.2 we show a data layout
optimization that is used to compliment the compiler
optimization. Finally, in Section 3.3 we introduce the
Unidirectional Space Time Representation and how it can
be used to generate cache-friendly optimizations.
Throughout the sections we use result from the
Simplescalar simulator to verify our analytical analysis.
We show actual running times of the optimizations on our
three machines in Section 4.

3.1. Standard Optimization of the Floyd-

Warshall Algorithm (Baseline
Implementation)

As stated earlier, improving cache performance has

been well studied in recent years in the area of dense
linear algebra problems. Most of the optimizations
developed deal with dense array structures. This dense
array is present in the standard Floyd-Warshall algorithm.
The purpose of this section is to introduce and analyze the
baseline implementation as well as a fairly standard
optimizations to improve cache performance. This
optimizations produced less than 20% improvement over
the baseline. The baseline that we use throughout our
discussion is a usual implementation that is compiled
using the state of the art compiler optimizations available.
The compilers we used for our experiments were GNU
C++ (gcc) and Microsoft Visual C++ (MS VC++). We
have verified that these compilers do not do loop
transformation or copying. They do perform such
optimizations as inline functions and code reordering to
hide miss latency.

In order to simplify the analysis we make a few
assumptions. Suppose we have a graph with N vertices.
The size of the adjacency matrix is then N2. We are
interested in optimizing performance as the problem size
increases; the problem and intermediate data do not fit in
the cache. We assume that the cache size is less than N2
and the TLB is much smaller than N. We define

processor-memory traffic as the traffic between the last
level of the memory hierarchy that cannot contain the
problem size (referred to as the cache) and the first level
of the memory hierarchy that can contain the problem
data (referred to as memory). On most traditional
architectures, this would be between the level-2 cache and
main memory. We also assume that the problem fits into
some level of the main memory hierarchy. To
experimentally validate our approaches and their analysis,
the actual problem sizes that we are working with are
between 1024 and 2048 nodes (1024 ≤ N ≤ 2048). Each
data element is 8 bytes. Many processors currently on the
market have in the range of 16 to 64 KB of level-1 cache
and between 256 KB and 4 MB of level-2 cache. Many
processors have a TLB with approximately 64 entries and
a page size of 4 to 8KB. All of these parameters match
closely with our assumptions.

Let us first examine the usual implementation of the
Floyd-Warshall algorithm. The basic step (kth loop) in
this algorithm is to take the outer product of the kth row
and the kth column and update the entire matrix. We
assume the matrix is laid out in row major order. By
definition of the algorithm then we are going to update N2
elements in each kth loop. Since our cache is strictly less
than N2, this will generate Θ(N3) total processor-memory
traffic. Now suppose we want to update the entire ith row
during some kth loop. In the worst case, this could conflict
exactly with the kth row of the matrix and cause an extra
O(N) conflict misses for that kth loop. We also want to
consider TLB misses. In order to understand the TLB
issues, suppose our page size is N*l for some small l,
possibly less than 1.* Then the adjacency matrix sits
inside N/l different pages. Each one of these must be
accessed during every kth loop and all of them will not fit
into the TLB. So, we will generate O(N/l) TLB misses

* The Pentium III page size is 4 KB = 512 * d, where d is

our data element size. The Alpha page size is 8 KB =
1024 * d.

���
���
���
���
���
���
���
���

kth row

kth column
(i,j)th element

Dk+1
(i,j) = min{Dk

(i,j), Dk
(i,k)+Dk

(k,j)}

Figure 2: Basic step (kth loop) in
Floyd-Warshall algorithm

 4

during each kth loop. Therefore the total number of TLB
misses will be O(N2/l).

The first optimization that we examine is a basic tiling
approach combined with copying (Figure 3). Tiling is a
loop transformation that attempts to reduce the working
set size. It solves many small problems and combines the
solutions into the solution for the original problem.
Copying is used to reduce conflict misses within the tile
by placing all the elements in contiguous memory
locations. Due to data dependencies, the Floyd-Warshall
algorithm can only be tiled for the i and j loops. In order
to find the optimal tile size for each architecture, it is best
to experiment with various tile sizes (see Section 4). For
the sake of analysis, suppose that the tile size is βxβ,
where β2 < cache size. Since the dependencies still
require updating all N2 elements in each kth loop (1 ≤ k ≤
N), as in the original case, we will have O(N3) overall
processor-memory traffic. However, the tiled
computation does reduce the working set size. Where we
used to have an extra O(N) traffic when the ith row
conflicted with the kth row, there is now an extra O(β)
traffic when a row of the tile conflicts with the kth row.
This reduction in conflict misses can be seen in the level-
1 cache misses from Simplescalar (see Table 1).

In order to understand the number of TLB misses,
examine the problem of solving a single tile. Since the
elements are laid out row-wise for the matrix, each row is
on a different page, recall that page size is approximately
N. This is true even with copying, since the tile in the
original matrix must be accessed in order to copy it into
contiguous locations. Therefore, this requires β + 1 pages
to update each tile. For the baseline, the TLB working set
is O(1), exactly 2 rows of the matrix. If the TLB is
smaller than β + 1, we will have O(β) misses per tile, and
O(N3/β) total TLB misses. In fact, this increase in TLB
misses can be seen in our results from Simplescalar (see
Table 1). In our experiments, this optimization gave
performance improvements ranging from 0% to 40% over
the baseline.

3.2. Data Layout Optimization of the Floyd-

Warshall Algorithm

The first optimization that we propose is a change in

data layout. The theory behind this change in data layout
is that in order to show spatial locality, and therefore good
cache performance, the data layout must match the data
access pattern. In our tiled optimization, the access is
naturally tile-by-tile, row-wise through the matrix.
Within each tile, the data is also accessed row-wise. In
order to match this data access pattern, the Block Data
Layout (BDL) should be used. The BDL is a two level
mapping that maps a tile of data, instead of a row, into
contiguous memory. These blocks are laid out row-wise
in the matrix and data is laid out row-wise within the
block (see Figure 4). When the block size is equal to the
tile size in the tiled computation, the data layout will
exactly match the data access pattern. Also note that with
this layout, copying is not necessary, since the elements in
the tile are already in contiguous memory locations.

The analysis of this optimization is very similar to that
of the tiled and copied optimization. Since the
dependencies still require updating the entire matrix in
each kth loop, the total processor-memory traffic will be
O(N3). However, the working set is reduced by the tiled
computation and the level-1 cache misses are reduced as
shown in Table 2. This is the same phenomenon that was
shown in the tiling with copying optimization. Since each
tile is in contiguous memory locations and is equal to
O(1) TLB pages, this only requires O(1) TLB misses for
each tile of computation. This gives a total of O(N3/β2)
TLB misses and a working set of O(1) pages. Recall that
in the usual implementation, the working set was a row of
the adjacency matrix. This was laid out in contiguous
memory locations, so the working set of pages is O(1). In

��
��
��
��
��
��
��
��
��

kth row

kth column

copied
(i,j) tile

β

β

Figure 3: Tiling plus copying for

Floyd-Warshall algorithm

Data level-1 cache misses
N Baseline Tiled, ββββ=32

1024 0.81 0.63
1536 2.72 2.13

(billions)

Data TLB misses
N Baseline Tiled, ββββ=32

1024 5.29 86.71
1536 17.76 218.08

(millions)

Table 1: Simplescalar results for tiled and
copied Floyd-Warshall algorithm.
Architectural parameters used were from
Pentium III architecture; see Section 4 for
specific parameter values.

 5

the tiled version, we showed the working set of pages was
O(β). This difference can be seen in the Simplescalar
simulation results for TLB misses (see Table 2). The
experimental results for the BDL optimization showed
performance increases in the range of 5% to 15% on the
Pentium III and approximately 40% on the Alpha (see
Section 4)

3.3. The Unidirectional Space Time

Representation and Cache-Friendly
Algorithms

In this Section we introduce the Unidirectional Space-

Time Representation (USTR). We show that this
representation can be used to generate cache-friendly
implementations of many algorithms. In Section 3.3.1 we
introduce the basic idea of a space-time representation
and the difference between this representation and the
iteration space. In Section 3.3.2 we show how the USTR
can be used to generate cache-friendly implementations.
We also show analytical bounds on processor-memory
traffic and show a technique to find an optimal partition
size. Finally, in Section 3.3.3 we show one instance of
how the USTR can be applied to transitive closure using
results from Simplescalar to illustrate performance gains.
Running times for this optimization can be found in
Section 4. Throughout this Section we use matrix
multiply as an example application; however, these
techniques can be applied to many algorithms. For the
sake of clarity we will skip a formal definition of the
USTR and focus on the key ideas.

3.3.1. Unidirectional Space Time Representation. Let
us first explain what we mean by a space-time
representation. Similar notions have been used by the
systolic array designs and VLSI signal processing
community ([7, 19]). Consider a problem in which the
result is an NxN matrix. We divide the problem in space
by representing the computation required to calculate each
result as a computational element (CE) in an NxN array,

for example, the multiply-add operations required in a
matrix multiply. Referring to Figure 6, each circle in the
space represents the computation required for the (i,j)th
result. The notion of time comes from the data flowing
through this NxN array of CEs. Referring to Figure 6
again, the data A would flow row-wise into the array from
the left and the data B would flow column-wise into the
array from the top. As the data flows through the array,
each element does some simple computation on the data
inside it and passes on the data. Once the data has flowed
completely through the array, the (i,j) result lies in the
corresponding CE. The space-time representation is
much like a systolic array design. If each CE were
viewed as a processor, the result would be an NxN
systolic array [19]. The distinction that we add is the
notion of unidirectional data flow. We only allow data to
flow in the forward direction, either down or to the right.
This allows us to generate a cache-friendly
implementation.

Consider, for example, the simple systolic array
implementation for multiplying 2, 4x4 matrices (see
Figure 5). During t=1, the CE (1,1) receives A11 from the
left and B11 from the right and computes C11 = A11*B11.
During times t=2, 3, & 4, the CE will receive A1t and B1t,
and will compute C11 = A1t*B1t + C11. In general, CE (i,j)
will receive data elements Aik and Bkj at time [(i-1) + (j-1)
+ k] and will compute Cij = Cij + Aik*Bkj. The
computation will be complete at time t=12, when element
(4,4) updates C44=C44 + A44*B44 [19].

The key difference between this and the iteration space
is the idea of scheduling operations in space. The
iteration space actually deals only with scheduling
operations in time, whereas the USTR represents
operations divided in space as well as time [15]. As we
will show in the next section, this fact allows us to
generate implementations that are cache-friendly.

�������������
�������������
�������������

�������������
�������������
�������������

������������
������������
������������

����������������
����������������
����������������

1 page/block

Blocks laid out
row-wise.

Elements laid
out row-wise
inside blocks.

√N
Data level-1 cache misses
N Baseline BDL

1024 0.81 0.58
1536 2.72 1.95

(billions)

Data TLB misses
N Baseline Tiled BDL

1024 5.29 86.71 5.80
1536 17.76 218.08 19.20

(millions)

Figure 4: The Block Data Layout Table 2: Simplescalar results for BDL
optimization of Floyd-Warshall algorithm.
Architectural parameters used were from
Pentium III architecture; see Section 4 for
specific parameter values.

 6

In summary, what we mean by a USTR is an NxN
array of computational elements (CEs) where each
element performs O(N) computations. Thus, when
implemented on a uniprocessor the algorithm requires
O(N3) time. If the CEs are scheduled in a row-wise
fashion, this would produce the baseline implementation
cooresponding with a usual 3-level perfectly nested loop.

3.3.2. From the USTR to a Cache-Friendly
Implementation. In order to predict cache performance
when we implement the above representation on a
uniprocessor, we need to make a few assumptions
regarding the CEs. We first assume that a fixed amount
of computation is done at each CE during each time and
the amount is relatively small. For the sake of simplicity,
we also assume that each CE is performing exactly the
same computation. We refer to this as a single operation.
In the matrix multiply example each element performed
one multiply and add during each time unit. Finally, we
assume that the local memory required within each CE is
constant, for example each CE in the matrix multiply

array required local storage for one accumulated value.
These assumptions are common to most systolic array
designs. Note that the cache performance analysis does
not depend on the type of operations being performed,
making it applicable to any algorithm expressed in a
USTR. All assumptions regarding cache size and
problem size from Section 3.1 still hold. Recall that data
flow has been limited to the forward direction, i.e. either
down or to the right. Again, for the sake of clarity we will
skip formal proofs and focus on the key ideas.

Examining a single CE, note that the computation
required is N operations. In the matrix multiply example,
each CE required four operations to compute the final
result. Each operation requires 2 new data elements as
well as any locally stored values. This will subsequently
result in 2*N processor-memory traffic on a traditional
architecture. In a usual implementation, each CE could be
executed in a row-wise fashion. For the matrix multiply
USTR, this corresponds to the usual 3-level nested loop
code (without tiling). Based on the above calculation, this
would result in Θ(N3) processor-memory traffic.

Now let us define a tiled order of computations as
follows. First tile the array of CEs into tiles of size βxβ
(see Figure 6). Within each tile, operate on CEs in a row-
wise fashion. Within each CE, process β elements of the
row and column that will pass through it before moving
on to the next CE. We define a pass through a tile as
executing each CE for β elements. Repeatedly pass
through each CE in the tile until all input data has been
processed. Returning to the matrix multiply example, this
implementation would match with a 6-level nested loop
implementation of matrix multiply.

Another method of tiling would be to first tile the array
of CEs into tiles of size βxβ. Within each tile, instead of
processing β elements at each CE at a time, process the
entire array for t=1, then process it for t=2, and so for t≤β.
This then would be defined as a single pass through the
tile.

Between each CE and between tiles we place a First-
In-First-Out (FIFO) buffer. When the adjacent CE or tile
begins, it receives data from this buffer in the same
manner as if all CEs were processing data simultaneously.

As we saw in Section 3.2, it is also beneficial to match
our data layout to the data access pattern. Recall that we
demonstrated large improvements in TLB misses when
we used the BDL on a tiled access pattern compared with
a row-wise data layout for the same access pattern. Since
the access to the input data in the USTR is also in a tiled
fashion, it is beneficial to again use the BDL to minimize
TLB misses. Throughout this section we assume a BDL
when implementing the USTR to eliminate self
interference misses and minimize cross interference
misses between blocks of data.

When the computation is tiled as shown earlier in
Figure 6, we can take advantage of data locality and

B11

B21 B12

B13

B14

B22B31

B41 B32B23

…

A41

A32 A31

A21

A11
A22A23

A14 A13A12

…

Figure 5: USTR for 4x4 matrix multiply

A ⊗ B for N x N matrices

B11

B12 B1N

A11
A12

A1N

= computation for result (i,j)

β

β

…

…

…

…

i

j

Figure 6: Unidirectional Space
Time Representation.

Note: ⊗⊗⊗⊗ refers to a generic
matrix operation.

 7

reduce the processor-memory traffic. Examining the first
pass through a tile of the array of CEs, each CE performs
β operations, requiring the first β data elements of one
row and one column of the input as well as its locally
stored value. Note that the CE directly below it requires
exactly the same column elements and β data elements
from the next row. When this is extended to the entire
tile, it requires 2*β 2 data elements of the input, β 2 locally
stored values, and performs β 3 operations. In order to
complete each tile, it must be passed through N/β times.
This requires 2*(N/β)*β 2 data elements of the input, β 2
locally stored values, and performs (N/β)*β 3 total
operations. From this discussion we have the following
theorem.

Theorem 1: Given an USTR of an algorithm,
we can reduce the amount of processor-memory
traffic by a factor of β, where cache size is O(β2),
compared with a baseline implementation.

Proof sketch: Each pass through a tile requires 2*β 2
elements of the input and β 2 locally stored elements and
performs β 3 operations. If we choose β 2 to be O(C)
where C is the cache size, all locally stored values will
reside in the cache. Also, the current 2*β 2 tiles of the
input will remain in the cache for the duration of the pass.
Each pass through a tile then results in 2*β 2 processor-
memory traffic. There is a total of (N/β)x(N/β) tiles.
Each tile requires N/β passes. The total number of
operations is given by:

33*** NNNN =
















 β
βββ

The total amount of processor-memory traffic is given by:







=

















β

β
βββ

3
2 *22*** NNNN

Therefore the processor-memory traffic is reduced by a
factor of β.

In order to implement the USTR we must also consider
the schedule for computing each tile. Recall from Figure
6 that in the USTR all data flow is in the forward
direction. Therefore, in order to satisfy these data
dependencies, a valid schedule will have the following
characteristic:

• When computing tile (i,j), all tiles (k,l), where {k ≤ i
and l < j} or {k < i and l ≤ j}, must have already been
computed; where the tile (1,1) is the upper left most
tile.

For example, a row-wise schedule of tiles would satisfy
this requirement. One could also use a more complex
schedule such as a wavefront.

When faced with a multi-level memory hierarchy, one
could consider a multi-level tiling method for both the
schedule and the data layout in the USTR. Consider a

multi-level tiling method such as the method shown in
Figure 7. In this method β would be chosen to minimize
the traffic between level-1 and level-2 cache. This is
exactly what we have shown thus far in our discussion.
The traffic between the level-2 cache and the next level of
the memory hierarchy would then be minimized by
choosing β’ such that β’ 2 is equal to the size of the level-2
cache. We could use a simple row-wise layout of tiles
within this larger β’xβ’ tile. This could be repeated until
we reach a level that is larger than our problem size.
Using this multi-level tiling method, we can gain an
improvement of ic in traffic at each level of the
memory hierarchy, where ci is the size of the memory at
the corresponding level of the memory hierarchy. In this
case the schedule of βxβ tiles and β’x β’ tiles becomes
important. In order to take advantage of the most data
reuse possible the schedule of operations must match the
data layout while still satisfying the unidirectional data
flow properties of the USTR.

One of the key factors in Theorem 1 holding is that β 2
is chosen to be on the order of cache size. The simplest
and possibly the most accurate method of choosing β is to
experiment with various tile sizes. This is the method that
the Automatically Tuned Linear Algebra Subroutines
(ATLAS) project employs [21]. However, it is beneficial
to find an estimate of the optimal tile size. The following
is a method to generate approximate bounds on the
optimal tile size.

Note that the working set is composed of 3 βxβ tiles of
data. We can classify cache misses into three categories;
compulsory misses, conflict misses, and capacity misses.
Compulsory misses, by definition, cannot be avoided.
Here we provide a heuristic for choosing a tile size, such
that conflict and capacity misses are minimized.

• Use the 2:1 rule of thumb from [14] (see below) to
adjust the cache size to that of an equivalent 4-way
set associative cache. This minimizes conflict
misses since our working set consists of 3
contiguous tiles of data. Self interference misses

������������
������������
������������

β

…
…

β’

…

…

Figure 7: Multi-level tiling for USTR

schedule and/or layout.

 8

are eliminated by the data being in contiguous
locations and cross interference misses are
eliminated by the associativity.

• Choose β by Equation 1, where d is the size of one
element and C is the adjusted cache size. This
minimizes capacity misses.

 Cd =**3 2β
The 2:1 rule of thumb states that a direct mapped cache

of size C has approximately the same miss ratio as a 2-
way set associative cache of size C/2. Based on the
results published in [14] this rule of thumb holds loosely
for any k and 2*k way set associative caches. For
example, if the cache is a 2-way set associative cache of
size C, the equation to solve would be 3*β2*d = C/2.
Also note that this does not calculate an exact value for
the optimal β, it simply finds a loose bound on the desired
search space.

It is also important to note that the search space must
take into account each level of cache as well as the size of
the TLB. Given these various solutions for β the best tile
size can be found experimentally. In order to validate this
method, calculate the best tile size for the Pentium III
machine based on the level-2 cache. The level-2 cache is
a 256 KB, 8-way set associative cache. Use the 2:1 rule
of thumb and base the calculations on a 512 KB, 4-way
set associative cache. The element size d is 8 bytes.
Solving Equation 1 gives β = 147.8. Experimentally, the
best tile size for the USTR optimization of transitive
closure on our Pentium III was found to be β = 140.

3.3.3. A Cache-Friendly Algorithm for Transitive
Closure. As we stated in Section 3.4.1, the USTR is
similar to notations used in the systolic array and VLSI
signal processing communities. A standard systolic array
implementation of the Floyd-Warshall algorithm is as
follows [19].

• Given a graph with N vertices in the adjacency
matrix representation, feed the matrix A into an
NxN systolic array of processing elements (PEs)
both row-wise from the top and column-wise from
the left as shown in Figure 8.

• At each PE (i,j), update the local variable C(i,j) by
the following formula:

),min(),(),(),(),(jkkijiji AACC +=
Where A(i,k) is the value received from the top and
A(k,j) is the value received from the left.

• If i=k, pass the value C(i,j) down, otherwise pass
A(k,j) down. If j=k, pass the value C(i,j) to the right,
otherwise pass A(i,k) to the right.

• Finally, when data elements reach the edge of the
matrix, a loop around connection should be made
such that A(i,N) passes data to A(i,1) and A(N,j) passes
data to A(1,j) (see Figure 8).

Lemma 1 [19]: The above computation results
in the transitive closure of the input once all
input data elements have been passed through the
entire array exactly 3 times.

Without a transformation, this implementation does not
fit in the USTR due to the loop around connections.
Recall that in order to fit in our USTR, all data must flow
in the forward direction, namely either down or to the
right (see Section 3.4.1). However, based on the above
Lemma 1 we can expand the original representation in the
following manner.

Copy the entire array twice so that we have three NxN
arrays of PEs. Make a connection from the end of the ith
row in one array to the beginning of the ith row in the next
and from the end of the jth column in one array to the
beginning of the jth column in the next as shown in Figure
9. These connections replace the loop around connections
in the original systolic array implementation (see Figures
8 & 9).

This new representation qualifies as unidirectional and
therefore is an USTR of the Floyd-Warshall algorithm.

…

A11
A12

A1N

A11
A21

A1N

A21

A12

…

…

…

Figure 8: Systolic Array
implementation of Floyd-
Warshall algorithm

Figure 9: Unidirectional Space
Time Representation of
Systolic Array algorithm
for transitive closure.

1

2

 9

Note that each PE in the systolic array implementation
becomes a Computational Element (CE) in our USTR.
Also note, that although the representation visually
requires 3*N2 space, no additional memory is required
compared with the baseline implementation. Based on the
results in Section 3.3.2 we can execute each CE on a
uniprocessor architecture. We can also tile the
computation in the manner shown in Section 3.4.2 and
based on Theorem 1 we have:

Theorem 2: The Floyd Warshall algorithm can
be implemented on a uniprocessor such that the
processor-memory traffic is reduced by a factor
of β, where cache size is on the order of β2
compared with the baseline implementation.

The maximum reduction factor in processor-memory
traffic to perform ordinary matrix multiplication given a
limited internal memory is O(M) where M is the size of
the internal memory [10]. Using the structure of the
Floyd-Warshall dependency graph, it can be shown:

Theorem 3: Our USTR implementation of the
Floyd-Warshall algorithm is (asymptotically)
optimal with respect to processor memory traffic.

To illustrate this reduction in processor-memory traffic
we show results from Simplescalar experiments for the
number of cache misses (see Table 3). Even though this
algorithm performs a total of 3*N3 operations,
Simplescalar results show a 30x improvement in level-2
cache misses. Note that it was found experimentally that
the best tile size for the USTR algorithm on the Pentium
III architecture essentially ignores the level-1 cache and
focuses on the level-2 cache misses. This is due to the
level-2 cache being on-chip, and therefore the miss
penalty for a level-2 miss is much higher than a level-1
miss. For more information regarding experimental
results see Section 4.

3.4. Summary

In summary, we show

Table 4 comparing the
optimizations we have
discussed in Section 3 for
computation complexity,
processor-memory traffic,
and Simplescalar results.
Cache size is less than N2.
Experimental results are
shown in Section 4.

4. Experimental

Results

For our experiments we used two 933 MHz Pentium

III machines. These have separate instruction and data
level-1 caches, each 16 Kilobytes (KB), 4-way set
associative with 32 Byte (B) lines. The processors have a
unified on-chip level-2 cache, which is 256 KB, 8-way set
associative with 32 B lines. The TLB is split for data and
instructions. The instruction TLB has 32 entries and is 4-
way set associative with LRU replacement. The data
TLB has 64 entries and is 4-way set associative with LRU
replacement. The page size for both TLBs is 4 KB. The
operating system was Windows 2000 professional (used
MSVC++ compiler, version 6.0) on one and Mandrake
Linux on the other (used gcc compiler, version 2.95.2).

Data level-1 cache misses
N Baseline USTR

1024 0.81 8.16
1536 2.72 2.76

(billions)

Data level-2 cache misses
N Baseline USTR

1024 538 18
1536 1,814 57

(millions)

Data TLB misses
N Baseline USTR

1024 5.29 4.08
1536 17.76 15.61

(millions)

Table 3: Example Simplescalar results for
USTR Floyd-Warshall algorithm, ββββ = 140.
Architectural parameters used were
from Pentium III architecture; see
Section 4 for specific parameter values.

Summary of analytical and simulation results
 Baseline Tiled BDL USTR

Computational
complexity

N3 N3 N3 N3

Processor-memory
traffic

N3 N3 N3 N3/β

Data Level-1 cache
misses

2.72 2.13 1.95 2.76

Data Level-2 cache
misses

1.81 1.85 1.84 0.057

Data TLB misses 0.018 0.218 0.019 0.016
(billions)

Table 4: Summary of results from Section 3. Architectural parameters used
were from Pentium III architecture; see Section 4 for specific
parameter values.

 10

We also used a 500 MHz Alpha machine for our
experiments. This machine has split data and instruction
level-1 caches each 64 KB, 2-way set associative with 64
B lines. The level-2 cache is a unified off-chip cache of
size 4 Megabytes (MB), direct mapped with 64 B lines.
Along with these, the Alpha also has an 8-element fully
associative victim data buffer used for both instructions
and data. The TLB on the Alpha has 128 entries and is
fully associative. The page size is 8 KB. The operating
system is Linux and we used the gcc compiler (version
2.91.66).

Finally, we used a 300 MHz MIPS R12000. This was
part of a 64 processor SMP Origin 2000, although our
implementations ran only on one processor. This
processor also has split instruction and data level-1 cache;
each 32 KB, 2-way set associative, with 32 B lines. The
level-2 cache is a unified 8 MB cache, direct mapped,
with 64 B lines. The TLB has 64 entries, is fully
associative, with a page size of 4 KB. The operating
system was IRIX64 version 6.5 and we used the gcc
compiler (version 2.8.1).

The simulator that we used was from the Simplescalar
Architectural Research Toolkit, version 2.0 [3]. The
Simplescalar architecture is derived from the MIPS-IV
ISA. The tool we used was sim-cache, which simulates
the cache performance of a given executable. Parameters
that are customizable include level-1 and level-2
instruction and data cache parameters as well as
instruction and data TLB parameters. Parameters for
these include the number of sets, block size, associativity,
and replacement policy.

Figures 10-13 show the actual running times of the 4
implementations on the 4 different machines; compiler-
optimized, tiled and copied, block data layout (BDL), and
the USTR optimization.

On both Pentium III’s, we show small improvements
in the tiled optimization and the BDL, while the USTR
implementation gave better than 2x improvement over the
compiler optimized implementation (see Figures 10&11).
This is quite consistent with the simulation results
presented in earlier sections (see Table 4). The number of
cache misses for the tiled and copied and the BDL
optimization were both within 30% of the baseline for

0
100
200
300
400
500
600

1024 1536 2048
Number of Vertices

Ex
ec

ut
io

n
Ti

m
e

(s
)

Baseline Tiled BDL USTR

Figure 10: Execution times for
implementations on Pentium III
running Windows 2000.

Figure 11: Execution times for
implementations on Pentium III
running Linux.

0

200

400

600

800

1000

1200

1024 1536 2048
Number of Vertices

Ex
ec

ut
io

n
Ti

m
e

(s
)

Baseline Tiled BDL USTR

Figure 12: Execution times for
implementations on Alpha running
Linux.

0
100
200
300
400
500
600

1024 1536 2048
Number of Vertices

Ex
ec

ut
io

n
Ti

m
e

(s
)

Baseline Tiled BDL USTR

0

500

1000

1500

2000

1024 1536 2048
Number of Vertices

Ex
ec

ut
io

n
Ti

m
e

(s
)

Baseline Tiled BDL USTR

Figure 13: Execution times for
implementations on MIPS R12000
running IRIX64.

 11

level-1 and within 2% for level-2. The BDL had the best
level-1 cache performance and this shows up as the best
execution time in all but one specific case (N=1536 on
the Pentium III running Windows). One difference to
note is the difference in execution time for the baseline,
relative to the tiled and copied and the BDL, on the two
machines. This difference is probably due to the different
compilers being used and the level of optimization done
by those compilers. The USTR optimization’s
improvement matches very nicely with the 97% decrease
in level-2 cache misses. Recall that the memory
hierarchy on the Pentium III behaves more like a two
level memory hierarchy due to the level-2 cache being on-
chip. This performance led us to use a block size that
essentially ignored the level-1 cache. In fact our level-1
cache misses increased slightly from the baseline. This
drastic decrease in level-2 cache misses as well as a slight
decrease in TLB misses gave us an overall 2x
improvement in performance.

The Alpha machine showed significantly different
results. The tiled optimization and the BDL optimization
showed much larger performance improvements, while
the USTR implementation showed similar improvements
as what we saw on the Pentium III’s, approximately 2x
improvement. One reason for this may be that the Alpha
has an off-chip level-2 cache and a victim cache. This
would show very different miss penalties, than we saw on
the Pentium III. In order to take full advantage of the two
levels of cache on the Alpha a two level tiling of the
USTR should be employed (see Section 3.3.2, Figure 7).
At the time of this writing we have not performed these
experiments.

The MIPS R12000 showed surprisingly poor
performance for the baseline or compiler optimized code.
This led to almost a 2x improvement for the tiled and
copied optimization. The BDL optimization showed
approximately 15% improvement over the tiled and
copied optimization. The USTR optimization showed a
3x improvement over the baseline and almost a 2x
improvement over the tiled and copied optimization.
Apart from the poor performance of the baseline, these
results match roughly with the results from our other
architectures.

For each of the tiled optimizations (tiled and copied,
BDL, and USTR) we used experimentation to find an
optimal tile size for each machine. These results are
shown in Figure 14 and Table 5. For the USTR
optimization, we expanded our search space based on the
results from our block size selection heuristic (see Section
3.4.2, equation 1). We experimented with block sizes in
the range of 30 to 180 (see Figure 14). The best block
sizes for each machine and optimization are given in
Table 5.

5. Conclusions and Future Work

We examined a number of different optimizations for

the Floyd-Warshall algorithm. We noted that this
algorithm poses very different challenges from those seen
in dense linear algebra problems. In order to address
these challenges in a unique fashion, we proposed the
Unidirectional Space Time Representation (USTR). We
showed analytically that this representation could be used
to generate cache-friendly optimizations for a large class
of algorithms and we demonstrated the improvements in
cache performance for Transitive Closure using the
Simplescalar simulator. Using this representation, we
showed up to a 2x improvement in the performance of the
Floyd-Warshall algorithm on 3 different architectures.

Using the USTR representation it is also possible to
generate cache-friendly implementations of both the
Algebraic Path Problem and LU-Decomposition without
pivoting. The Algebraic Path Problem is essentially a
generalization of the Floyd-Warshall algorithm, so our
USTR implementation can be generalized in the same
fashion. For LU-Decomposition without pivoting the data
dependencies exist only in the forward direction and this
therefore fits nicely in a USTR.

The deep memory hierarchy of modern uniprocessors
poses new challenges and new opportunities for cache-
friendly optimization. Future work on the USTR will
address these new opportunities by developing multi-level

Optimal Tile Sizes
 P III,

W2K
PIII,

Linux
Alpha MIPS

Tiled and
Copied

36 32 42 42

BDL 38 40 40 40
USTR 140 140 70 70
USTR
Range

(26,148) (26,148) (36,209) (26,295)

Table 5: Optimal tile sizes for tiled
algorithms for each machine and
range given by tile size heuristic

250

270

290

310

330

350

0 100 200
Tile Size (N=2048)

Ex
ec

ut
io

n
Ti

m
e

(s
)

Figure 14: USTR Optimization,
tile size selection
Pentium III, Linux

 12

tiled data layouts and schedules that can be tuned to the
multiple levels of cache memory.

This work is part of the Algorithms for Data IntensiVe
Applications on Intelligent and Smart MemORies
(ADVISOR) Project at USC [1]. In this project we focus
on developing algorithmic design techniques for mapping
applications to architectures. Through this we understand
and create a framework for application developers to
exploit features of advanced architectures to achieve high
performance.

6. References

[1] ADVISOR Project. http://advisor.usc.edu/.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design
and Analysis of Computer Algorithms. Addison-Wesley
Publishing Company, Menlo Park, California, 1974.

[3] D. Burger and T. M. Austin. The SimpleScalar Tool Set,
Version 2.0. University of Wisconsin-Madison Computer
Sciences Department Technical Report #1342, June, 1997.

[4] S. Chatterjee and S. Sen. Cache Efficient Matrix
Transposition. In Proc. of International Symposium on High
Performance Computer Architecture, January 2000.

[5] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-
Conscious Structure Layout. In Proc. of ACM SIGPLAN
Conference on Programming Language Design and
Implementation, May 1999.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. MIT Press, Cambridge,
Massachusetts, 1990.

[7] M. Cosnard, P. Quinton, Y. Robert, and M. Tchuente
(editors). Parallel Algorithms and Architectures. North
Holland, 1986.

[8] P. Diniz. USC ISI, Personal Communication, March,
2001.

[9] M. Frigo, C. E. Leiserson, H. Prokop, and S.
Ramachandran. Cache-Oblivious Algorithms. In Proc. of 40th
Annual Symposium on Foundations of Computer Science, 17-18,
New York, NY, USA, October, 1999.

[10] J. Hong and H. Kung. I/O Complexity: The Red Blue
Pebble Game. In Proc. of ACM Symposium on Theory of
Computing, 1981.

[11] H. Kwak, B. Lee, A. R. Hurson, S. Yoon and W. Hahn.
Effects of Multithreading on Cache Performance. IEEE
Transactions on Computers, Vol. 48, No. 2, February 1999.

[12] M. S. Lam, E. E. Rothberg, and M. E. Wolf. The Cache
Performance and Optimizations of Blocked Algorithms. In
Proc. of the Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems,
Palo Alto, California, April, 1991.

[13] N. Park, D Kang, K Bondalapati, and V. K. Prasanna.
Dynamic Data Layouts for Cache-conscious Factorization of the
DFT. In Proc. of International Parallel and Distributed
Processing Symposium, May 2000.

[14] D. A. Patterson and J. L. Hennessy. Computer
Architecture A Quantitative Approach. 2nd Ed., Morgan
Kaufmann Publishers, Inc., San Francisco, California, 1996.

[15] F. Rastello and Y. Robert. Loop Partitioning Versus
Tiling for Cache-Based Multiprocessor. In Proc. of
International Conference Parallel and Distributed
Computing and Systems, Las Vegas, Nevada, 1998.

[16] S. Sen, S. Chatterjee. Towards a Theory of Cache-
Efficient Algorithms. In Proc. of Symposium on Discrete
Algorithms, 2000.

[17] SPIRAL Project. http://www.ece.cmu.edu/~spiral/.

[18] X. Tang, R. Ghiya, L. J. Hendren, and G. R. Gao. Heap
Analysis and Optimizations for Threaded Programs. In Proc. of
International Conference on Parallel Architectures and
Compilation Techniques, pages 14--25, San Francisco, Calif.,
November 1997.

[19] J. D. Ullman. Computational Aspects of VLSI.
Computer Science Press, Rockville, Maryland, 1983.

[20] D. A. B. Weikle, S. A. McKee, and Wm.A. Wulf.
Caches As Filters: A New Approach To Cache Analysis. In
Proc. of Grace Murray Hopper Conference, September 2000.

[21] R. C. Whaley and J. J. Dongarra. Automatically Tuned
Linear Algebra Software. High Performance Computing and
Networking, November 1998.

